
Research Article
Human Gait Analysis: A Sequential Framework of Lightweight
Deep Learning and Improved Moth-Flame
Optimization Algorithm

Muhammad Attique Khan ,1 Habiba Arshad,2 Robertas Damaševičius,3
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Human gait recognition has emerged as a branch of biometric identi�cation in the last decade, focusing on individuals based on
several characteristics such as movement, time, and clothing. It is also great for video surveillance applications. �e main issue
with these techniques is the loss of accuracy and time caused by traditional feature extraction and classi�cation. With advances in
deep learning for a variety of applications, particularly video surveillance and biometrics, we proposed a lightweight deep learning
method for human gait recognition in this work. �e proposed method includes sequential steps–pretrained deep models
selection of features classi�cation. Two lightweight pretrainedmodels are initially considered and �ne-tuned in terms of additional
layers and freezing some middle layers. Following that, models were trained using deep transfer learning, and features were
engineered on fully connected and average pooling layers. �e fusion is performed using discriminant correlation analysis, which
is then optimized using an improved moth-�ame optimization algorithm. For �nal classi�cation, the �nal optimum features are
classi�ed using an extreme learning machine (ELM). �e experiments were carried out on two publicly available datasets, CASIA
B and TUM GAID, and yielded an average accuracy of 91.20 and 98.60%, respectively. When compared to recent state-of-the-art
techniques, the proposed method is found to be more accurate.

1. Introduction

Person recognition and identi�cation using gait have great
importance in the �eld of machine learning and computer
vision [1]. Gait is the walking behavior of a person but to
recognize a person by gait from distance and in less illu-
minated environment it becomes very complicated and
di�cult [2]. Moreover, as compared to other traditional
biometric techniques such as �ngerprint, face detection, and
iris detection, it does not require direct contact of a person

[3]. Due to these discriminative factors, it has taken a lot of
attention from researchers and it is used to apply in various
applications like security surveillance, dubious person de-
tection, and forensics [4, 5].

In early research, gait recognition was categorized in to
two main categories such as model-based and appearance-
based [6]. �e prior categories are more costly to implement
the human model using high-resolution videos and give low
average results as compared to modern categories; hence,
researchers focus on using modern categories for gait feature
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detection [7]. In the model-based method, prior information
is used to extract the moving features of the human body [8].
Furthermore, in this method, the movement of human body
is examined using changing factors like gait path, position of
joints, and the torso [9]. +is is a challenging method, due to
its high computational complications. In the model-free
method, gait cycle is used to extract the features from a
silhouette, and it is simple to implement due to less com-
putational cost [10].

+ere are various machine learning and computer vision
techniques that are used to overcome the covariate factors
like angular deviations [11], lightning conditions [12], and
clothing and carrying bags [6, 13], but there exist various
challenges in extracting useful features that affect the op-
timal accuracy results. Feature extraction is considered as the
most important step in recognizing gait traits [14], such as if
the extracted features are related to the problem, then the
system will be able to correctly recognize the human gait
patterns. In contrast, if irrelevant features are evaluated, then
the system performance will go down and it will not give
optimal recognition results [10]. In past, various types of
features are used like shape-based features [15], geometrical
features [16], and statistical features [17]. Deep features are
extracted using deep convolutional neural network tech-
niques to overcome these challenges. Deep learning tech-
niques, rather than manual feature extraction, extract
automated features from raw images [18, 19]. In this work,
we proposed a sequential lightweight deep learning archi-
tecture for human gait recognition. Our major contributions
are listed as follows:

(i) Two pretrained deep learning models are modified
namely VGG-19 and MobileNet-V2 based on the
target dataset classes and adjusted their weights.
+en, both models are trained using transfer
learning without freezing any layer and obtained
newly trained models.

(ii) Feature engineering is performed on fully con-
nected layer 7 (VGG-19) and global pooling layer
(MobileNet-V2) and fused by employing discrim-
inant correlation analysis (DCA)

(iii) A modified moth-flame optimization algorithm is
developed for the selection of optimum features that
are finally classified using extreme learning machine
(ELM)

+e rest of the article is organized as follows: Section 2
describes the manuscript’s related work. Section 3 discusses
the specifics of selected datasets. +e proposed methodology
is presented in Section 4. Section 5 discusses and explains the
experimental results. Finally, Section 6 brings the entire
manuscript that followed the references to a close.

2. Related Works

Identification of human through gait is the most biometric
application, and researchers have made extensive studies for
it by extracting feature values [20]. In literature, various
machine learning and computer vision-based techniques

are implemented for human gait recognition [21]. Liao et al.
[22] presented Pose-gait model-based gait recognition
method. In this approach, the human 3D pose is estimated
using CNN, and then spatiotemporal features extracted
from the 3D pose are used for the improvement in rec-
ognition. Two publicly available datasets CASIA B and
CASIA E are used for experimentation, and it gives aus-
picious results in the presence of covariate factors. Sanjay
et al. [23] introduced an automated approach for human
gait recognition in the presence of a covariate situation. In
the first step, basic distinct stances in the gait cycle are
detected which are used to compute the gait features related
to these detected stances and it is termed as dynamic gait
energy image (DGEI). +en generative adversarial network
(GAN) is used to detect the corresponding dynamic gait
energy image. +ese extracted features are then used to
compare with the gallery sequences. Finally, GAN-created
DGEI is used for final recognition. Publicly available
datasets such as CASIA B, TUM Gait, and OU-ISIR
TreadMill B are used to validate the presented approach,
and it gives considerably improved results as compared to
existing methods. Chen et al. [24] introduced a method for
cross-view gait recognition using deep learning. Multiview
gait generative adversarial network is introduced for cre-
ating fake gait data samples for extension in existing data.
+e method is then used to train each instance of each view
involved in single or multiple datasets. Domain alignment
using projected maximum mean dependency (PMMD) is
utilized to minimize the effect of distribution divergence.
CASIA B and OUMVLP are used for experimentation, and
the achieved results show that the introduced method gives
better results than existing methods. Hou et al. [25] pre-
sented a set residual network-based gait recognition model
to detect more discriminative features from the silhouettes.
Set residual block is introduced to extract the silhouette
level and two-level features in a parallel sequence, and then
the residual connection is applied to join the two-level
features. Moreover, an efficient method is applied to utilize
features from the deep layers. Two datasets CASIA B and
OUMVLP are used for experimentation. +e applied ap-
proach gives consistent results as compared to existing
methods. Gul et al. [13] introduced a machine vision
method to extract the distinct gait features from covariate
factors. Spatiotemporal gait features are extracted, and these
features are used to train the 3D CNN model to overcome
these challenges. +en, the holistic method is used by the
model to implement the distinct gait features in the form of
gait energy images. Two publicly available datasets OULP
and CASIA B are used to test the validity of the introduced
method with large gender and age differences. +e pre-
sented approach gives promising results using CASIA B
dataset as compared to existing methods. +e methods
presented above concentrated on both spatial and temporal
data. None of them focused on feature fusion or optimi-
zation of extracted features to achieve better results in the
shortest amount of time. As a result, in this article, we
proposed a lightweight deep learning framework for human
gait recognition that not only improves accuracy but also
reduces a system’s computational time.
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3. Datasets

3.1. TUM GAID Dataset. TUM Gait from Audio, Image
and Depth (GAID) [26] dataset consists of RGB audio,
video, and depth. It consists of 305 subjects carried out in
two indoor walking sequences in which four distinct situ-
ations are captured without any view variation through
Microsoft Kinect like six normal walk videos (n1–n6), two
videos with carrying a bag (b1–b2), and two walking videos
wearing coating shoes (s1-s2), and there is an elapsed time
instance in which 32 subjects were recorded wearing distinct
cloths. A few sample images are shown in Figure 1.

3.2. CASIA B Dataset. CASIA B [27] is a multiview and
indoor gait dataset in which 124 subjects are included in
recording session of which 93 are male participants and 31
female participants. +is dataset considers major factors
for gait recognition, that is variation in view angle,
clothing, and carrying situations separately. For all,
subject videos are captured through a USB camera from 11
different views that include six normal walking videos
(NM), two walking videos with wearing a coat (CL), and
two walking videos with carrying a bag (BG). A few
sample images are shown in Figure 2.

4. Methodology

+e proposed lightweight (LW) human gait recognition
framework has been presented in this section with detailed
mathematical formulations and flow diagrams. +e main ar-
chitecture is showninFigure3. In thisfigure, it is illustrated that
the proposedmethod consists of some important steps such as
modification of pretrained CNNmodels, training of modified
models using transfer learning (TL), feature engineering on
global average pooling layers, fusion of extracted deep features
using discriminant correlation analysis (DCA), selection of
best features using the modified moth-flame optimization
algorithm, and finally classification using the extreme learning
machine (ELM). +e details of each step are given.

4.1.ConvolutionalNeuralNetwork (CNN). +econvolutional
neural network (CNN) has become an important recognition
task in the domain of computer vision.+eCNNarchitecture is
employed for feature extraction of an image based on several
hidden layers. CNNs have many layers, including convolu-
tional, pooling, fully connected, and others. +e convolution
layer (CL) is themost important layer of a CNN that performed
a 2D convolution process on the input and the kernels through
a forward pass. +e kernel weights in every CL are assigned
randomly and their values are changed at each step by applying
the loss function through network training. In the end, the
resultant learned kernels may identify some types of shapes
within the input images. In CL, three different types of steps are
performed like convolution, stack, and nonlinear activation
function.

Suppose, we have an input matrix M and an output Z of
the CL, and there are some set of kernels Kl,∀l ∈ [1, . . . , L],

then the output of the convolution process O(l) after step 1 is
represented as

O(l) � M⊗Kl, ∀l ∈ [1, . . . , L], (1)

where ⊗ refers to the convolution process, which is the
product of filter and inputs. Second, all O(l) activation maps
are combined to create a novel 3D activation map.

R � Q(O(1), . . . , O(L)), (2)

where Q represents the combination of operations with
channel direction, and L is the total number of filters. +ird,
the 3D activation map R is given as input into the activation
function and gives the resultant activation map as

Z � NLAF(R). (3)

+e size Q of three main matrices (input, filters, and
result) is taken as

Q(i) �

TA × UA × VA, i � I,

TP × UP × VP, i � Kl,∀l ∈ [1, . . . , L],

TN × UN × VN, i � Z,

⎧⎪⎪⎨

⎪⎪⎩
(4)

where the variables (T, U, V) represent the size of height,
width, and channels of the activation map, and the subscripts
A, P, andN represent input, filter, and output, respectively. It
contains two equalities. First, VA � VP refers the channel of
input VA equals to the channels of filter VP. Second, VN � L

refers the channels of output VN equals the number of filters
L. Suppose Y represents padding, S represents stride, so the
result of TN, UN, VN can be evaluated as

TN � 1 + dde

2 × Y + TA − TP( 

S
 ,

UN � 1 + dde

2 × Y + UA − UP( 

S
 ,

(5)

where dde is the floor function. +e nonlinear activation Υ
generally selects the rectified linear unit (ReLU) function
[28].

cReLU rmn(  � ReLU rmn( 

� max 0, rmn( ,
(6)

where rmn ∈ R is the component of the activation map R. At
present, ReLU is the mostly used NLAF as compared to the
traditional hyperbolic tangent (HT) and sigmoid function
(SM) function, that are computed as

cHT rmn(  � tanh rmn(  �
f

rmn − f
− rmn( 

f
rmn + f

−rmn( 
,

cSM rmn(  � 1 + f
− rmn( 

− 1
.

(7)

4.2. Transfer Learning. Transfer learning (TL) is the branch of
machine learning that transfer the knowledge of one domain to
a different domain within less computational time. Given a
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Figure 1: Example images from the TUM GAID gait dataset [26].

Figure 2: Sample images of the CASIA B gait dataset [27].
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Figure 3: Proposed main flow of human gait recognition using lightweight deep learning architecture.
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source domain ξS
� FS, PS(ϕS)  with the source task λS �

F
S
, fS(·)  and a target domain ξT

� FT, PT(ϕT)  with the

target task, λT � F
T

, fT(.)  aims to learn a better mapping

function fT(.) for the target task λT for the knowledge transfer
from the source domain ξS and task λS. Hence, the TL is
expressed as follows:

ξS ≠ ξT or λS ≠ λT
, whereϕ � v|vi ∈ F, i � 1, 2, 3, . . . N.

(8)

Hence, DTL is defined as follows: given a TL task
fS⟶T(.): FT⟶ F

T based on [ξS
, ξT

, λS, λT], DTL objec-
tives to acquire the fS⟶T(.) by leveraging powerful DL
process. Visually, the DTL process is shown in Figure 4.

4.3. Modified VGG-19 Model. Visual geometry group
(VGG)-19 [29] is the modified version of VGG, and it
consists of 19 layers with 16 convolutional layers of 64, 128,
and 256, and 512 filter sizes with stride length and padding is
1 pixel on each side. +e convolutional layer consists of 5
sets, two of them contain 64 filters, the next set contains 2
convolutional layers with 128 filters, the next set contains 4
convolutional layers with 256 filters, and the last two sets
contain 4 convolutional layers with 512 filters each. +en, a
max pooling layer with a 2× 2 filter size and stride rate of 2
pixels are used after each set of convolutional layers. +e

output is then passed to the fully connected layer.+ree fully
connected (FC) layers and one softmax layer are used for the
classification. In this work, we removed the last fully con-
nected (FC) layer and added a new FC layer. +en, several
hyperparameters are employed such as training rate, epochs,
mini batch size, optimizer, and training loss. Based on these
hyperparameters, we trained the modified model from
scratch through TL and obtained a new model for only gait
recognition task. Later, this modified model is used for the
feature engineering task.

4.4. Modified MobileNet-V2 Model. MobileNet-V2 [30] is a
lightweight CNN-based model specially designed for mobile
devices. +is architecture can perform well on small datasets
as it can overcome the effect of overfitting and it also op-
timized the memory consumption. In this network, 17
inverted residuals are used between two convolutional layers
and one FC layer. So, the depth of the network consists of 53
convolutional layers and one FC layer. +e working of this
architecture is based on two concepts that include depth-
wise separable convolution and the inverted residual
methods. In this architecture, a full convolutional layer is
replaced with a factorized version that divides the convo-
lution into two separate groups. +e first layer is named as
depth-wise convolution; its function is to do lightweight
filtering by using one convolutional filter on each input
channel. +e second layer is named as point-wise con-
volutional layer, which is used for creating new features by

Gait
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1000
Object
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Figure 4: Transfer learning-based training of modified CNN models for human gait recognition.
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computing linear models of the input channels. +e depth-
wise convolutional layers contains 2 convolutional layers:
the first layer contains a 3× 3 filter size, while the other one
has a 1× 1 filter size. +e other two regular convolutional
layers have filter sizes of 3× 3 and 1× 1. Moreover, in this
architecture, ReLU6 is used instead of ReLU as it is more
efficient for less accurate computation. Dropout and batch
normalization are then applied, where layer activators are
standardized to mean zero and unit variance, and then,
linear transformation is applied [31].

In thiswork, we removed the last layer and added a newFC
layer. +en, several hyperparameters are employed such as
training rate (0.005), epochs (100), mini batch size (32), op-
timizer (Adam), and training loss. Based on these hyper-
parameters, we trained the modified model from scratch
throughTLandobtained anewmodel for only gait recognition
task.

4.5. Feature Engineering. Feature engineering is applied on
global average pooling layers of both models and obtained
two feature vectors of dimension ×K1 and N × K2. Math-
ematically, this process is defined as follows:

K1 � activation(layer),

K2 � activation(layer),
(9)

where K1 and K2 represent the length of feature vectors, and
layer defines the selected one like global average pooling.
+ereafter, the fusion process is performed using discrim-
inant canonical correlation analysis approach.

4.6. Discriminative Canonical Correlation Analysis-Based
Fusion. In this work, the DCCA fusion approach is
employed for feature fusion. By applying canonical corre-
lation analysis (CCA), the correlated features lvmmt and lvnnt,
t � 1, . . . , z, are extracted and merged for identification.
+ough the features extracted from related class samples are
not utilized, resultantly it becomes the constraint of the
recognition capabilities of CCA.Moreover, the basic concept
to introduce CCA is for modeling instead of recognition, and
correlation β refers to the certainty among lvmmt and lvnnt,
t � 1, . . . , z. CCA was more often utilized for modeling and
estimation, for instance image extraction and parameter
prediction. If the extracted features are for recognition, then
the class description of the instances should be utilized to get
more discriminatory features. Finally, the class description
was fused with the CCA framework for cooperated feature
extraction and presented an innovative approach of fused
feature extraction for multimodal recognition, termed as
discriminative canonical correlation analysis (DCCA).
Mathematically, this approach is defined as follows.

Suppose z pairs of mean-normalized pairwise instances
(mt, nt) 

z
t�1 ∈ ξ

a
× ξb access from p classes, DCCA can be

systematically represented in the below optimization
problem:

max
lm,ln

l
v
mSlln − μ.l

v
mShln( , (10)

s.t. lvmMM
v
lm � 1,

l
v
nNN

v
ln � 1,

(11)

where the parameters Sl and Sh are used to compute the
inside-class association and between-class association, re-
spectively (detailed description is given below), μ> 0 ad-
justable metric that shows the comparative significance of
the inside-class association lvmSlln contrasted with the be-
tween-class association lvmShln. Moreover, the limitation
value represents the scale limitation on lm, ln.

M � m
(1)
1 , . . . , m

(1)
z1

, . . . , m
(p)
1 , . . . , m

(p)
zc

 ,

N � n
(1)
1 , . . . , n

(1)
z1

, . . . , n
(p)
1 , . . . , n

(p)
zc

 ,

fzt
� 0, . . . 0,√√√√√√



k
t−1

zk 1, . . . 1,√√√√√√
zt

0, . . . 0√√√√

z−
t−1

k≤1
zk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

v

∈ Q
z
,

1z ≤ [1, . . . 1]
V ∈ Q

z
,

(12)

where m
(t)
k refers the kth instance in the tth class, similarly

n
(t)
k , and zt shows the number of instances of m

(t)
k or n

(t)
k in

the tth class. +e matrix Sl is represented as

Sl � 

p

t�1


zt

d�1


zt

y�1
m

(t)
d n

(t)V
y

� 

p

t�1
Mfzt

  Nfzt
 

� MGN
V

,

(13)

G �

1z1×z1

⋱
1zt×zt

⋱
1zp×zp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ ξz×z
, (14)

where G represents a proportionate, positively defined, block
crosswise matrix, and Matrix (G) � p. In contrast, the
matrix Sh is represented as

Sh � 

p

t�1


p

k�1

k≠ t



zt

d�1


zk

y�1
m

(t)
d n

(t)V
y

� 

p

t�1


p

k�1


zt

d�1


zk

y�1
m

(t)
d n

(t)V
y − 

p

t�1


zt

k�1


zt

d�1
m

(t)
d n

(t)V
y

� M1z(  N1z( 
V

− MGNV

� −MGNV
.

(15)
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+e “�” in the end holds because mean normalization
is applied on the instances, hence both M1z � 0 and N1z �

0 holds. In contrast between equations (13) and (15), the
only difference among Sl and Sh is a single negative sign,
thus the objective of equation (10) will be (1 + μ)lvmSlln,
and this enhancement issue is free from parameter μ,
consequently μ can be excluded. Hence, DCCA can be
represented as

max
lm,ln

l
v
mMGNV

ln ,

s.t. l
v
mMM

v
lm � 1, l

v
nNN

v
ln � 1.

(16)

By applying the Lagrangian multiplier technique, it
becomes very simple to get main equation of DCCA, which
is represented as

− MGNV

NGMv
−

⎛⎝ ⎞⎠
lm

ln
  � ϑ

MM
V

YY
V

⎛⎝ ⎞⎠
lm

ln
 .

(17)

When the vector pairs (lmt, lnt), i � 1, . . . , g, adjacent to
the first g largest generalized eigenvalues and attained, let
Lm � [lm1, . . . , lmg], Ln � [ln1, . . . , lng], then both feature
extraction and the feature fusion can be performed using
FFS-I and II, respectively, where g fulfills the limitations
g≤min(a, b) and g≤p. +e formulation returned a fused
vector of dimension N × K3, where K3 ∈ (K1, K2). Later on,
this resultant vector is further improved using a modified
moth-flame optimization algorithm.

4.7. Moth-Flame Optimization Algorithm (MFO). Several
nature-inspired optimization algorithms have been in-
troduced in the literature for best feature selection such
as genetic algorithm, particle swarm optimization, and
moth-flame optimization [32]. +e improved moth-
flame optimization algorithm is utilized in this work for
the best feature selection. Originally, the MFO algorithm
was presented by Mirjalili [33]. It is under the populace-
based metaheuristics algorithm. In this procedure, first
the data flow of MFO begins by randomly generating
moths within the resultant space. +en it calculates the
positional (i.e., fitness) value of each moth and label the
best position by flame. Afterwards, changing the moth
place depends on a whole movement function used to
attain a better position labeled by a flame. Moreover, it
updates the new best positions of the individual. +e
previous process (i.e., updating of moths’ location and
generating the new location) until it meets the resultant
criteria. +e MFO algorithm consists of three major steps
that are as follows.

4.7.1. Creating the Initial Population of Moths. As stated in
[33], it is supposed that an individual moth can fly in 1D, 2D,
3D, or in hyper-dimensional position. +e matrix of moths
can be represented as

H �

h1,1 h1,2 · · · · · · h1,a

h2,1 h2,2 · · · · · · h2,a

⋮ ⋮ ⋮ ⋮ ⋮

hm,1 hm,1 · · · · · · hm,a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

where m represents the number of moths’ and a represents
the number of dimensions in the resultant region. Moreover,
the fitness values for entire moths’ stored in an array are
represented as

VH �

VH1

VH2

⋮

VHm

. (19)

+e remaining elements in the algorithm are flames that
are represented using D-dimensional space with their fit-
ness/position value function in the following matrix set as

P �

P1,1 P1,2 · · · · · · P1,a

P2,1 P2,2 · · · · · · P2,a

⋮ ⋮ ⋮ ⋮ ⋮

Pm,1 Pm,1 · · · · · · Pm,a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

VP �

VP1

VP2

⋮

VPm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(20)

It is important to note that moths and flames both are
solutions. +e moths are the real search agents that revolve
around the search area, while flames are the moth’s best
position that is obtained yet. Hence, an individual moth
hunts around a flame and updates it when it finds the best
solution. Following this procedure, a moth never misses its
best solution.

4.7.2. Updating Moths’ Location/Positions. MFO utilizes
three distinct functions to convergent the global optimum of
the optimization issues. Mathematically, it is defined as
follows:

MFO � (L, M, E), (21)

where L represents the first random positions of the moths
(πl: ∅⟶ H, VH{ }), M represents that the motion of the
moths in the search is (M: H⟶ H), and E represents end
of the search process (E: H⟶ true, false). +e equation
given below represents L function, which is used for the
implementation of random distribution:

H(x, y) � (UB(x) − LB(y) × rand + LB(x), (22)

where UB and LB refers to the upper and lower bound
variables, respectively. As discussed before, the moths fly in
the search area by means of transverse direction. +ere are
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three conditions that should be followed when applying a
logarithmic spiral: (i) +e spiral starting point should start
from the moth; (ii) the spiral endpoint should be the location
of the flame, and (iii) variation in the range of spiral should
not extend from the search area. +us, in the MFO algo-
rithm, the logarithmic spiral can be defined as

S Hx, Py  � Rx.z
qb

. cos(2πb) + Py, (23)

where Rx represents space between the xth moth and yth
flame (computed by equation 24), q represents a solution to
define the shape of the logarithmic spiral, b represents a
random range between [−1, 1].

Rx � Py − Hx



. (24)

In MFO, the equalization among exploitation and ex-
amination is affirmed by the spiral motion of the moth near
the flame in the search area. Moreover, to escape from falling
in the trap of the local goal, the best solution has been kept in
each step, and the moths fly around the flames by means of
VP and VHmatrices. +en, the update criteria are defined as
follows:

4.7.3. Updating the Size of Flames. +is part highlights to
augment the manipulation of the MFO algorithm (i.e.,
updating the moths’ location in m various positions in the
search area may minimize the chance of exploitation of the

best optimal solutions). However, minimizing the extent of
flames helps to overcome this problem using the following
equation:

FLAMENO � ROUND O − c ×
O − c

I
 , (25)

where O refers to the maximum number of flames, c refers
the current number of iterations, and I represents the
maximum number of iterations. +is equation returns the
best features; however, during the analysis stage, it is ob-
served that the best selected features contain some redundant
information; therefore, we tried to overcome this problem
and speedup the selection process based on Newton Raphson
(NR) formulation. Mathematically, the NRmethod is defined
as follows:

δn � δn−1 −
M δn−1( 

M′ δn−1( 
, (26)

where δn ∈ Sf and Sf represent the selected features of
moth-flame. +rough the above formulation, a stop value is
obtained that added in equation 25 for final selection.

FLAMENO � ROUND δ − cf ×
δ − cf

I
 . (27)

+e final selected features are passed to the extreme
learning machine (ELM) for classification. A few visual
predicted frames are shown in Figure 5.

Original FrameOriginal Frame
Proposed

Framework
Prediction

Proposed
Framework
Prediction

Figure 5: Proposed architecture labeled results on the CASIA B dataset.
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5. Experimental Results and Analysis

In this section of the proposed method, the detailed ex-
perimental process is presented in the form of tables and
graphs. +e proposed method is tested using two publicly
available datasets, CASIA B and TUM GAID. Section 2
contains more information on both datasets. Instead of 70 :
30, the selected datasets are divided 50 : 50 for training and
testing. +e main reason for this portioning is to make the
validation process more equitable. All of the results are based
on 10-fold cross-validation. For the classification results,
several classifiers are used, including the extreme learning
machine (ELM), support vector machine (SVM), KNN,
ensemble tree (EBT), and decision trees (DTs). +e entire
proposed framework is implemented on MATLAB 2021b
using Personal Desktop Computer Corei7, 32GB RAM, and
8GB graphics card.

5.1. Results

5.1.1. CASIA B Dataset Results. +e proposed method
results for the CASIA B dataset are presented in the form
of numerical values and a time plot in this section. Table 1
provides the classification results of the CASIA B dataset
from all perspectives. Normally, researchers choose only a
few angles, but in this work, we chose all 11 angles to test
the capability of the proposed algorithm. Each angle has
three classes: normal walk (NM), walk with a bag (BG),
and walk while wearing a coat (WC) (CL). On this dataset,
ELM performed better, with average accuracies of 96.89,
93.07, and 83.66% for NM, BG, and CL, respectively. For
each angle, the obtained accuracy is above 90% that shows
the proposed method effectiveness. A comparison of ELM
with other classifiers such as SVM, FKNN, EBT, and DT
shows that ELM performed better than all of them.
Moreover, the time is also noted of each classifier as
shown in Figure 6. From this figure, it is observed that the
ELM and DT classifiers executed fast than the other listed
methods.

5.1.2. TUM GAID Dataset Results. +e results of the pro-
posed method on the TUM GAID dataset are given in
Table 2. In this table, accuracy is computed of each class of
the selected dataset such as normal walk, walk with a bag,
and walk with shoes. Moreover, the average accuracy of each
classifier is also computed. Many classifies are selected and
ELM shows the better average accuracy of 98.60%. +e rest
of the classifiers obtained average accuracies of 97.25, 96.73,
96.91, and 96.26%, respectively. +e computational time of
each classifier is also computed and plotted in Figure 7. It can
be seen from this figure that the ELM has a minimum
computation time of 86.43 (sec) compared to the rest of the
classifiers. Hence, overall, ELM classifier performed better
using the proposed method on the TUM GAID dataset.

5.2. Discussion and Comparison. A detailed analysis of the
proposed framework has been conducted in this section
based on confidence interval and standard error means
(SEM). As given in Tables 3 and 4, the proposed

Table 1: Proposed classification results of human gait recognition on the CASIA B dataset.

Method Class 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° Mean

LightweightDeep-ELM
NM 97.1 98.2 95 93.8 98.1 97.5 98.3 97.2 98 94 98.6 96.89
BG 94.2 95.3 91 92.7 93 89.7 94.8 93.1 92.8 91.8 95.4 93.07
CL 78.8 83.5 82.1 86.3 78.5 90.2 85.9 82 81.3 88.3 83.4 83.66

LightweightDeep-SVM
NM 96.2 97.5 96.1 92.8 97.9 96.2 98 97.5 97.1 93.2 98 96.40
BG 92.5 93.6 93 92.2 94.1 87.6 94 93.5 92.1 92.4 93.4 92.58
CL 79 82.8 81.5 86 79.1 87.4 83.9 82.3 80.7 87.5 82.1 82.93

LightweightDeep-FKNN
NM 93.2 94.5 92.9 93.1 94.6 91.8 93.5 94.8 94.5 93 94.1 93.63
BG 87 89.1 90.5 89.6 91.4 82.6 90.8 89.4 87 89.3 90.7 88.85
CL 73.5 78.4 77.2 81.6 75.3 82.2 80 77.5 76.1 82.4 78.5 78.42

LightweightDeep-EBT
NM 92.8 93.3 90.4 91.5 95 92.6 92.4 93.1 94 93.7 92.9 92.88
BG 88.5 87.4 90.1 90.5 91.8 82 90.2 90.4 86.1 89.8 91.9 88.97
CL 72.6 80.1 77 80.4 75 81.6 80.6 76.2 78.5 82 78.1 78.37

LightweightDeep-DT
NM 87.4 88.9 90.1 91.6 93 90.5 88 91.2 91.3 87.4 90.5 89.99
BG 81.5 82.6 87.5 83.8 90.4 80.6 90 87.9 85.3 84 90.1 85.79
CL 69.8 72.1 77 78.5 72.7 80 78.3 72.5 72.9 80.1 80.2 75.82

Bold values indicate the best values.
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Figure 6: Average classification time of selected classifiers on the
CASIA B dataset using the proposed method.
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LightweightDeep-ELM framework gives the better accuracy
than other combinations on the CASIA B dataset. Similarly,
the proposed framework (LightweightDeep-ELM) also ob-
tained better results on the TUM GAID dataset. Moreover,
the average computational time of each classifier for both
datasets is also shown in Figures 6 and 7.+e ELM execution
time is minimum than the rest of the selected classifiers. To
further analyze the performance of the ELM classifier, the
proposed framework is executed 500 times and computed
two values—minimum accuracy and maximum accuracy.

Based on the minimum and maximum accuracy, the
standard error mean is computed. +rough SEM, a confi-
dence error is obtained that shows the consistency of pro-
posed framework.

Table 3 provides the confidence interval-based analysis
of the CASIA B dataset. Confidence level andmargin of error
(MoE) are calculated for each class such as walk, bag, and
coat. We selected several confidence levels such as 68.3%, σx;
90%, 1.645σx; 95%, 1.960σx; and 99%, 2.576σx and obtained
MOE for each is noted as given below. Based on the MoE, it
is observed that the proposed framework showed consistent
performance on the CASIA B dataset after 500 iterations.
Similarly, Table 4 provides the proposed confidence interval-
based analysis of the TUM GAID dataset. From this table, it
is also confirmed that the proposed method’s accuracy is
consistent after the numbers of iterations.

At the end, a detailed comparison is conducted with
recent techniques for both selected datasets such as CASIA B
and TUM GAID. Table 5 provides the comparison of the
proposed method accuracy with recent techniques on the
CASIA B dataset. In this table, the authors of [34] obtained
an average accuracy of 51.4% on the CASIA B dataset. +e
authors in [35] improved the average accuracy and reached
to 84.2% that was later further improved by [36] of 87.5%.
Recently, the authors of [37] obtained an average accuracy of
89.66% on the CASIA B dataset that is improved then the
previous noted techniques. Our method achieved an ac-
curacy of 91.20% on the CASIA B dataset that is improved

Table 2: Proposed classification results of human gait recognition on the TUM GAID dataset.

Classifier
Class-based accuracy (%)

Mean accuracy (%)
Normal walk Walk with a bag Walk with shoes

LightweightDeep-ELM 99.64 98.52 97.65 98.60
LightweightDeep-SVM 98.58 96.92 96.25 97.25
LightweightDeep-FKNN 98.63 96.21 95.37 96.73
LightweightDeep-EBT 98.12 96.82 95.80 96.91
LightweightDeep-DT 97.52 96.03 95.24 96.26
Bold values indicate the best values.

86.43
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104.67

161.9

123.45

DTFKNN EBTELM SVM

Time (sec)

17
34
51
68
85

102
119
136
153
170

(S
ec

)

Figure 7: Average classification time of selected classifiers on the
TUM GAID dataset using the proposed method.

Table 3: Confidence interval-based analysis of proposed frame-
work on the CASIA B dataset.

Confidence level Margin of error
Normal walk

68.3%, σx 96.005± 0.626 (±0.65%)
90%, 1.645 σx 96.005± 1.029 (±1.07%)
95%, 1.960σx 96.005± 1.227 (±1.28%)
99%, 2.576σx 96.005± 1.612 (±1.68%)

Walk with a bag
68.3%, σx 92.59± 0.346 (±0.37%)
90%, 1.645σx 92.59± 0.57 (±0.62%)
95%, 1.960σx 92.59± 0.679 (±0.73%)
99%, 2.576σx 92.59± 0.893 (±0.96%)

Walk with a coat
68.3%, σx 82.53± 0.799 (±0.97%)
90%, 1.645σx 82.53± 1.314 (±1.59%)
95%, 1.960σx 82.53± 1.566 (±1.90%)
99%, 2.576σx 82.53± 2.058 (±2.49%)

Table 4: Confidence interval-based analysis of proposed frame-
work on the TUM GAID dataset.

Confidence level Margin of error
Normal walk

68.3%, σx 98.767± 0.62 (±0.63%)
90%, 1.645σx 98.767± 1.02 (±1.03%)
95%, 1.960σx 98.767± 1.215 (±1.23%)
99%, 2.576σx 98.767± 1.597 (±1.62%)

Walk with a bag
68.3%, σx 97.71± 0.573 (±0.59%)
90%, 1.645σx 97.71± 0.942 (±0.96%)
95%, 1.960σx 97.71± 1.123 (±1.15%)
99%, 2.576σx 97.71± 1.475 (±1.51%)

Walk with a coat
68.3%, σx 96.925± 0.513 (±0.53%)
90%, 1.645σx 96.925± 0.843 (±0.87%)
95%, 1.960σx 96.925± 1.005 (±1.04%)
99%, 2.576σx 96.925± 1.321 (±1.36%)
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than the existing techniques. Similarly, the comparison of
the TUM GAID dataset is given in Table 6. In this table, it is
noted that the recently achieved accuracies were 84.4%,
96.7%, 97.9%, and 97.73%. Our proposed method obtained
an accuracy of 98.60% that is improved than the recent state-
of-the-art (SOTA) techniques.

Finally, the improved moth-flame optimization algorithm
is compared to several other nature-inspired algorithms
(Figure 8) such as the genetic algorithm, particle swarm op-
timization, bee colony optimization, ant colony optimization,
whale optimization, crow search, and firefly algorithm. +is
graph shows that the proposed optimization algorithm out-
performs the other compared algorithms in terms of accuracy.
Moreover, the gait is important for several purposes such as
assisting those suffering from Parkinson’s disease [41, 42]. In
this work, we used Adam as an optimizer [18] during the
training of deep learning models instead of stochastic gradient
descent (SGD). For the gait recognition task, SGD is not
performed better than Adam due to a high number of video
frames. As we know, Adam is known to be computationally
fast, requires less memory, and needs little tuning.

6. Conclusion

Human gait recognition using lightweight deep learning
models and improved moth-flame optimization algorithm
has been presented in this work. Two lightweight pretrained
CNN models were fine-tuned and deep transfer learning
based trained. Features are extracted from the global average
pooling layer and fused using a new approach named
DCCA. Furthermore, an optimization algorithm is devel-
oped for the selection of the best features. +e proposed
method was compared based on several classifiers such as
ELM and SVM and found ELM is more suitable based on
accuracy and time. Two publicly available datasets were
employed for the validation process and achieved an im-
proved average accuracy of 91.20 and 98.60%. +e key
findings of this work are as follows: (i) freezing few middle
layers can train a model with less time but it is a chance to
sacrifice the better accuracy; (ii) fusion of lightweight models
features using DCCA approach is time-consuming but at the
end, better information in the form of features is obtained;
and (iii) improved optimization algorithm provides the
better accuracy and reduces the computational time. In the
future, a new scratch-based CNN model will be developed
for human gait recognition.
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ensemble for cervical precancerous lesions classification,”
Processes, vol. 8, no. 5, p. 595, 2020.

[32] N. Dey, A. S. Ashour, and S. Bhattacharyya, Applied Nature-
Inspired Computing: Algorithms and Case Studies, Springer,
Berlin, Germany, 2020.

[33] S. Mirjalili, “Moth-flame optimization algorithm: a novel
nature-inspired heuristic paradigm,” Knowledge-Based Sys-
tems, vol. 89, pp. 228–249, 2015.

[34] Y. He, J. Zhang, H. Shan, and L. Wang, “Multi-task GANs for
view-specific feature learning in gait recognition,” IEEE
Transactions on Information Forensics and Security, vol. 14,
no. 1, pp. 102–113, 2019.

[35] H. Chao, Y. He, J. Zhang, and J. Feng, “Gaitset: regarding gait
as a set for cross-view gait recognition,” in Proceedings of the

12 Computational Intelligence and Neuroscience

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556


AAAI conference on artificial intelligence, pp. 8126–8133,
Hawaii, HI, USA, January 2019.

[36] F. Han, X. Li, J. Zhao, and F. Shen, “A unified perspective of
classification-based loss and distance-based loss for cross-
view gait recognition,” Pattern Recognition, vol. 125, Article
ID 108519, 2022.

[37] H. Li, Y. Qiu, H. Zhao et al., “Gaitslice: a gait recognition
model based on spatio-temporal slice features,” Pattern
Recognition, vol. 124, Article ID 108453, 2022.

[38] F. M. Castro, M. J. Maŕın-Jiménez, N. Guil, S. López-Tapia,
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