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*is problem of intelligent switched fault detection filter design is investigated in this article. Firstly, the mode-dependent average
dwell time (MDADT)method is applied to generate the time-dependent switching signal for switched systems with all subsystems
unstable. Afterwards, the switched fault detection filter is proposed for the generation of residual signal, which consists of
dynamics-based filter and learning-based filter. *e MDADT method and multiple Lyapunov function (MLF) method are
employed to guarantee the stability and prescribed attenuation performance.*e parameters of dynamics-based filter are given by
solving a series of linear matrix inequalities. To improve the transient performance, the deep reinforcement learning is introduced
to design learning-based filter in the framework of actor-critic.*e output of learning-based filter can be viewed as uncertainties of
dynamics-based filter. *e deep deterministic policy gradient algorithm and nonfragile control are adopted to guarantee the
stability of algorithm and compensate the external disturbance. Finally, simulation results are given to illustrate the effectiveness of
the method in the paper.

1. Introduction

Switched systems [1–3] are an important component of
hybrid systems, which are composed of a series of subsys-
tems and build the connection between nonlinear systems
and linear systems. As an efficient way to deal with complex
nonlinear systems, switched systems have attacked con-
siderable attentions and were applied in the areas of both
military and economics [4, 5], such as industrial
manufacturing, flight control, robotic control, process
control, and so on. *e problems of modeling, stability
analysis [6], controller design [7], and filter design [8] have
been investigated recently and fruitful encouraging results
emerged [9]. Tomention a few, the problem of switched fault
tolerant controller design is investigated in [10], the event-
triggered controller design method for discrete-time

switched systems is proposed in [11], and the stability and l2-
gain analysis are given in [12].

*e basic problem for switched systems lies in stability
analysis [13, 14]. *e scholars have developed tools to an-
alyze the stability in past decades, such as common Lya-
punov function (CLF) method, MLF method, and
persistence Lyapunov function method [15]. *e CLF
method is mainly applied for the switched systems with
arbitrary switching, which means that the switched systems
are stable if all the subsystems share a CLF. However, it is
difficult to design a CLF for all subsystems. To obtain tighter
bounds, the stability analysis can be developed by the aid of
MLF, which is mainly applied to constrained switching.
Moreover, in practical system, the switching signal always
depends on state or time. Because it is difficult to obtain the
state measurements, the switching signal is time-dependent
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in many situations. *us, the average dwell time (ADT)
method and MDADTmethod provide efficient solutions to
deal with the stability analysis for switched systems with
constrained switching. In the work of [16], the issue of
stability analysis for switched positive linear systems is
studied. *e ADT method and multiple linear copositive
Lyapunov function are combined and sufficient stability
criteria for stability analysis are given. However, it is
straightforward that common parameters for all subsystems
with different characteristic will lead to conservativeness,
which motivates the researches on MDADT. *e definition
of MDADT is firstly proposed in [17]. *e problem of
stability analysis is studied in the framework of MDADT
method and tighter bounds are obtained. In [18], the
problem of stability and robust controller design for
switched systems with external disturbances is studied. *e
MDADT switching and MLF method are introduced to
ensure the stability. Moreover, in practice, the error of the
switched system will lead to unstability. *erefore, the re-
searches of stability analysis for switched systems with
unstable subsystems are still one of the most important
topics in control areas. In [19], the piecewise Lyapunov
functions and MDADT method are combined to deal with
the problem of stability analysis for switched systems with
unstable modes. *e fast switching is applied to unstable
modes and slow switching is applied to stable modes. In [20],
the problem of stability for switched systems with input time
delay is studied. *e unstable subsystems and asynchronous
switching caused by time delay are taken into consideration.
*e extended stability criteria are obtained by the aid of
Lyapunov-Krasovskii function method and sufficient con-
ditions for stability analysis are presented.

*e fault case of system will no doubt lead to undesirable
response [21, 22]. One issue in the industrial systems or
aeronautic engineering is that the maintenance cannot be
given immediately to ensure the reliability and safety [23].
*us, the presence of undesirable fault and the possibility of
the occurrence of faults has to be considered in the stability
analysis and system design, which motivates the study on
fault detection and fault tolerant control. As an efficient way
to deal with the undesirable faults, fault detection technique
has attracted more and more attention, which can be seen in
the recent important results, such as [24–26]. *e fault
detection system can detect the fault in time and efficiently
so that we can reconstruct the control diagram to adjust to
the fault environment. Among these fault detection
methods, the most valuable and applicable method is the
model-based fault detection filter design method. It can be
inferred in existing literature that the model-based method
consists of a residual generator and residual evaluator, which
is applied in the areas of networked control systems,
aerospace engineering, and process control. In [27], the
problem of H∞/H-fault detection for switched systems with
unstable modes is investigated. *e robustness to external
disturbance and the sensitivity to fault are both taken into
consideration. In [28], the problem of cooperative control
for multiagent systems is investigated based on adaptive
control and fuzzy control. *e unknown control parameters
and actuator fault are taken into consideration. *e

backstepping control is utilized to derive the controller. In
the work of [29], the problem of fault detection subject to
nonlinearities and disturbance is investigated according to
event-triggered scheme. Sufficient conditions to guarantee
the system is stable with the prescribed performance are
obtained based on ADTmethod and MLF method. Based on
the literature mentioned above, it can be inferred that the
model-based fault detection filter is popularly applied in
most of engineering problems because of the design sim-
plicity and physical execution. However, it is difficult to
achieve optimal compromise between robustness and
transient performance. *e model-based method can
guarantee the stability and robustness of the closed-loop
system. But the transient performance cannot be guaranteed.
It is essential and significant to improve the transient per-
formance of fault detection filters. Moreover, due to the lack
of online-learning ability, this type of fault detection filters is
relatively ineffective to have optimal performance in the
real-world uncertain environment.

With the development of machine learning and com-
puter science, the intelligent control has drawn considerable
attention [30]. As a powerful nonlinear approximation
approach, deep learning and deep reinforcement learning
has promoted the considerable performance in realistic
applications, such as controller parameters tuning, decision
making, and so on. In particular, the DDPG algorithm has
been illustrated to perform stably and efficiently on many
high-dimensional action control tasks. In the work of [31], a
noninteger PID controller based on DDPG algorithm is
proposed for the tracking problem. To accomplish the
control methodology, a kinematic controller and a dynamic
controller are established independently, in which the ki-
nematic controller is proposed based on the model of the
vehicle and the dynamic controller is realized for the sup-
plementary kinematic controller to achieve optimal per-
formance. In [32], the assembly task is defined as a Markov
decision process and a fuzzy DDPG algorithm is given to
realize the task. To improve the performance and learning
efficiency, a fuzzy reward system is developed for the as-
sembly task. In addition, in the work of [33–35], the machine
learning is applied in the design of controller and guidance
law.

Inspired by the aforementioned discussion, an effort is
conducted in the paper to design an intelligent fault de-
tection filter for switched system with all modes unstable,
which is composed of dynamics-based filter and learning-
based filter. As well known, the model-based fault detection
filter is designed in the existing literature, which can
guarantee the stability of closed-loop system and the ro-
bustness to external disturbance. However, how to improve
the transient performance of fault detection still remains an
open problem. On the other hand, in most literature, the
fault detection filter is proposed based on the assumption
that all the subsystems are stable. But in many practical
situations, the subsystems may be unstable, which motivates
the study in this paper. *e robust control theory is applied
to establish the dynamics-based filter. *e switched system
with all modes unstable is considered and the fault detection
filter is presented for generation of the residual signal. *e
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MDADTmethod and MLF method are combined to ensure
the stability and prescribed attenuation performance index
of switched system. To achieve optimal performance, the
learning-based filter is introduced based on DDPG algorithm
in the framework of actor-critic, in which the filter parameters
are optimized by online learning. *e output of learning-
based filter can be viewed as variation of the parameters of
dynamics-based filter. *us, the nonfragile control theory is
introduced to guarantee the stability of switched systems. *e
main contributions of this article are stated as follows: (1) An
observer-based filter is proposed to deal with the problem of
fault detection for switched systemwith all modes unstable, in
which the stability and attenuation performance index can be
guaranteed byMDADTmethod andMLFmethod. Compared
to the existing results, the characteristic of each subsystem is
considered, and tighter bounds can be obtained, which
provides more room for the improvement of flexibility. (2)
*e learning-based fault detection filter is presented based on
DDPG algorithm to achieve optimal performance, which
overcomes the undesirable response caused by external dis-
turbance and uncertainties. *e action is defined by the
variation of parameters of the fault detection filter. (3) *e
nonfragile control theory is applied to ensure the stability of
closed-loop system, for the reason that the output of actor
network is viewed as the variation of parameters of dynamics-
based filter.

*e rest of the paper is presented as follows: the model of
switched system with all modes unstable is established in
Section 2, in which the fault detection filter is proposed to
generate the residual signal. In Section 2, the main results of
fault detection are proposed, which is composed of dy-
namics-based filter and learning-based filter. *e numerical
example is given in Section 4 to validate the effectiveness of
proposed method, which is followed by the conclusion in
Section 5.

2. Problem Statement

*e continuous-time switched system in this paper can be
described as follows:

_x(t) � Aσ(t)x(t) + Bσ(t)u(t) + Dσ(t)ω(t) + Fσ(t)f(t),

y(t) � Cσ(t)x(t).

⎧⎨

⎩

(1)

x(t) is the state vector; u(t) denotes the input signal; y(t) is
the output signal; ω(t) ∈ L2[0,∞) is the external distur-
bances; f(t) represents the fault signal to be detected; i �

σ(k): [0,∞)⟶ N � 1, 2, ..., n{ } is piecewise switching
signal; Aσ(t), Bσ(t), Cσ(t), and Fσ(t) are system matrices with
appropriate dimensions.

To improve the transient performance of fault detection
filter and achieve optimal performance, it is supposed that
the fault detection filter in this paper is composed of two
parts: the dynamics-based filter and the learning-based filter.
*e dynamics-based filter is designed according to robust
control theory and the learning-based filter is proposed
based on deep reinforcement learning, which can be de-
scribed as follows:

Lσ(t) � Lr,σ(t) + Ld,σ(t). (2)

Lr,σ(t) is the parameters of dynamics-based fault detection
filter, which is determined by robust control theory; Ld,σ(t) is
the compensation for external disturbance, which is gen-
erated by the aid of DDPG algorithm. To ensure the stability
of DDPG algorithm, the compensation can be viewed as the
variation of parameters. *us, the stability of optimization
algorithm is guaranteed by nonfragile control theory. *e
parameters obtained by DDPG algorithm can be written as

Ld,σ(t) � ΔLi � MiEiNi. (3)

Mi and Ni are the known matrices with appropriate di-
mensions; Ei are unknown matrices satisfying ET

i Ei ≤ I.

Remark 1. *e designing process can be divided into two
steps: (1) regarding the design of robust control theory, it is
proposed to ensure the stability of closed-loop system and
prescribed attenuation performance. (2) *e deep rein-
forcement learning is utilized to improve the performance of
fault detection, where the additional compensation of fault
detection filter is viewed as the action of the agent. *en the
parameters of fault detection filter are optimized based on
DDPG algorithm in the framework of actor-critic. Com-
pared with the traditional methods, not only can the stability
be guaranteed by robust control theory, but also the tran-
sient performance of fault detection can be improved based
on DDPG algorithm.

Remark 2. *e problem of fault detection for switched
systems with all modes unstable is studied in this paper. *e
unstable modes are taken into consideration and it is more
applicable. *e MDADT method and MLF method are
combined to analyze the stability and tighter bounds on
dwell time can be obtained than the traditional ADT
method. *ere is more room for the switched systems to
dwell long enough time to decrease the system energy.
*erefore, the method proposed in this paper will improve
the design flexibility of fault detection system.

*e dynamics-based fault detection filter is proposed to
generate the residual signal, which can be described as
follows:

_x(t) � Aσ(t)x(t) + Bσ(t)u(t) + Lr,σ(t)(y(t) − y(t)),

y(t) � Cσ(t)x(t),

r(t) � y(t) − y(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where x(t) is the state of fault detection filter; y(t) denotes
the estimation of output signal y(t); r(t) is the residual
signal and Lσ(t) denote the parameter matrices of fault
detection filter to be determined.

Define the error of state measurement as
e(t) � x(t) − x(t); the error of fault estimation
r(t) � r(t) − f(t). *us, we set the augmented state vector
x(t) � xT(t) eT(t) 

T and the augmented input signal as
ω(t) � uT(t) ωT(t) fT(t) 

T, so we can obtain the closed-
loop switched system as follows:
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_x(t) � Aix(t) + Bi ω(t), r(t) � Cix(t) + Di ω(t), (5)

where Ai �
Ai 0
0 Ai − LiCi

 , Bi �
Bi Di Fi

0 Di Fi

 ,

Ci � 0 Ci , Di � 0 0 −I .
*en we can conclude that the design of robust fault

detection filter can be converted by the problem of H∞ filter
design. *erefore, for given prescribed attenuation perfor-
mance index cw, the closed-loop switched system in
equation (5) is globally uniformly exponentially stable
(GUES) when ω(t) � 0; the following inequality holds for all
nonzero ω(t) under zero-initial condition.


∞

0
r
T
(s)r(s)ds≤ c

2

∞

0
ωT

(s)ω(s)ds. (6)

*e residual signal is generated by fault detection filter; it
is necessary to design a residual evaluator, which consists of
an evaluation function and a threshold. *e evaluation
function and threshold can be written as

J(t) �
1
η


t

s�t−η
r

T
(s)r(s) ,

Jth � sup
ω∈L2[0,∞),f�0

J(k).

(7)

η denotes the length of time window of evaluation function.
Based on residual evaluator and threshold, the decision

logic can be expressed as follows:

Jth

����
����≥ ‖J(t)‖, no fault⇒no alarm,

Jth

����
����<‖J(t)‖, fault⇒alarm.

⎧⎨

⎩ (8)

3. Main Results

3.1. Robust Filter Design. *e definitions and lemmas are
given as follows to make the proof convenient.

Definition 1 [17]. For given switching logic σ(t) and time
interval [t0, t1], we define Nσ,i(t0, t1) as the number of
switching during the time interval [t0, t1]. If there exist
constants N0i ≥ 0 and τai > 0, such that

Nσ,i t0, t1( ≥N0i +
Ti t0, t1( 

τai

. (9)

*en, τai is called the MDADTof fast switching and N0i

is called the chattering bounds; we set N0i � 0 in this paper.

Definition 2 (see [12]). For given switching logic σ(t), if
there exist constant scalars δ > 0, ε> 0, and equation (10)
holds for ω(t) � 0, then the switched system in (5) is GUES.

‖e(t)‖≤ δe
− ε t− t0( ) e t0( 

����
����. (10)

Lemma 1 (see [27]). For given matrices S, T and symmetric
matrix Y, if there exist constant scalar κ> 0, such that

Y + κ− 1
S
T
S + κT

T
T< 0. (11)

then for matrix Ei with ET
i Ei ≤ I, we have

Y + S
T
ET + T

T
E
T
S< 0, (12)

Theorem 1. For given constant scalars 0< μi < 1, λi > 0, if
there exist positive definite matrices Pi, such that

Pi ≤ μiPj,∀i≠ j, (13)

A
T
i ≤Pi + Pi

Ai ≤ λiPi
(14)

then the switched system in equation (5) is GUES if
MDADT satisfies the following equation:

0≤ τai ≤ τ
∗
ai � −

lnμσ ti( )

λσ ti( )
. (15)

Proof. We set the Lyapunov function as follows:

Vi(x(t)) � x
T
(t)Pix(t). (16)

*us, we have
_Vi(t) − λiVi(t)

�
x(t)

ω(t)
 

T

Ai
Bi 

T
Pix(t) + x

T
(t)Pi

Ai
Bi 

x(t)

ω(t)
 

− λix
T
(t)Pix(t)

�
x(t)

ω(t)
 

T A
T
i Pi + Pi

Ai − λiPi Pi
Bi

∗ 0
⎡⎢⎣ ⎤⎥⎦

x(t)

ω(t)
 .

(17)
Combining equation (14) and ω(t) � 0, we can conclude

that

_Vi(t) − λiVi(t) � x
T
(t) A

T
i Pi + Pi

Ai − λiPi x(t)≤ 0. (18)

It is supposed that the switching instants during time
interval [0, t] are set to be t1, t2, . . .，tk with tk+1 � t; we can
derive that

Vσ(t)(t)≤ e
λσ(t) t− tk( )Vσ(t) tk( 

≤ μσ(t)e
λσ(t) t− tk( )Vσ tk( ) t

−
k( 

≤ μσ(t)e
λσ(t) t− tk( )e

λσ tk( ) tk− tk−1( )Vσ tk( ) tk−1( 

≤ μσ(t)μσ tk( )e
λσ(t) t− tk( )e

λσ tk( ) tk− tk−1( )Vσ tk−1( ) t
−
k−1( 

· ··

≤

k

s�1
μσ ts( )e



k

s�1
λσ ts( ) ts+1 − ts( 

Vσ(0)(0).

(19)

Together with Definition 1, we have
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Vσ(t)(t)≤ exp 
k

i�1
Nσ,i(0, t)lnμσ ti( ) + 

k

i�1
Ti(0, t)λσ ti( )

⎡⎣ ⎤⎦Vσ(0)(0)

≤ exp 

k

i�1

Ti(0, t)

τai

lnμσ ti( ) + 

k

i�1
Ti(0, t)λσ ti( )

⎡⎣ ⎤⎦Vσ(0)(0)

≤ exp 
k

i�1

lnμσ ti( )

τai

+ λσ ti( ) Ti(0, t)⎡⎣ ⎤⎦Vσ(0)(0).

(20)

If the MDADTof switched system satisfies equation (15),
we have

lnμσ ti( )

τai

+ λσ ti( )≤ 0. (21)

Combining with Definition 2, one can conclude that the
switched system in equation (5) is GUES when ω(t) � 0. □

Theorem 2. For given constants 0< μi < 1, λi > 0, c> 0, if
there exist positive definite matrices Pi, such that

Pi ≤ μiPj,∀i≠ j,

A
T
i Pi + Pi

Ai − λiPi Pi
Bi

C
T
i

∗ −c
2
I D

T
i

∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0.

(22)

Cen, the switched system with MDADT satisfying
equation (15) is GUES with prescribed attenuation perfor-
mance cd, where cd � c2μ−k/2

min .

Proof. Define the Lyapunov function in equation (16); we
can obtain the following equations under zero-initial
condition.

_Vi(t) − λiVi(t) + r
T
(t)r(t) − c

2
ωT

(t)ω(t)

�
x(t)

ω(t)
 

T A
T
i Pi + Pi

Ai − λiPi Pi
Bi

∗ 0
⎡⎢⎣ ⎤⎥⎦

x(t)

ω(t)
 

+
x(t)

ω(t)
 

T

Ci
Di 

T
Ci

Di 
x(t)

ω(t)
  − c

2
ωT

(t)ω(t)

�
x(t)

ω(t)
 

T A
T
i Pi + Pi

Ai − λiPi Pi
Bi

∗ −c
2
I

⎡⎢⎢⎣ ⎤⎥⎥⎦ + Ci
Di 

T
Ci

Di ⎛⎝ ⎞⎠
x(t)

ω(t)
 .

(23)

Based on Schur complement, we have

_Vi(t) − λiVi(t) + r
T
(t)r(t) − c

2
ωT

(t)ω(t)

�
x(t)

ω(t)
 

T
A
T
i Pi + Pi

Ai − λiPi Pi
Bi

C
T
i

∗ −c
2
I D

T
i

∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(t)

ω(t)
 

≤ 0.

(24)

According to the statement above, we have
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Vσ(t)(t)≤ e
λσ(t) t− tk( )Vσ(t) tk(  − 

t

tk

e
λσ(t)(t− s)

r
T
(s)r(s) − c

2
ωT

(s)ω(s) ds

≤ μσ(t)e
λσ(t) t− tk( )Vσ tk( ) t

−
k(  − 

t

tk

e
λσ(t)(t− s)

r
T
(s)r(s) − c

2
ωT

(s)ω(s) ds

≤ μσ(t)e
λσ(t) t− tk( ) e

λσ tk( ) tk− tk−1( )Vσ tk( ) tk−1( 

− 
tk

tk−1

e
λσ(t) tk− s( ) r

T
(s)r(s) − c

2
ωT

(s)ω(s) ds

− 
t

tk

e
λσ(t)(t− s)

r
T
(s)r(s) − c

2
ωT

(s)ω(s) ds

≤ μσ(t)μσ tk( )e
λσ(t) t− tk( )e

λσ tk( ) tk− tk−1( )Vσ tk−1( ) t
−
k−1( 

− μσ(t)e
λσ(t) t− tk( ) 

tk

tk−1

e
λσ(t) tk− s( ) r

T
(s)r(s) − c

2
ωT

(s)ω(s) ds

− 
t

tk

e
λσ(t)(t− s)

r
T
(s)r(s) − c

2
ωT

(s)ω(s) ds

· ··

≤
k

s�1
μσ ts( )e


k

s�0

λσ ts( ) ts+1− ts( )
Vσ(0)(0)

− 
t

tk

e
λσ(t)(t− s)

r
T
(s)r(s) − c

2
ωT

(s)ω(s) ds

− μσ(t)e
λσ(t) t− tk( ) 

tk

tk−1

e
λσ(t) tk− s( ) r

T
(s)r(s) − c

2
ωT

(s)ω(s) ds

· ··

− 
k

s�1
μσ ts( )e


k

s�1

λσ ts( ) ts+1− ts( )


t1

0
e
λσ(t) t1− s( ) r

T
(s)r(s) − c

2
ωT

(s)ω(s) ds

≤ exp 
k

i�1
Nσ,i(0, t)lnμσ ti( ) + 

k

i�1
Ti(0, t)λσ ti( )

⎡⎣ ⎤⎦Vσ(0)(0)

− 
t

0
exp 

k

i�1
Nσ,i(s, t)lnμσ ti( ) + 

k

i�1
Ti(s, t)λσ ti( )

⎡⎣ ⎤⎦ r
T
(s)r(s) − c

2
ωT

(s)ω(s) ds.

(25)

Together with the condition Vσ(t)(t)≥ 0, one can
conclude


t

0
exp 

k

i�1
Nσ,i(s, t)lnμσ ti( ) + 

k

i�1
Ti(s, t)λσ ti( )

⎡⎣ ⎤⎦ r
T
(s)r(s) − c

2
ωT

(s)ω(s) ds≤ 0

⇔
t

0
exp 

k

i�1
Nσ,i(s, t)lnμσ ti( ) + 

k

i�1
Ti(s, t)λσ ti( )

⎡⎣ ⎤⎦r
T
(s)r(s)ds

≤ c
2


t

0
exp 

k

i�1
Nσ,i(s, t)lnμσ ti( ) + 

k

i�1
Ti(s, t)λσ ti( )

⎡⎣ ⎤⎦ωT
(s)ω(s)ds.

(26)
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Multiplying both sides of equation (26) by
exp[− 

k
i�1 Nσ,i(0, t)lnμσ(ti)

], we can obtain


t

0
exp − 

k

i�1
Nσ,i(0, s)lnμσ ti( ) + 

k

i�1
Ti(s, t)λσ ti( )

⎡⎣ ⎤⎦r
T
(s)r(s)ds

≤ c
2


t

0
exp − 

k

i�1
Nσ,i(0, s)lnμσ ti( ) + 

k

i�1
Ti(s, t)λσ ti( )

⎡⎣ ⎤⎦ωT
(s)ω(s)ds.

(27)

Together with equation (21) and the condition in
equation (28), we can obtain equation (29).

Nσ,i(0, s)lnμσ ti( )≤
Ti(0, s)

τai

lnμσ ti( )≤ − Ti(0, s)λσ ti( ), (28)


t

0
exp 

k

i�1
Ti(0, s)λσ ti( ) + 

k

i�1
Ti(s, t)λσ ti( )

⎡⎣ ⎤⎦r
T
(s)r(s)ds

� 
t

0
exp 

k

i�1
Ti(0, t)λσ ti( )

⎡⎣ ⎤⎦r
T
(s)r(s)ds

≤ 
t

0
exp − 

k

i�1
Nσ,i(0, s)lnμσ ti( ) + 

k

i�1
Ti(s, t)λσ ti( )

⎡⎣ ⎤⎦r
T
(s)r(s)ds

≤ c
2


t

0
exp − 

k

i�1
Nσ,i(0, s)lnμσ ti( ) + 

k

i�1
Ti(s, t)λσ ti( )

⎡⎣ ⎤⎦ωT
(s)ω(s)ds

≤ c
2


t

0
exp − 

k

i�1
Nσ,i(0, t)lnμσ ti( ) + 

k

i�1
Ti(s, t)λσ ti( )

⎡⎣ ⎤⎦ωT
(s)ω(s)ds

≤ c
2
e

− 
k

i�1

Nσ,i(0,t)ln μmin


t

0
exp 

k

i�1
Ti(s, t)λσ ti( )

⎡⎣ ⎤⎦ωT
(s)ω(s)ds

≤ c
2μ−k

min 
t

0
exp 

k

i�1
Ti(s, t)λσ ti( )

⎡⎣ ⎤⎦ωT
(s)ω(s)ds

≤ c
2μ−k

min 
t

0
exp 

k

i�1
Ti(0, t)λσ ti( )

⎡⎣ ⎤⎦ωT
(s)ω(s)ds,

(29)

and it can be inferred that


t

0
exp 

k

i�1
Ti(0, t)λσ ti( )

⎡⎣ ⎤⎦r
T
(s)r(s)ds≤ c

2μ−k
min 

t

0
exp 

k

i�1
Ti(0, t)λσ ti( )

⎡⎣ ⎤⎦ωT
(s)ω(s)ds


t

0
r
T
(s)r(s)ds≤ c

2μ−k
min 

t

0
ωT

(s)ω(s)ds.

(30)

Integrating both sides of equation (30) from 0 to∞, we
have


∞

0
r
T
(s)r(s)ds≤ c

2μ−k
min 
∞

0
ωT

(s)ω(s)ds. (31)
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We can conclude that the switched system in equation
(5) is GUES with prescribed attenuation performance
cd � c2μ−k/2

min . □

Theorem 3. For given constant scalars 0< μi < 1, λi > 0, and
c> 0, if there exist positive definite matrices Pi, such that

Pi ≤ μiPj,∀i≠ j,

Φi Pi
Bi

C
T
i Ψ1i Ψ2i

∗ −c
2
I D

T
i 0 0

∗ ∗ −I 0 0

∗ ∗ ∗ Wi 0

∗ ∗ ∗ ∗ Wi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0.
(32)

Cen, the switched system with MDADT satisfying
equation (16) is GUES with prescribed attenuation perfor-
mance cd; the parameters of fault detection filter can be given
by

Lni � P
−1
2i X1i, (33)

where Pi �
P1i P2i

∗ P3i

 ,

Φi � Ai
T

P1i + P1iAi − λP1i, Ai
T

P2i + P2iAi − λP2i − X1iCi,

∗ , Ai
T

P3i + P3iAi − λP3i − X2iCi − Ci
T

X
T
2i,

 ,

X1i � P2iLni, X2i � P3iLni, Ψ1i � ΘT1i Θ
T
2i

 ,
Ψ2i � ΘT3i Θ

T
4i

 , Θ1i � −M
T
1iP

T
2i 0 , Θ2i � 0 N1iCi ,

Θ3i � 0 −M
T
2iP

T
3i

 , Θ4i � 0 N2iCi , Wi �
−κi 0
0 −κ−1

i

 .

Proof. It can be inferred that equation (14) can be rewritten
as

Yi + S1i
T
EiT1i + T1i

T
Ei

T
S1i + S2i

T
EiT2i + T2i

T
Ei

T
S2i ≤ 0,

(34)

where Yi �

A
T
1iPi + Pi

A1i − λiPi Pi
Bi

C
T
i

∗ −c
2
I D

T
i

∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A1i �
Ai 0
0 Ai − LniCi

 , S1i � Θ1i 0 0 , T1i � Θ2i 0 0 

S2i � Θ3i 0 0 , T2i � Θ4i 0 0 .
Based on Lemma 1, we have

Yi + κ− 1
S1i

T
S1i + κT1i

T
T1i + κ− 1

S2i
T
S2i + κT2i

T
T2i < 0. (35)

*us, by the aid of Schur complement, we can conclude
that the switched system in equation (5) is GUES with
prescribed performance cd; the parameters of fault detection
filters can be obtained by equation (33). □

Remark 3. *e learning-based fault detection filter is viewed
as the compensation of the robust filter. *erefore, we can
obtain the scheduling interval to ensure the stability and

prescribed attenuation performance by the aid of nonfragile
control theory in*eorem 3. *e upper bounds on action in
DDPG algorithm can be obtained by the predefined
scheduling interval.

3.2. Intelligent Filter Design. *e stability and prescribed
attenuation performance are guaranteed by the theorems
aforementioned. However, the transient performance needs
to be improved. To solve the problem, deep reinforcement
learning is applied in the framework of actor-critic. *e
optimization of parameters of fault detection filter can be
viewed as an infinite Markov decision process, which is a
series of continuous optimization processes. *us, the
DDPG algorithm is developed in this paper to improve the
performance of the filter.

*e frame of reinforcement learning consists of an agent
and the environment. *e state at kth time instant is defined
as sk, an action ak is chosen by the agent, and then a reward
function rk and the state of next step are obtained, where rk

is developed to evaluate the performance of state-action pair
generated by the agent. *e fault detection system is viewed
as the environment. We define the additional compensation
Ld,σ(t) as the action, which is utilized to maximize the sum of
the expected discounted reward function over given future
steps.*e action and the sum of expected discounted reward
function can be described in equations (36) and (37).

R(k) � re,k + cfre,k+1 + c
2
fre,k+2 + · · · + c

Kf−k

f re,Kf

� re,k + cfR(k + 1),
(36)

ak � ΔLi, (37)

where cf ∈ [0, 1] is defined as the discount factor and Kf
represents the terminal step.

*e state of the agent is given in the following equation:

sk � x(k) e(k) r(k) r(k) . (38)

*e DDPG algorithm is proposed in the framework of
deep Q learning and actor-critic. *ere are two actor net-
works and two critic networks.*e optimal policy is tried for
realization based on policy gradient theory in continuous
action spaces. *e action-value is approximated by
employing the critic network Q(sk, ak|ϖQ), whose weights
are defined as ϖQ. *e current output of compensated pa-
rameters is generated based on the actor network a(sk|ϖa),
whose weights are defined asϖa.*e weightsϖQ are updated
according to the loss function, which is described in
equation the following:

L ϖQ
  � E(s,a) Q sk, ak|ϖQ

  − yk 
2

 , (39)

where yk � rk(sk, ak) + cpQ(sk+1,ϖ(sk|ϖa)|ϖQ).
*e weights of actor network are updated according to

the policy gradient theory, which is given in equations (40)
and (41).
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ϖa
(k + 1) � ϖa

(k) + Lan∇ϖa J, (40)

∇ϖa J � Eπ ∇ϖa Q
π

sk, π sk|ϖa
( |ϖQ

 |s�sk,a�π sk|ϖa( ) 

� Eπ ∇ϖa Q
π

sk, π sk( |ϖQ
| ∇ϖaπ sk|ϖQ

  ,

(41)

where Lan represents the learning rate of actor network.
Moreover, in the DDPG algorithm, two networks are

adopted as actor target network and critic target network,
which are defined as a′(sk|ϖa′) and Q′(sk, ak|ϖQ′). *e
weights of actor target network a′(sk|ϖa′) are defined as ϖa′ ,
which are updated according to the following equation:

ϖa′(k + 1) � Latϖ
a
(k) + 1 − Lat( ϖa′

(k). (42)

Lat denotes the learning rate of actor target network.
Similarly, the weights of critic target network

Q′(sk, ak|ϖQ′) are defined as ϖQ′ , which are updated
according to the following equation:

ϖQ′
(k + 1) � Lctϖ

Q
(k + 1) + 1 − Lct( ϖQ′

(k + 1). (43)

Lct represents the learning rate of critic target network.
In order to improve the robustness of the proposed

algorithm, an exploration noise is introduced as a com-
pensation of the output of actor network, which can be
generated based on

ak � π sk|ϖa
(  + Na. (44)

*erefore, based on the statement above, the pseudocode
of intelligent fault detection filters design can be presented in
Algorithm 1.

Remark 4. *e DDPG algorithm is developed in this paper to
improve the transient performance of the fault detection filter.
Compared with the traditional method, the stability,

robustness, and dynamic performance can be guaranteed si-
multaneously, in which the robust control theory and non-
fragile control theory are introduced to ensure the stability, and
the compensation of controller can be viewed as the variation
of predesigned controller.*erefore, the stability of closed-loop
system can be guaranteed by nonfragile control theory.

4. Numerical Example

In this section, simulation results are given to validate the
effectiveness of the proposed method. *e system matrices
are given as follows:

A1 �
−2.23 −3.72

2.83 2.32
⎡⎣ ⎤⎦,

A2 �
−1.25 1.26

2.22 −2.22
⎡⎣ ⎤⎦,

C1 �
1 0

0 1
⎡⎣ ⎤⎦,

C2 �
1 0

0 1
⎡⎣ ⎤⎦,

D1 �
0.1

0.1
⎡⎣ ⎤⎦,

D2 �
0.2

0.2
⎡⎣ ⎤⎦,

F1 �
0.1

0.2
⎡⎣ ⎤⎦,

F2 �
0.1

0.1
⎡⎣ ⎤⎦.

(45)

(1) Construct the fault detection filters for switched systems
(2) Set the variation range of fault detection filters
(3) Stability analysis and calculate the MDADT based on Eq. (15)
(4) Design the fault detection filters based on *eorem 3
(5) Randomly generate the initial weights of the actor network and critic network
(6) Initialize the critic target network and actor target network
(7) Initialize the Replay buffer and define episode� 0
(8) for episode� 1 to M do
(9) Initialize a random noise process Na to improve the robustness
(10) Initialize a random state vector s1, then the initial observation can be obtained
(11) for t� 1 to K do
(12) Chose action ak � π(sk|ϖa) + Na based on the current state sk and noise in the environment
(13) Calculate the reward function rk and state sk+1
(14) Store the transition pair (sk, ak, rk, sk+1) in the Replay buffer R
(15) Sample a random minibatch of N transitions (sm, am, rm, sm+1) from the Replay buffer
(16) Set yk � rk(sk, ak) + cpQ(sk+1,ϖ(sk|ϖa)|ϖQ)

(17) Update the critic network, actor network and target networks
(18) end for
(19) end for

ALGORITHM 1: Intelligent optimization algorithm for fault detection filters design.
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*e eigenvalues of A1 and A2 can be obtained as follows:

λ11 � 0.045 + 2.3134i,

λ12 � 0.045 − 2.3134i,


λ21 � 0.0064,

λ22 � −3.4764.
 (46)

It can be inferred that the subsystems A1 and A2 are
unstable, respectively. *e external disturbance is defined as
follows:

ω(t) � 0.1 exp(−0.1t)cos(−0.1t). (47)

*e other parameters of switched systems are listed as
follows:

μ1 � 0.73,

μ2 � 0.73,


λ1 � 0.62,

λ2 � 0.65.
 (48)

*erefore, the MDADT of switched systems are
τ1 � 0.5076, τ2 � 0.4842. *e prescribed attenuation per-
formance index is set to be c � 0.8. *en the parameter
matrices of filters can be obtained in *eorem 3.

To validate the effectiveness of the proposed method, we
give two numerical examples. *e stability criteria of the
switched systems in *eorem 2 are demonstrated by Ex-
ample 1. Moreover, the effectiveness of the fault detection
filter in *eorem 3 and the DDPG algorithm is illustrated in
Example 2.

Example 1. Firstly, we provide the proof that the proposed
conditions can ensure the stability of switched systems. As a
comparison, a randomly generated switching signal is

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Time (s)

σ (k)

σ

Figure 1: *e switching logic satisfying equation (20).
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1.5

2

2.5
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0 2 4 6 8 10
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Figure 2: A randomly generated switching signal.
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Figure 3: *e state response of the proposed switching logic.
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x 1

Figure 4: *e state response of randomly generated switching
logic.
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introduced to show that the switched systems cannot stay
stable if all the subsystems cannot share a CLF.*e switching
logic satisfying equation (20) is given in Figure 1 and the
randomly generated switching logic is given in Figure 2. *e
state response of the proposed switching logic is given in

Figure 3 and the state response of randomly generated
switching logic is showed in Figure 4. We can see that the
switched systems cannot ensure the stability under ran-
domly generated switching logic. However, the stability can
be guaranteed according to *eorem 1 in the paper.

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0 2 4 6 8 10
Time (s)

r1 (k)
r2 (k)

r

Figure 5: *e response of residual signal under MDADT method.
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Figure 6: *e response of J(k) under MDADT method.
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Figure 7: *e response of residual signal under the proposed
method.
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Example 2. To validate the effectiveness of the fault detec-
tion filter, the traditional MDADTmethod and the proposed
method are given. *e fault signal is set to be

f(k) �
0.5, 4≤ t≤ 5,

0, else.
 (49)

-1.5

-1

-0.5

0

0.5

1

0 2 4 6 8 10
Time (s)

x1
x⌃1

x 1

Figure 9: *e state response of the MDADT method.
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Figure 8: *e response of J(k) under the proposed method.
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*e results are given in Figures 5–12. *e residual signal
and J(k) of MDADTmethod are given in Figures 5 and 6; the
residual signal and J(k) of the proposed method are showed
in Figures 7 and 8. We can see that the detection time of the
MDADTmethod is 0.1 s, whereas, the detection time of the
proposed method is 0.06 s. *e fault can be detected

efficiently, and the transient performance of fault detection
filter can be improved by the DDPG algorithm. *e state
responses of the MDADTmethod and the proposed method
are depicted in Figures 9–12. It can be inferred that the fault
detection filter proposed in this paper can track the state
response. *e response of episodes reward is showed in
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Figure 11: *e state response of MDADTmethod under fault case.
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Figure 10: *e state response of the proposed method.
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Figure 12: *e state response of the proposed method under fault
case.
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Figure 13; we can see that the reward function can converge
to a neighbor of the origin, which illustrate the effectiveness
of the optimization algorithm.

In summary, we can see that the tighter bounds on dwell
time and less conservative results are obtained. *e stability
of switched systems can be guaranteed by the proposed
results in this paper. *e fast switching strategy is applied,
and it allows the subsystems of switched systems to remain
unstable. *e transient performance of fault detection filters
can be improved by the aid of DDPG algorithm, and the
stability, robustness, and optimal policy can be guaranteed
simultaneously by the method proposed in this paper.

5. Conclusions

*e problem of fault detection and online scheduling for
switched systems with all modes unstable is studied. *e
observer-based fault detection filter is proposed to generate
the residual signal, which consists of two parts: the dy-
namics-based fault detection filter and the learning-based
fault detection filter. By employing MDADT method and
MLF method, the stability of the switched systems is
guaranteed. *e solutions of fault detection filters are given
in the form of LMIs. To achieve optimal control policy and
improve the transient performance, the DDPG algorithm is
utilized as learning-based fault detection filter, in which the
output can be viewed as the variation of robust fault de-
tection filter. *erefore, the nonfragile control is provided to
ensure the stability of the optimization algorithm. Finally,
the simulation results are introduced to demonstrate the
effectiveness and superiority of the proposed method.
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