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Human action recognition is an important ­eld in computer vision that has attracted remarkable attention from researchers. �is
survey aims to provide a comprehensive overview of recent human action recognition approaches based on deep learning using
RGB video data. Our work divides recent deep learning-based methods into ­ve di�erent categories to provide a comprehensive
overview for researchers who are interested in this ­eld of computer vision. Moreover, a pure-transformer architecture
(convolution-free) has outperformed its convolutional counterparts in many ­elds of computer vision recently. Our work also
provides recent convolution-free-based methods which replaced convolution networks with the transformer networks that
achieved state-of-the-art results on many human action recognition datasets. Firstly, we discuss proposed methods based on a 2D
convolutional neural network. �en, methods based on a recurrent neural network which is used to capture motion information
are discussed. 3D convolutional neural network-based methods are used in many recent approaches to capture both spatial and
temporal information in videos. However, with long action videos, multistream approaches with di�erent streams to encode
di�erent features are reviewed. We also compare the performance of recently proposed methods on four popular benchmark
datasets. We review 26 benchmark datasets for human action recognition. Some potential research directions are discussed to
conclude this survey.

1. Introduction

Human action recognition is one of the most crucial tasks in
video understanding. �is ­eld has a wide range of appli-
cations, such as video retrieval, entertainment, human-
computer interaction, behavior analysis, security, video
surveillance, and home monitoring. In detail, we want to
­nd handshake events in a movie or o�side decisions in a
football match and the results are returned automatically.
�e goal of human action recognition is to recognize au-
tomatically the nature of an action from unknown video
sequences.

�ere are some challenges in human action recognition.
�e view invariance is one of the reasons that make human
action recognition more complex. �ere are some simple
datasets having a ­xed viewpoint [1, 2] while most of the
recent datasets have many viewpoints. In addition, each
person has their size and shape as well as posture. �ey can

appear with various clothes and accessories. An action which
is performed in an indoor environment with a uniform or
static background is easy to recognize than an action that is
recorded in a cluttered or dynamic background. In addition,
lighting conditions or viewpoints contribute to increase or
decrease of the accuracy of recognition. �e next problem is
intraclass and interclass variations. A human action rec-
ognition method must be able to generalize an action over
variations within a class and distinguish between actions of
di�erent classes. For examples, people have di�erent speeds
when they run or walk.�e occlusion problem is a hard issue
in action recognition because some body parts of humans
are disappeared temporarily. For example, some body parts
cover other parts or a subject, or a person is hidden behind
another person. Temporal variations are also an important
challenge because actions are happening for a long time.

Deep learning methods have achieved state-of-the-art
results on various problems of computer vision, especially
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human action recognition. Convolutional neural networks
(CNNs) [3] are the neural network that uses convolutional
operator in their layers. Convolutional network is used for
computing a grid of values such as images while recurrent
neural networks (RNNs) [4] are a type of neural network for
processing sequential data, such as text and video. In this
survey, we focus on proposed methods for human action
recognition using deep learning techniques.

1.1. Review of Related Survey Articles. Since human action
recognition is an attractive problem, many surveys have
been done over the last few years.*emost popular survey of
human action recognition is the work in [5]. Firstly, the
authors discussed the local representation and global rep-
resentation-based methods. *en, three types of action
classification approaches were discussed, including direct
classification, temporal state-space models, and action de-
tection. However, this study have been conducted over ten
years ago, and this survey reviewed methods using hand-
crafted features.

Zhang et al. [6] provided an overview of human action
recognition, interaction recognition, and human action
detection methods. *e whole part of the survey discussed
human action feature representation methods. First, the
authors discussed handcrafted action features for RGB,
depth, and skeleton data. *en, they reviewed some deep
learning-based methods. However, they focused on two-
stream networks and long short-term memory methods.

A review of Singh and Vishwakarma [7] focused on
human action datasets in the past two decades. *ey clas-
sified these datasets into two classes, namely RGB (Red-
Green-Blue) and RGB-D (depth) datasets. *ey discussed 26
RGB and 22 RGB-D datasets. Two categories of existing
methods (handcrafted and learned feature representations)
were discussed; however, the main contribution of this work
is dataset analysis.

RGB-D data plays a vital role in human action recog-
nition because this data provide color, depth and skeleton
data. *e performance of human action recognition systems
is improved significantly when they exploit depth and
skeleton data. With a special focus on RGB-D data, Liu et al.
[8] reviewed human action recognition and human inter-
action recognition based on hand-crafted features. *en,
their survey discussed human activity recognition based on
deep learning in the next part.

Zhu et al. [9] reviewed over 200 papers about human
action recognition. *eir survey focused on three different
approaches for human action recognition. Firstly, two-
stream networks were reviewed. *e two-stream methods
tried to exploit the temporal relationship between frames
because motion information plays a vital role in human
action recognition in video. *e first stream encodes the
spatial information and the second one encodes the optical
flow. In this review, the authors focused on recurrent neural
networks which were used as a part of a two-stream network
while our work discusses RNNs-based methods for human
action recognition. Next, 3D CNN-based methods were
discussed. 3D CNNs exploit both spatial and temporal

information by using a 3D tensor with two spatial and one
temporal dimension. *e two-stream networks require huge
resources to compute, and the 3D CNNs are hard to train.
*erefore, they reviewed efficient video modeling which try
to reduce computational intensity.

Beddiar et al. [11] reported a survey which discussed
human activity recognition approaches in the last ten years.
*e authors classified human activity recognition ap-
proaches into various categories. *e first category is the
feature extraction process. Both hand-crafted features and
feature learning were discussed. *en, they discussed three
stages of human activity recognition approaches, including
detection, tracking, and recognition. Next, unimodel and
multimodel approaches were surveyed. *ey classify human
activity recognition methods into three classes of learning
supervision, namely supervised, unsupervised, and semi-
supervisedmethods.*e review also provided different types
of activities. However, the recent deep learning techniques
for human activities recognition were not highlighted
clearly.

In order to review many different challenges, Jegham
et al. [10] reviewed methods which aimed to solve these
challenges in human action recognition. Many challenges
were discussed such as anthropometric variation, multiview
variation, cluttered and dynamic background, interclass
similarity, intraclass variability, low-quality videos, occlu-
sion, illumination variation, shadow and scale variation,
camera motion, and poor weather conditions. In the second
part, the authors reviewed recent action classification
methods and popular datasets. *ey focused on three types
of methods, including template-based methods, generative
model-based methods, and discriminative model-based
methods.

A different survey [12] discussed human pose estimation
and the role of it in human action recognition application.
Firstly, the survey discussed various types of human pose
estimation such as single person, multiperson, 3D human
pose estimation, and human pose estimation in videos and
depth images. In the remained part, they discussed human
pose estimation for action recognition.

A review of single vision and multivision modalities was
provided by Majumder and Kehtarnavaz [13]. In the single
vision modality section, the authors discussed the ap-
proaches which used video data for action recognition. In
the next section, the methods using RGB+Depth data were
reviewed in multivision modality section. In each modality,
both conventional and deep learning approaches were
reviewed.

Table 1 provides a summary of recent related surveys.
Moreover, some main contributions of this work are
discussed.

1.2. Contributions of *is Survey Article. Human action
recognition has a wide range of applications; therefore, many
approaches have been proposed using deep learning tech-
niques. We aim to provide a comprehensive survey of recent
deep learning techniques for human action recognition. In
summary, our main contributions are listed here:

2 Computational Intelligence and Neuroscience



(i) We discuss the most recent deep learning tech-
niques for human action recognition.

(ii) We provide the first review of convolution-free
approaches in the human action recognition field.

(iii) We survey the most popular benchmark datasets for
human action recognition

(iv) We provide a comprehensive analysis of proposed
methods.

1.3. Roadmap of the Survey. As in Figure 1, the rest of the
survey is organized as follows. In Section 2, we discuss the
most recent deep learning techniques for anomaly detection.
*en, we provide two accuracy comparisons of some
popular datasets in Section 3. Section 4 reviews many
popular benchmark datasets in the human action recogni-
tion field. Finally, we discuss some open research problems
and give the conclusion of this survey.

2. Recent Deep Learning-Based Methods in
Human Action Recognition

In this section, we review recent deep learning-based
methods for human action recognition. With the devel-
opment of large-scale datasets and deep learning, this leads
a remarkable growth of models based on deep learning for
human action recognition. *ere are four trends and a new
trend has attracted some researchers recently. *e first
trend is 2D Networks which uses 2D convolutional neural
networks in their models, such as TSM [14], TRN [15], and
GSM [16]. *e second trend is action recognition based on
RNN, such as in [17–19]. *e third trend is 3D Single
Stream Network which uses 3D convolutional kernels in
the networks, such as CSN [20] and TSN [21, 22]. *e
fourth trend is 3D Two-Stream Network which includes a
spatial and a temporal stream to encode both structure and
optical flow information, such as in [23–26]. Finally,
convolution-free approaches based on attention mecha-
nism are a new trend in human action recognition with
efficient computation and performance, such as in [27–29]
and TimeSformer [30].

2.1. Methods Based on 2D CNN. In this part, we will discuss
the proposed methods that are based on 2D CNNs. One of
the advantages of 2D CNNs is that the computation is cheap
[14]. However, 2D CNNs often cannot exploit well the
temporal information. *erefore, many approaches try to
capture both spatial and temporal information [16, 31, 32].
Optical flow information plays a vital role in action rec-
ognition, but the computation cost is expensive. *erefore,
in [33–35], the authors tried to compute optical flow with
low cost and efficiency.

Two-stream networks are often trained individually with
high computational cost. Jiang et al. [31] proposed an ef-
ficient method to exploit both spatiotemporal and motion
features in a 2D framework, namely STM block. *e STM
block includes a channel-wise spatiotemporal module
(CSTM) and a channel-wise motion module (CMN). *e
CSTM is used to extract spatiotemporal information. *e
input feature map F ∈ RN×T×C×H×W is reshaped into
F∗ ∈ RNHW×C×T. *en, a channel-wise 1D convolution is
applied on input feature maps. A 3D convolutional network
can encode local spatial and temporal features. However,
they cannot encode ordered temporal information of all
clips. A channel-independent directional convolution
(CIDC) [32] was introduced to solve this issue. Given input
feature map with C channels, CIDC convolve each channel
of input feature map with T′ filter. *e output feature map
including spatial and temporal information is obtained by
concatenating C × T′ feature map. Another strategy in ac-
tion recognition is frame selection. Gowda et al. [36] pro-
posed a smart frame selection method that improved over
many state-of-the-art models. *e method includes two
branches. *e first computes a score δi for each frame, and
the second computes a score ci of a pair of frames. Given n

frames, top m frames are chosen using a final score which is
multiplied both score δi and ci. Finally, a classifier is used for
the final prediction. *e authors used the Something-
Something-V2 dataset [37] for ablation study. *ey also
experienced on Kinetics [38], UCF101 [39], and HMDB51
[40].

According to the observation, movement variations at
motion boundaries are very important in human action
recognition. Zhang et al. proposed persistence of appearance

Table 1: Summary of the related survey articles.

Survey Year
Scope

Contributions
Handcrafted 2D

CNN RNN 3D single-
stream

3D
multistream

Convolution-
free Datasets

[5] 2010 ✓ ✓
(i) We categorise five aspects of deep
learning methods for human action
recognition
(ii) Convolution-free approaches are
first reviewed in our work
(iii) A detailed review of popular
benchmark datasets for action
recognition

[6] 2019 ✓ ✓ ✓ ✓ ✓ ✓
[7] 2019 ✓
[8] 2019 ✓ ✓ ✓ ✓
[9] 2020 ✓ ✓ ✓ ✓ ✓
[10] 2020 ✓
[11] 2020 ✓ ✓
[12] 2021 ✓
[13] 2021 ✓ ✓ ✓ ✓
Our 2021 ✓ ✓ ✓ ✓ ✓ ✓
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(PA) [33] to obtain a map that encodes small motion var-
iations at boundaries. *e difference between the optical
flow and PA is that PA captures the motion variation
without encoding the direction of the movement. Given two
frames, eight 7 × 7 convolutions are applied to obtain low-
level feature maps F1, F2. *e i-th PA component is
computed as PAi(p,Δt) � Fi(p, t + Δt) − Fi(p, t), where Fi

is the i-th feature map. All PAi are aggregated to a channel
PA. *e PA maps the appearance to the dynamic motion
because it maps from three-dimensional to two-dimensional
tensor. To exploit motion information, Piergiovanni and
Ryoo [34] proposed a convolutional layer to capture the flow
of any channel for action recognition without computing
optical flow. *e proposed fully differentiable convolutional
layer has learned parameters that enhance the performance
of action recognition systems. Optical flow is an expensive
method. Xu et al. [35] proposed a fast network to improve
the extraction of optical flow. *e optical flow is generated
by MotionNet [41] which is an end-to-end trainable net-
work. Moreover, OFF [42] is added to the network to get
better optical flow features. *e optical flow is computed
directly from RGB frames without precalculation or storage.
*erefore, both spatial and temporal information are
learned by one network.

One of the most popular modules in human action
recognition is temporal shift module (TSM) [14]. TSM has
the complexity of a 2D CNN but obtains the performance of
3D CNN. In addition, this module can insert into a 2D CNN
without extracomputation and parameters. Given a tensor

with C channels and T frames. A part of the channels is
shifted by −1, and another part is shifted by +1. *e rest of
the tensor is unshifted. *e TSM can be inserted before
convolutional layer or residual block, but the spatial features
may be harmed because the information is lost. To deal with
this problem, the TSM is inserted into a residual branch in a
residual block. To exploit the temporal relations between
frames in video, Zhou et al. [15] proposed a temporal re-
lation network (TRN) which predict human-object inter-
actions in the Something-Something dataset accurately.
*eir paper show that the TRN outperformed two-stream
network as well as 3D convolution networks. *e pairwise
temporal relation is computed as T2(V) � hϕ(􏽐i<jgθ
(fi, fj)), where V � f1, f2, . . . , fn􏼈 􏼉 is the video with n
frames. *e functions hϕ and gθ is used to fuse the frame
features. Moreover, *e function captured frames relations
at different scale is described as MTN(V) � T2(V) + T3(V)

+ · · · + TN(V), where Td is temporal relationship of d

frames. A 2D convolution neural network (CNN) has
smaller parameters and fast computation than a 3D CNN.
However, a 2D CNN usually captures spatial information.
Sudhakaran et al. proposed a gate shift module (GSM) [16]
which is an 2D CNN to capture spatial and temporal fea-
tures. *e input is applied a spatial convolution. *en, a
grouped spatial gating is computed. *e 2D convolution
ouput is split into group-gated features and residual. *e
gated features are group-shifted and fused with the residual.
*e spatial and temporal information is exploited by a
learning spatial gating.

A Survey for Human Action Recognition

1. Introduction

Review of related survey articles

Contribution of this survey article

Roadmap of the survey

2. Recent Deep Learning Based Methods in Human Action Recognition

Methods Based on 2D CNN

Methods Based on RNN

Methods based on 3D Single-stream Network

Methods based on 3D Multi-stream Network

Convolution-free approaches

3. A Comparison of Methods

3. Benchmark Datasets

Simple Datasets

Clip-level Datasets

Video-level Datasets

4. Open Research Problems

5. Conclusions

Figure 1: *e structure of the survey.
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In a different approach to abovementioned methods,
Zhang et al. [43] applied video super-resolution to human
action recognition by introducing two video super-resolu-
tion (SR) modules, namely spatial-oriented SR (SoSR) and
temporal-oriented SR (ToSR). *e low-resolution input
video is enhanced by two proposed modules. *e input of
the recognition network includes the output of the SoSR and
the optical flow computed from the output of the ToSR
module.

2.2. Methods Based on RNN. CNNs are popular models for
image representation. *ey are also used to learn action
representation in videos [14–16]. However, they often work
well with short videos [33, 34], since only spatial features are
captured and motion information of action are not encoded.
To encode longer motion in video, some approaches have
used RNNs, and long-short term memory (LSTM), such as
in [17–19]. RNN is widely used in sequence data like video,
and text. LSTM is a special version of RNN with the ca-
pability of learning long-term information. In addition,
LSTM is combined with an attention mechanism [44] or is
used in a three-stream network [45, 46] for action
recognition.

With video data, RNNs and LSTM requires high
memory storage and computation cost. A compact LSTM
model (TR-LSTM) [17] was proposed to solve this issue. *e
TR-LSTM use the tensor ring decomposition to reconstruct
the input-to-hidden layer of the recurrent network. In the
tensor ring decomposition, the first and last tensors are
connected circularly and constructed in a ring-like structure.
A densely-connected bi-directional LSTM (DB-LSTM)
network [18] is used to represent the spatial and temporal
information of human actions. *e goal of DB-LSTM is to
capture the spatial, short-term, and long-term patterns. *e
spatial and short-term patterns are extracted by a sample
representation learner module, and the long-term patterns
are exploited by a sampling stack. Another work, named
correlational convolutional LSTM (C2 LSTM) [19] aims to
exploit both spatial and temporal information of human
action video. *e basic spatial features are extracted by two
parallel convolutional networks, and then, these features are
used as input for the C2 LSTM module. *e C2 LSTM
extracts the spatial and temporal information as well as the
time relation by using cross-correlation inside the LSTM.

A three streams network was proposed by Liu et al. [45]
for human action recognition.*e network includes a spatial
stream, a temporal stream, and a spatial-temporal saliency
stream. *ese streams are used to extract appearance in-
formation of RGB frames, motion information of optical
flow frames, and spatiotemporal foreground information of
objects from spatiotemporal saliency maps. In addition, they
proposed three attention-aware LSTMs to exploit the rela-
tionship between frames. Another three-stream network
[46] processes different frame rates for human activity
recognition. *e first stream operates at a single frame rate
and the second stream processes at low frame rates. Both
streams are used to capture spatial features. *e third stream
processes at high frame rates to capture temporal features.

*e output of the previous step is fed into two LSTM layers.
*is makes the proposed model deeper. Instead of using the
LSTM layer, the authors use an attention mechanism to
capture temporal information.

To extract the salient features of human action videos, Ge
et al. [44] introduces an attention mechanism and con-
volutional LSTM. A convolutional network is used to extract
features of the input video. *en, a combination of LSTM
and a spatial transformer network extracts salient features.
*e final classification is obtained by a convolutional LSTM.
*e proposed combination can select salient localities ef-
fectively while getting higher accuracy than soft attention
and using less calculation than hard attention.

2.3. Methods Based on 3D Single-Stream Network. In this
part, we will discuss 3D convolution-based models. *ese
methods obtain good results since 3D CNN extracts spatial
and temporal information from action video directly. Fig-
ure 2 is an example of single-stream network architecture.
*e input frames are fed into a 3D single-stream network to
extract both spatial and temporal features.

Tran et al. [20] proposed a channel separated con-
volutional network (CSN) which employs 3D group con-
volution. *e CSN is defined as 3D CNNs; however, only
1 × 1 × 1 conventional convolutions or k × k × k depthwise
convolutions are used. In detail, the conventional convo-
lutions are used for channel interaction and depthwise
convolutions are used for local spatiotemporal interactions.
In their work, a 3 × 3 × 3 convolution from the bottleneck
block by a pair of a 1 × 1 × 1 convolution and a 3 × 3 × 3
depthwise convolution to get a interaction-preserved
channel-separated bottleneck block. Moreover, the 1 × 1 × 1
convolution in the previous pair convolutions is removed to
obtain interaction-reduced channel-separated bottleneck
block.*e authors also applied group convolution to ResNet
blocks. Two 3 × 3 × 3 convolutional layers of simple ResNet
block are replaced by two 3 × 3 × 3 grouped convolutions or
a set of one 1 × 1 × 1 convolution and two depthwise con-
volutions. 3D convolutional neural networks have high
training complexity and huge memory cost. In order to
resolve this problem, Zhou et al. [47] proposed a combi-
nation of 2D and 3D convolution, namely mixed con-
volutional tube (MiCT). *e deep MiCT is an end-to-end
network which receives RGB video sequences as inputs. *e
whole network includes four MiCTs and a global pooling in
the last layer of the network.*is pooling allows the network
to accept any length videos as inputs. Each MiCT block
receives an 3D signal.*e input process by a 3D convolution
to extract spatial-temporal feature maps. *e extracted
features are passed through a 2D convolution to compute the
final feature maps. *e MiCT-Net uses fewer 3D convolu-
tion, but it obtains deeper feature maps. Instead of com-
bining 2D and 3D convolution, a new spatiotemporal
architecture fused 2D and 3D architectures to improve
spatiotemporal representation. Diba et al. proposed holistic
appearance and temporal network (HATNet) [48] which
exploits semantic information at different levels. HATNet
uses 2D convolutional blocks to encode the appearance

Computational Intelligence and Neuroscience 5



information of individual frames in a video clip. In addition,
the 3D convolutions extract temporal information in a batch
of frames. ResNet18 and ResNet50 was used in HATNet for
3D and 2D modules, respectively. *e output feature maps
of each 2D and 3D block are merged; then, a 1 × 1 × 1
convolution is applied to reduce the channel of features.
With prestraining on HVU dataset [48], the HATNet ob-
tained 97.8% and 76.5% on UCF101 [39] and HMDB51
datasets [40], respectively.

*e video usually has repeating information, and the
temporal squeeze network [21] can map the movement
information from a long video into a set of few frames. Given
a video X with K frames, a frame-wize z is obtained by
applying the squeeze operation. *e output of squeeze
operation is fed into a excitation operation. Global average
pooling is used to implement the squeeze operation while
the excitation operation is implement by two fully connected
layers and two activation functions. *e shorter sequence
frames Y′ is obtained by projecting the flattened vector of X

onto the hyperplane A, where A is computed from the
output of the excitation operation. To reduce the compu-
tational cost of motion feature, a FASTER-GRU network
[49] aggregates the temporal information. *e FASTER
framework uses an expensive model and a lightweight model
to exploit the information of the action and scene, respec-
tively. *e FAST-GRU aims to learn the features from
multiple models. *is network maintains the resolution of
feature maps to exploit more spatial-temporal information.
A fully connected layer is replaced by a 3D 1 × 1 × 1 con-
volution. *e proposed method was evaluated on Kinetics
[38], UCF101 [39], and HMDB51 datasets [40]. A combi-
nation of 3D convolution neural network and long-short
term memory [50] is used to capture low-level spatial-
temporal feature and high level temporal feature. *e
proposed network used Inception 3D CNN [38] to extract
spatial features and low-level motion features from a se-
quence of frames. *en, the output of the I3D model is fed
into a LSTM network to exploit high-level spatial features.
Temporal information plays a vital role in human action
recognition; however, this information still has challenging
problems. A temporal difference network (TDN) [51] was

proposed to capture multiscale temporal information. In
addition, TDN in an end-to-end model that captures both
short-term and long-term motion information. Given T

frames I � [I1, . . . , IT], a 2D CNN is used to extract features
F � [F1, . . . , FT]. A short-term and long-term TDM is ap-
plied to exploit short-term and long-term motion. To
capture the short-term motion, a stacked RGB difference of
frame Ii is downsampled using an average pooling, then
extracted motion information with a 2D network. *e
feature is upsampled to match the size of RGB features. In
the long-term TDM, the aligned temporal difference is
computed, and then fed into a multiscale module to extract
long-range motion information. Features are enhanced by a
bidirectional cross-segment temporal difference. *e TDN
framework with ResNet backbone [52] was evaluated on
Kinetics-400 [38] and Something-Something-V1-V2 [37].
Instead of computing the optical flow frame-by-frame, the
proposed MotionSqueeze module [53] learned motion
features by a light-weight learning technique. *e module
contains three parts, namely correlation computation, dis-
placement estimation, and feature transformation. *e
correlation score is defined as s(x, p, t) � F(t)

x · F(t+1)
x+p , where

F(t) and F(t+1) are two input feature maps. *en, motion
information is estimated in the displacement estimation
module and a confidence map of correlation is obtained
from the correlation. *e concatenation of displacement
map and the confidence map is used as the input of the
feature transformation. *e feature transformation converts
the input into an effective motion feature. *e MotionS-
queeze module is inserted into ResNet and evaluated on
Something-Something-V1, Something-Something-V2 [37],
Kinetics [54], and HMDB51 datasets [40].

Kalfaoglu et al. [22] proposed a method which obtained
highest accuracy on both HMDB51 [40] and UCF101 [39]
datasets with 85.10% and 98.69%. *e most important thing
in this study is that the authors replace the conventional
temporal global average pooling (TGAP) layer by the bi-
directional encoder representations from transformers
(BERT) layer. *is replacement utilize the temporal infor-
mation with BERT’s attention mechanism. *ey declared
that TGAP ignores the order of the temporal features, and

Single-stream Network

5120 I/8 I/8
I/8

I/8

I/4

I/2

I/4 I/4
1024

512 256 512 512 256 384 256

+ +

Figure 2: 3D single-stream network.
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BERT can focus on the important temporal features. *e
proposed network removed temporal global average pooling
at the end of the proposed 3D CNN architecture. A learned
positional encoding was added to the extracted features to
maintain the positional information.*e two last parts of the
architecture is multihead attention a classification. *en,
they also proposed some features reduction blocks. Atten-
tion is a useful tool in many fields of computer vision. A
novel W3 (what-where-when) video attention module [55]
including a channel-temporal attention Mc and a spatio-
temporal attention Ms was proposed for the action recog-
nition problem. An average-pooling and a max-pooling are
used to aggregate global spatial information. *e output is
fed into a shared MLP network to exploit the interchannel
relationship. To model the temporal dynamics of objects, a
channel temporal attention with two layers of 1D convo-
lutions is computed. With spatiotemporal attention, an
average-pooling and max-pooling are used as in channel-
temporal attention to exploit spatial feature maps. *e
features are concatenated and fed into a 2D convolution to
obtain frame-level spatial attention. To obtain the temporal
attention, two 3D convolutional layers is applied with the
frame spatial attention of previous step. *e W3 attention
module was integrated the ResNet50-based TSM [14].

*e backbone CNN network plays a vital role in many
recent action recognition systems. Martinez et al. [56]
changes the last layers of the backbone network to improve
the representation capacity. *e important information is
maintained in global feature branch. *e global feature
branch consists a global average pooling and a linear clas-
sifier. *e average pooling aggregates the spatial and tem-
poral information of the video. In the discriminative filter
bank, the filters are includes 1 × 1 or × 1 × 1 × 1 convolu-
tions and global max pooling to compute the highest acti-
vation value. *e third branch is local detail preserving
feature branch. A bilinear upsampling operation are applied
to double the resolution of the features. A skip connection is
add from the features of stage 4. Two backbone networks
(2D TSN [57] and inflated 3D [38]) were used to evaluate the
proposed module with Something-Something-V1 [58] and
Kinetics-400 [38].*e temporal modeling methods based on
3D CNN requires a large number of parameters and
computations. Lee et al. [59] proposed VoV3D which is an
3D network with an effective temporal modeling module for
temporal modeling. *e module names temporal one-shot
aggregation (T-OSA). *e T-OSA use many 3D convolu-
tions with different receptive fields. All the output features
are concatenated and reduced dimension by a 1 × 1 × 1
convolution. In addition, the authors proposed a depthwise
spatial-temporal module which decomposes a 3D depthwise
convolution into a spatial depthwise convolution and a
temporal depthwise convolution for making a more light-
weight and efficient network. Something-Something-V1,
Something-Something-V2 [58], and Kinetics-400 [38] was
used to evaluate.

Zhao and Snoek [60] proposed a single two-in-one
stream network to reduce the complex computation of two
stream network. *e network processes both RGB and
optical flow in a single stream. *e most important

contribution in this work is motion condition layer and
motion modulation layer. *e motion condition layer maps
flow inputs to motion condition Ψ. *en, the motion
condition Ψ is fed into the motion modulation to learn two
affine transformation parameters (β, c). *ese parameters
are used to influence the appearance network as below
formula M2(Frgb) � β⊙Frgb + c, where Frgb is the RGB
feature maps and ⊙ is an element-wise multiplication op-
eration. Instead of using deeply stacking convolution layers,
Huang and Bors [61] proposed region-based nonlocal (RNL)
to exploit long-range dependencies. *e RNL operation is
used to compute the relation between two positions based on
their features and the neighboring features. *e feature of
each position is computed from all neighboring positions.
*e RNL operator is embed into a residual block as
z � yWz + x. In addition, the RNL block is combined with
SE [62] block to exploit spatiotemporal attention and
channel attention. Two backbone networks are used to
implement the proposed RNL, including ResNet-50 [52] and
temporal shift modules (TSM) [14]. *e network was
evaluated on Something-Something-V1 [37] and Kinetics-
400 [38]. Furthermore, OmniSource [63] trains video rec-
ognition model using web data, such as images, short videos,
and long videos. *e methods train a 2D teacher network
and a 3D teacher network to filter the the web data that have
lo confidence scores. Hua et al. proposed a dilated silhouette
convolutional network (SCN) [64] for human action rec-
ognition in video. *e silhouette boundary curves of the
moving subject are extracted, and then, the silhouette curves
are stacked as a 3D curve volume. *e curve volume is
resampled to a 3D point cloud to represent the spatial and
temporal information of actions.

2.4. Methods Based on 3D Multistream Network.
Multistream networks can exploit different types of features
in human action recognition. Spatiotemporal and motion
information are two important features of human action
recognition. A two-branch network has two branches, in-
cluding the RGB branch and flow branch. *e RGB branch
exploits the visual structure of scenes and objects, while the
flow branch exploits the motion of objects. Many recent
proposed methods use a 3D CNN to exploit spatiotemporal
information and a flow stream to exploit motion informa-
tion [24, 26, 38]. *e two-stream network obtains state-of-
the-art accuracy by using RGB and flow images as input.
However, each stream is usually trained individually and the
optical flow requires a heavy computation. *erefore, some
approaches try to construct a two-stream network more
efficiently [23, 65]. Figure 3 shows a two-stream network
architecture that are used in many recent approaches.

To pay different types of attention, a two-stream at-
tention [26] was proposed using the visual attention
mechanism. *e network contains two streams. *e first
stream is the temporal feature stream which inputs an
optical flow image sequence. An LSTM and a temporal
attention are used to aggregate the information of the optical
flow image. *e second stream is a spatial-temporal feature
stream.*is stream uses an LSTM architecture to encode the
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temporal relationship. *e spatial features are extracted by
some convolutions. *en, the spatial attention assigns an
important location for the next step of feature generation
and the temporal attention is used to focus the temporal
frames. *e method was evaluated on UCF11 [66], UCF
Sports [67], and jHMDB [68]. An approach convert 2D
classification networks into 3D ConvNets. *e network is
named as Two-Stream Inflated 3D ConvNets (I3D) [38].
*ey inflated all the filers and pooling kernels of the 2D
architecture by enlarging a temporal dimension. To pretrain
the 3D model on the ImageNet dataset, the authors con-
verted an image into a video by copying it many times. *e
network has two streams. *e first stream uses RGB inputs
and the second one use flow inputs. *e two networks are
trained separately and the results are averaged. A two-
pathway convolutional neural network [24] was proposed by
Huang et al., namely Fine and Coarse. In the fine branch,
motion information of raw input is extracted by a motion
band-pass module. *e extracted motion is fed into a
backbone CNN [69] to learn the fine-grained motion fea-
tures. On the other hand, the coarse branch is used to learn
coarse-grained information. *e raw frames are down-
sampled and fed into a backbone CNN to exploit coarse-
grained features. In order to merge the features from two
branches, a lateral connection module was established. *e
proposed method was evaluated on Something-Something-
V1 [37], Kinetics-400 [38], UCF101 [39], and HMDB51
dataset [40]. A combination of RGB, flow, pose, and pairwise
stream [70] was proposed to improve the performance of the
action recognition system. *e network includes two

branches. *e first branch uses CD3 [71] and I3D [38] as
backbone networks to extract spatial and temporal infor-
mation. In the second branch, a pairwise stream learns the
spatial relationship between the subject who perform the
action and the surrounding objects. In addition, a pose
stream inputs keypoint images. Keypoint images provide the
connected key body parts of a person. *e predicted results
are obtained by using the late fusion method. *e network
was evaluated on UCF101 [39] and HMDB51 datasets [40].

Optical flow requires high computing. A proposed ap-
proach [23] mimics the motion stream using a standard 3D
CNN. *ey introduced two learning strategies, namely
Motion Emulating RGB Stream (MERS) and Motion-
Augmented RGB Stream (MARS). In the first strategy, a flow
network is trained to classify actions using optical flow clips.
*en the MERS is trained to mimic the flow stream using
only RGB frames. *e last layer of MERS is trained by using
the imitative flow features. In the second strategy, a flow
stream (teacher) uses optical flow clips to train. Next, the
teacher network is frozen its weight and MARS (student) is
trained with RGB frames as input. Since only RGB frames
are used as input in the testing phase, the network avoids the
high computation of optical flow.*e optical flow requires a
high computation cost. Stroud et al. [65] introduced Dis-
tilled 3D Network (D3D) which obtained high performance
without optical flow computation during inference. *e
D3D combines motion information in the temporal stream
into the spatial stream. *is leads the spatial to behave like
the temporal stream. D3D trains two networks, including a
teacher network and a student network.*e teacher network
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Figure 3: 3D two-stream network.
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is a learned temporal stream of a two-stream network and
the student network is a spatial stream.*e knowledge of the
teacher network is distilled into the student network during
the training phase.

One of the problems of a two-stream network is to
exploit the complementary information between two
streams [25]. To solve this issue, Zhang et al. proposed a
cross-stream network [25]. Two similar backbone networks
are used to extract structure and motion features. *en, a
cross-stream connection block is used to compute the
correlation between the appearance and motion features.
*e classification scores are obtained by a classifier which
inputs the extracted features of previous blocks. *e cross-
stream network is evaluated on UCF101 [39] and HMDB51
datasets [40] and Something-Something-V2 [58]. *e most
popular multimodality method fused its stream at the last
stage of the model. A cross-modality [72] exchanges in-
formation between modalities in a more effective way. *e
proposed network has two branches. Instead of averaging
the scores of the two branches, several cross modality at-
tention (CMA) blocks are added after some stage of the
network. *e CMA matches a query of the first modality
with key-value pairs of the second modality.

A very deep network [73] uses residual learning to encode
spatial-temporal information human action recognition videos.
*e network, residual spatial-temporal attention network (R-
STAN), includes two streams. Since the computation of optical
flow has high cost, RGB Difference images are used to extract
motion information.*e RGBDifference images are computed
by applying a element-wise subtraction operation between two
frames. *e network is constructed of many residual spatial-
temporal attention blocks, including a residual block and a
temporal and a spatial attention module. A feature map is
processed as M′(x) � M⊙AT ⊙AS, where M and M′ are the
input and output feature maps and AT and AS are the temporal
and spatial attention, respectively. Two standard datasets
(UCF101 [39] and HMDB51 [40]) was used to evaluate the
proposed method. A proposed neural network [74] computed
the local and global representations parallel. *erefore, the
feature maps are processed in local path and global path. In the
first path, the local features xl are updated from xl−1 and global
vector gl−1. In the second one, the global vector is updated with
local feature xl. Next, they proposed a local and global
combination classifier to make the final prediction by
combining the local and global representations. Finally, they
proposed two different local and global diffusion networks,
namely LGD-2D and LGD-3D. *e difference between the
LGD-2D and LGD-3D is that the input of the first one is T

noncontinuous frames while the input of the second is T

consecutive frames. In addition, LGD-2D and LGD-3D use 2D
convolution and 3D convolution, respectively. *ey evaluated
on two datasets, namely Kinetics-400 [38] and Kinetics-600
[75]. *ey also experienced on two of the most popular video
action recognition datasets UCF101 [39] and HMDB51 [40].

Instead of training different networks separately, Zhou
et al. [76] constructed a probability space from which a
spatial-temporal fusion strategy can be derived. *e authors
introduced spatial-temporal fusion strategies that obtained
high performance on poplar datasets. To exploit the mutual

correlations in the video, an attention mechanism [77] is
used in the 3D convolutional network.*e authors proposed
a temporal and spatial attention submodule and then used
these attentions to construct the temporal and spatial de-
formable 3D convolutional network. Both 3D convolutional
networks can learn temporal and spatial information as well
as static appearance. A proposed model [78] used pose
information to predict actions. First, they used the PoseNet
approach with ResNet backbone to obtain estimated pose
keypoints for each human in a frame.*e backbone network
used is ResNet50 with a 3D version. *ey added a feature
gating module and did not apply temporal downsampling in
any layer of the backbone network to improve the perfor-
mance. *e authors tried to avoid training three models
separately since the input included RGB, flow, and pose data.
*ey proposed a multiteacher framework in which its input
can be RGB, flow, or pose. *ey evaluated on three
benchmark datasets, including Kinetics-600 [38], UCF101
[39], and HMDB51 [40],

2.5. Convolution-Free Approaches. *e 2D network is very
successful in capturing the spatial features. However, the
motion information is still missed. 3D convolution network
is used to encode spatial-temporal information in videos but
it requires a high computation cost. Transformer was pro-
posed for natural language processing and then adopted for
computer vision. It does not require heavily stacked con-
volutions to encode information, such as in [27–30].

A convolution-free model [27] that requires a smaller
number of frames for inference.*emodel is based on a self-
attention mechanism for capturing both spatial and tem-
poral information. *e authors separate the spatial attention
and the temporal attention to reduce the computation and
exploit temporal information better. Each input frame (H ×

W) of the network is split into nonoverlapping patches
N � HW/P2, where the size of each path is P × P.*en, each
patch representation is converted to query, key, and value
vectors. To avoid expensive computation, spatial attention is
applied between patches of the same image. *e output
representations of the spatial attention are applied to tem-
poral attention. *e proposed method was evaluated on
Kinetics-400 [38]. *ey also reported the result on UCF101
[39].

To solve the heavy memory usage of the vanilla video
transformer, a video transformer [28] was introduced to
reduce the memory cost. *e issue is solved by applying a
spatial and temporal multihead separable-attention (MSA)
sequentially MSA(S) � MSAs(MSAt(S)). Moreover, the
authors solved the redundant information problem of the
temporal dimension. Instead of using temporal average
pooling or 1D convolutions with stride 2, they proposed a
topK pooling which selects topK based highest standard
deviation. *ey evaluated on 6 different datasets (Kinetics-
400 [38], Kinetics-700 [79], Something-Something-V2
dataset [37], Charades [80], UCF101 [39], and HMDB51
[40]).

A convolution-free model is faster than 3D convolu-
tional networks, namely, TimeSformer [30]. Each input
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frame is split into N nonoverlapping patches same as in [27].
*e spatiotemporal position of each patch is encoded by a
learnable positional embedding e

pos

(s) ∈ R
D. Each patch Xp,t is

mapped into an embedding vector z
(0)
(p,t). *e TimeSformer

has L blocks and a set of query, key, and value vectors is
computed from z(l−1)

(p,t) for each block. In this study, the
authors proposed a more efficient spatiotemporal attention.
A temporal attention is applied, then, the output is fed into a
spatial attention. *e TimeSformer was evaluated on Ki-
netics-400 [38], Kinetics-600 [81], Something-Something-
V2 datasets [37], and Diving48 [82].

Akbari et al. [29] introduced a convolution-free
Transformer architecture, namely Video-Audio-Text
Transformer (VATT). *e input video clip is split into a
sequence of ⌈T/t⌉ · ⌈H/t⌉ · ⌈W/t⌉ patches. *e position of
each location (i, j, k) is encoded as ei,j,k � eTemporali
+eHorizontalj + Verticalk, and Multi-Head-Attention applies the
self attention on the input. Multilayer perceptron includes
two dense linear projections with a GeLU activation. *e
common space projection contains a linear projection, and a
two-layer projection with ReLU activation functions in
between. *e proposed method was evaluated on UCF101
[39], HMDB51 [40], Kinetics-400 [38], Kinetics-600 [75],
and Moments in Time [83].

3. A Comparison of Methods

First, we compare recent methods on two benchmark
datasets, including UCF101 [39] and HMDB51 [40]. *ese
are the two most popular human action datasets that have
been used to evaluate the performance of the proposed
methods as shown in Table 2. We group the proposed
methods by year. In 2019, the local and global diffusion
network achieved the best result with 98.20% and 80.50% on
UCF101 and HMDB51, respectively. *eir network tried to
learn local and global feature in parallel, and these features
are diffused effectively. In 2020, Kalfaoglu et al. [22] obtained
impressive results with 98.69% and 85.10% on UCF101 and
HMDB51, respectively. *e replacement of the conventional
temporal global average pooling layer with the bidirectional
encoder representations from the Transformers layer in-
crease the performance of 3D convolutional neural net-
works. In 2021, a three-stream network obtained 99.00% on
the UCF101 dataset. In this year, many approaches intro-
duced a new model for human action recognition with a
convolution-free architecture, such as VATT [29], VidTr
[28], STAM [27], and TimeSformer [30].

Table 3 compares recent approaches on Something-
Something-V1 and Something-Something-V2. TSM [84] is
one of the most effective methods which obtains both high
efficiency and high performance because it obtains the
performance of a 3D network with the complexity of a 2D
network. TSM uses a simple temporal shift module to exploit
a temporal relationship with zero extra computation and
zero extra parameters. It obtains 52.60% and 66.00% top-1
accuracy on Something-Something-V1 and Something-
Something-V2, respectively. Another method TDN [51]
obtained state of the art on the Something-Something-V1
and Something-Something-V2 with 56.80% and 68.20%.

TDN focus on capturing local and global motion for action
recognition.

4. Benchmark Datasets

Benchmark datasets play a vital role in estimating the
performance of proposedmethods.*e scope of the problem as
well as a fairly comparison are provided by the dataset. For
human action recognition, there is a wide range of benchmark
datasets in common use. We briefly review the most well-
known datasets and their information (size, average duration,
action classes, and resolution) for human action recognition.
*ese datasets are grouped into three categories such as simple,
clip-level, and video-level. Table 4 provides a summary of these
datasets.

4.1. Simple Datasets. *e two popular datasets which are
most used with traditional methods are KTH [1] and
Weizmann [2]. However, these datasets obtained absolute
accuracy [102, 103] because the background is static and
simple and one person performs an action in each video.
*en, some more realistic datasets were proposed such as
Hollywood [90] and Hollywood2 [91].

KTH [1] is a video dataset including 2391 videos. *e
dataset was performed by 25 different people in four dif-
ferent scenarios. *e whole dataset (https://www.csc.kth.se/
cvap/actions/) includes six human actions: walk, jog, run,
box, hand-wave, and hand clap.

Weizmann [2] is a video dataset which was performed
with nine people. Each participant performs 10 actions such
as run, walk, jump, skip, jack, jump-forward, jump-in-place,
side, wave-two-hand, and wave-one-hand. *is dataset
(http://www.wisdom.weizmann.ac.il/%20vision/
SpaceTimeActions.html) includes 90 videos.

Hollywood [90] is a human action dataset taken from 32
movies. *is dataset (https://www.di.ens.fr/%20laptev/
download.html) has eight action classes with 233 training
video samples and 211 testing video samples.

Hollywood2 [91] is a human action dataset with 3669
video clips. *is dataset (https://www.di.ens.fr/%20laptev/
actions/hollywood2/) includes 12 classes of actions and 10
classes of scenes with approximately 20.1 hours of video
which is taken from 69 different movies.

4.2. Clip-Level Datasets. *e number of actions of previous
datasets is small, and the actions are simple. *erefore, some
datasets such as UCF101 [39], HMDB51 [40], and J-HMDB
[68] were introduced to provide a higher variety of actions.
However, the samples are short clips, and a single action is
captured. *en, some large-scale datasets, such as Charades
[80], Something-Something [37], Kinetics [54], Kinetics-600
[75], Kinetics-700 [79], Diving48 [82], Moments in time
[83], HACS [93], HVU [48], and AViD [94], have been
introduced. *ese datasets allow to train a deep convolu-
tional neural network from scratch.

UCF101 [39] has 101 action classes and has split into five
categories: human-object interaction, body-motion only,
human-human Interaction, playing musical instruments,
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Table 3: Accuracy of different methods on Something-Something-V1 and Something-Something-V2 datasets.

Method Year Method
Something-V1 Something-V2

Top-1 Top-5 Top-1 Top-5
Zhou et al. [15] 2018 TRN (2-stream TRN) 42.01 — 55.52 83.06
Jiang et al. [31] 2019 STM (CSTM, CMM, TSN [84], ResNet50 [52]) 50.70 80.40 64.20 89.80
Lin et al. [14] 2019 TSM (TSN [84], ResNet50 [52]) 52.60 81.90 66.00 90.50
Tran et al. [20] 2019 CSN (ResNet3D [52]) 53.30 — — —
Martinez et al. [56] 2019 2D TSN [57], inflated 3D [38] 53.40 81.80 —
Li et al. [32] 2020 CIDC (ResNet50 [52]) — — 56.30 83.70
Zhou et al. [76] 2020 Probability space — — 62.90 88.00
Perez-Rua et al. [55] 2020 W3 (ResNet50-TSM [14]) 52.60 81.30 66.50 90.40
Lee et al. [59] 2020 VOV3D-L (T-OSA) 54.70 82.00 67.40 90.50
Kwon et al. [53] 2020 MSNet (ResNet50 [52]) 55.10 84.00 67.10 91.00
Sudhakaran et al. [16] 2020 GSM (InceptionV3 [85]) 55.16 — — —
Zhang et al. [33] 2020 PANet (ResNet101 [52], TSM [14]) 55.30 82.80 66.50 90.60
Wang et al. [51] 2020 TDN (short- and long-term TDM) 56.80 84.10 68.20 91.60
Huang and Bors [61] 2021 RNL (ResNet50 [52], TSM [14]) 54.10 82.20 — —
Huang and Bors [24] 2021 FineCoarse network (ResNet [52]) 57.00 83.70 — —
Bold represents the best performance.

Table 2: Accuracy of different methods on UCF101 and HMDB datasets.

Method Year Method UCF101 HMDB
Carreira and Zisserman [38] 2017 Two-stream I3D 98.00 80.90
Zhou et al. [47] 2018 Mixed 3D CNNs, 2D CNNs 94.70 70.50
Zhang et al. [43] 2019 SoSR+ToSR (TSN [84], ResNet [52]) 92.13 68.30
Ge et al. [44] 2019 Attention +ConvLSTM 92.39 66.37
Pan et al. [17] 2019 TR-LSTM (Inception-V3 [85]) 93.80 63.80
Liu et al. [73] 2019 R-STAN(ResNet101 [52], temporal and spatial attention) 94.50 68.70
Wang et al. [50] 2019 I3D, LSTM 95.10 —
Lin et al. [14] 2019 TSM (TSN [84]) 95.90 73.50
Jiang et al. [31] 2019 STM (CSTM, CMM, TSN [84], ResNet50 [52]) 96.20 72.20
Chi et al. [72] 2019 CMA (attention) 96.50 —
Zhang et al. [25] 2019 CSN (TSN [84]) 97.40 81.90
Hong et al. [70] 2019 I3D [38]/CD3 [71] (RGB, flow, pairwise and pose) 98.02 80.92
Crasto et al. [23] 2019 MARS+RGB+ Flow 98.10 80.90
Qiu et al. [74] 2019 LGD-3D two-stream 98.20 80.50
Piergiovanni and Ryoo [34] 2019 Fully-differentiable convolutional layer — 81.10
Kwon et al. [53] 2020 MSNet (ResNet50 [52]) — 77.40
Liu et al. [45] 2020 STS + attention LSTM 92.70 64.40
Majd and Safabakhsh [19] 2020 C2LSTM 92.80 61.30
Huang and Bors [21] 2020 TSN (squeeze and excitation operation) 95.20 71.50
Li et al. [77] 2020 Attention (ResNeXt-101 [86]) 95.90 72.20
Zhou et al. [76] 2020 Probability space 96.50 —
Zhu et al. [49] 2020 FAST-GRU 96.90 75.70
Diba et al. [48] 2020 HATNet (2D ResNet50, 3D ResNet18) 97.80 76.50
Zhang et al. [33] 2020 PANet (ResNet101 [52], TSM [14]) 97.20 77.30
Duan et al. [63] 2020 2D network (ResNet50 [52]), 3D network (SlowOnly [87]) 97.52 79.02
Stroud et al. [65] 2020 D3D (S3D-G [88]) 97.60 80.50
Li et al. [32] 2020 CIDC (ResNet50 [52]) 97.90 75.20
Li et al. [78] 2020 PoseNet, ResNet50 (3D), multiteacher network 98.20 82.00
Gowda et al. [36] 2020 MobileNet, MLP, LSTM 98.60 84.30
Kalfaoglu et al. [22] 2020 BERT, 3D convolution architecture 98.69 85.10
Akbari et al. [29] 2021 VATT 89.60 65.20
Xu et al. [35] 2021 MotionNet [41] +OFF [42] 91.50 67.90
Li et al. [28] 2021 VidTr (MSA, topK-based pooling) 96.70 74.40
Sharir et al. [27] 2021 STAM (spatial and temporal attention) 97.00 —
He et al. [18] 2021 DB-LSTM (ID3 [38]) 97.30 81.20
Huang and Bors [24] 2021 FineCoarse (TSM R50 [69]) 97.60 77.60
Hua et al. [64] 2021 SCN (Mask R-CNN [89]) 98.30 85.10
Sheth [46] 2021 *ree-stream network + LSTM/Attention 99.00 —
Bold represents the best performance.
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and sports. It includes 13320 clips and 1600 minutes of video
data. All videos (https://www.crcv.ucf.edu/data/UCF101.
php) are downloaded from YouTube and have a fixed res-
olution of 320 × 240.

HMDB51 [40] has 51 action categories with 6,766 video
clips (https://serre-lab.clps.brown.edu/resource/hmdb-a-
large-human-motion-database/) which are extracted from
different sources. *ere are five types of action, including
general facial actions, facial actions with object manipula-
tion, general body movements, body movements with object
interaction, and body movements for human interaction.
*e height of all the frames is 240 pixels. To maintain the
original aspect ratio of the video, the width was scaled ac-
cordingly to the height.

J-HMDB [68] is extracted from the HMD51 dataset [40].
Not only a dataset for human action recognition but also the
J-HMDB is provided for pose estimation and human de-
tection. *e dataset (http://jhmdb.is.tue.mpg.de/) contains
21 classes with 31,838 annotated frames. Each action has
36–55 video clips, and each clip includes 15–40 frames.

MPII Cooking [92] is a dataset of cooking activities. *e
dataset (https://www.mpi-inf.mpg.de/departments/computer-
vision-and-machine-learning/research/human-activity-
recognition/mpii-cooking-2-dataset) contains 65 different
cooking activities which are performed by 12 participants. In
total, the dataset has 44 videos with 9 hours in length.

Charades [80] is a dataset of casual everyday activities of
267 people in their homes. *e dataset has 9,848 videos with
an average length of 30 seconds. It includes 157 action

classes and is split into 7,985 videos for training and 1,863
videos for testing (https://prior.allenai.org/projects/
charades).

Something-Something [37] includes 108,499 videos
(https://20bn.com/datasets/something-something/v1) in V1
and 220,847 videos (https://20bn.com/datasets/something-
something) in V2. Both versions have 170 action classes.*e
duration of a video is from 2 to 6 seconds. *e dataset is
divided into three parts, including training, validation, and
testing set.

Kinetics [54] (Kinetics-400 [38]) has 400 human action
classes, and each class has at least 400 video clips. All clips
were taken from YouTube. *e actions in the dataset are the
human-object interactions or human-human interactions.
*e dataset (https://deepmind.com/research/open-source/
kinetics) has 306,245 videos and is split into three parts
for training, validation, and testing.

Kinetics-600 [75] is a large-scale, high-quality dataset.
*e dataset (https://deepmind.com/research/open-source/
kinetics) was taken from YouTube with 500K video clips.
It has 600 human action classes with at least 600 video clips
for each class. *e length of each clip is about 10 seconds.

Diving48 [82] has 48 classes of 48 different diving
actions. *e dataset (http://www.svcl.ucsd.edu/projects/
resound/dataset.html) has 18,404 video clips which
contain 16,067 clips for training and 2,337 clips for
testing. All clips were taken without background objects
and the scenes contain a board, a pool, and a spectator in
the background.

Table 4: Some benchmark datasets for human action recognition.

Dataset Year Samples Mean length Actions Resolution

Simple

KTH [1] 2004 2391 4 sec 6 160×120
Weizmann [2] 2005 90 Len 10 180×144
Hollywood [90] 2008 430 Len 8 —
Hollywood2 [91] 2009 3669 Len 12 —

Clip-level dataset

UCF101 [39] 2012 13,320 7.21 sec 101 320× 240
HMDB51 [40] 2013 6,766 — 51 —–× 240
J-HMDB [68] 2013 31,838 1.4 sec 21 320× 240

MPII cooking [92] 2012 881,755 Len 65 1624×1224
Charades [80] 2016 9,848 30 sec 157 671× 857

Something-Something-V1 [37] 2017 108,499 4.03 sec 174 —–× 100
Something-Something-V2 [37] 2018 220,847 4.03 sec 174 —–× 240

Kinetics-400 [38] 2017 306,245 10 sec 400 Variable resolution
Kinetics-600 [75] 2018 495,547 10 sec 600 Variable resolution
Kinetics-700 [79] 2019 650,317 10 sec 700 Variable resolution
Diving48 [82] 2018 18,404 Len 48 —

Moments in time [83] 2019 1,000,000 3 sec 339 340× 256
HACS [93] 2019 1.55M 2 sec 200 —
HVU [48] 2020 572K 10 sec 739 —
AViD [94] 2020 450K 3–15 sec 887 —

Video-level dataset

Sport1M [95] 2014 1,133,158 5 min 36 sec 487 —
ActivityNet [96] 2015 28,108 (5–10) min 200 1280× 720

DALY [97] 2016 8133 3 min 45 sec 10 1290× 790
YouTube-8M [98] 2016 1.9B 226.6 sec 4,800 —
EPIC-kitchens [99] 2018 11.5M 1.7 hrs 149 1920×1080

AVA [100] 2018 392,426 15min 60 451× 808
AVA-kinetics [101] 2020 624,430 — 60 —
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Kinetics-700 [79] is an extension of the human action
dataset Kinetics-600 [75]. *e extended dataset (https://
deepmind.com/research/open-source/kinetics) has 700
classes and was taken from YouTube. Each class of dataset
has at least 600 video clips which have a variable resolution
as well as frame rate.

Moments in time [83] is a human-annotated dataset with
339 different classes. *is is a large-scale dataset with one
million videos, and each video corresponds with an event
occurring in three seconds. *e dataset (http://moments.
csail.mit.edu/) is split into 802,264, 33,900 and 67,800 videos
for training, validation, and testing, respectively.

HACS [93] is a large-scale dataset for human action
recognition. It contains 1.5M clips which are sampled from
504K untrimmed videos. All clips (http://hacs.csail.mit.edu/
) in this dataset have a two-second duration with 200 action
categories.

HVU [48] is a multilabel and multitask video dataset
which aims to describe the whole content of a video. *e
dataset includes approximately 572K videos with real-world
scenarios. *is dataset (https://holistic-video-
understanding.github.io/) is split into 481K videos for
training, 31K for validation, and 65M for testing.

AViD [94] is a video dataset for human action recog-
nition. *e main difference of this dataset is that it is col-
lected from many different countries. *is dataset (https://
github.com/piergiaj/AViD) contains 410K training clips and
40K test clips. *e duration of each clip is from 3 to 15
seconds.

4.3. Video-Level Datasets. With the development of deep
models, some large-scale datasets were introduced such as
Sport1M [95]. However, this dataset only focuses on Sports
actions. Recently, other action datasets have been introduced
with larger samples and temporal duration such as Activi-
tyNet [96], AVA [100], AVA-Kinetics [101], DALY [97],
EPIC-Kitchens [99], MPII Cooking [92], and YouTube-8M
[98].

Sport1M [95] includes 1 million YouTube videos. *e
dataset (https://cs.stanford.edu/people/karpathy/deepvideo/
) contains 487 classes of sports. *ere are 1000–3000 videos
in each class.

ActivityNet [96] is a benchmark dataset for human activity
understanding. *e dataset (http://activity-net.org/index.html)
contains human activities in their daily living. With 849 video
hours, ActivityNet provides 200 activity classes. Each class has
an average of 137 untrimmed videos. Most of the videos have a
duration between 5 and 10minutes and a half of the video has a
resolution of 1280× 720.

DALY [97] is a dataset for action localization in space
and time. *e dataset (http://thoth.inrialpes.fr/daly/) lasts
about 31 hours of YouTube videos with 10 everyday human
actions.

YouTube-8M [98] is a multilabel video classification
dataset. *e dataset (http://research.google.com/
youtube8m/) includes 8,264,650 videos. With 500,000
hours of video, YouTube-8M contains over 1.9 billion video
frames and 4,800 classes.

EPIC-Kitchens [99] was recorded by 32 participants in
their kitchens. *e participants comes from 10 different
countries. *e dataset (https://epic-kitchens.github.io/2020-
55.html) has 55 hours of videos which include 11.5M frames.
*e videos have a resolution of 1920×1080; however, there
are 1% of the dataset was recorded at 1280× 720 and 0.5% at
1920×1440.

AVA [100] is a video dataset in which theactions are
assigned in space and time. In addition, each person in the
video is annotated with multiple labels. *is dataset
(https://research.google.com/ava/) contains 437 different
videos of realistic scenes and action complexities. Each
video is taken from the 15th to 30th minute time and has
900 frames. It is divided into 239 videos for training, 64
videos for validation, and 134 videos for testing, roughly a
55 : 15 : 30 split.

AVA-Kinetics [101] is an extension of the AVA dataset
[100] with new videos from the Kinetics-700 [79] annotated
with the AVA action classes. *e AVA-Kinetics (https://
research.google.com/ava/) has 238,906 videos which is split
into 142,475 videos for training, 32,529 videos for validation,
and 64,902 videos for testing.

5. Open Research Problems

In the previous sections, we discuss the recent proposed
methods and benchmark datasets for human action rec-
ognition with RGB data video. In this section, we will
introduce some of the potential research problems in this
field.

Data for human action recognitionRGB videos are widely
used in most methods for action recognition because
these data are very popular and acquired with a low
cost. However, other types of data provide more in-
formation for action recognition, such as skeleton,
depth, infrared sequence, and point cloud. Skeleton
data provide the trajectories of human body joints.
Depth and point cloud data capture 3D structure and
distance information. Infrared data provide data in a
dark environment. *erefore, we cannot exploit color
or texture in infrared data.
Pose estimation detects the location of human body joints
in images. *e skeleton data provide the body structure
and pose of the object; therefore, we have more infor-
mation for human action recognition. *e skeleton data
are obtained by using pose estimation on RGB videos or
depth data.
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Combination of different data types, such as RGBdatawith
depth data or skeleton data with depth data, provides rich
information for learning models. *e RGB video data
provide spatiotemporal features while depth data provide
the 3D structure and depth information.We also combine
different features of different models to get better
performance.

6. Conclusions

In this survey, we provided a review of recent deep learning-
based methods for human action recognition with RGB
video data. We categorized recent approaches into five
different groups, including 2D CNN-based methods, RNN-
based methods, 3D single-stream network-based methods,
3D multistream network-based methods and convolution-
free-based methods. More recently, a pure vision trans-
former with a convolution-free network has shown to be
effective for human action recognition and various fields of
computer vision. *erefore, we discussed recent trans-
former-based methods. We compared the accuracy of recent
methods on four popular datasets, including UCF101,
HDMB51, Something-Something-V1, and Something-
Something-V2. We also discussed a wide range of bench-
mark datasets for human action recognition that are used in
recently proposed methods. Lastly, we provide some po-
tential research directions for human action recognition.
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