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Crew scheduling problem is divided into crew pairing problem (CPP) and crew rostering problem (CRP). In this paper, a rostering
model is presented to assign crew to pairings in such a way that total weighted preference is maximized. Crew members declare
which parings they wish to be assigned and which ones are undesirable for them. A score is calculated in the objective function if a
crew member is assigned to his/her preferred pairing, and a penalty is considered if he/she is assigned to an undesirable pairing.
Moreover, crew seniorities are considered in calculating total preference. In addition, the model considers standard rules and
regulations as well as crew attendance at the required training courses. �e model is formulated in such a way that inconsistent
crew members are not assigned to a �ight. Due to the uncertainty in determining of the seniority weight, this parameter is
considered as fuzzy. At the end, the robust counterpart of the nominal model is developed due to the uncertainty of time away
from the base (TAFB). In this research, the issue of inconsistent crew in rostering problem is considered for the  rst time.
Moreover, a new scoring mechanism is introduced to calculate desirable and undesirable assignments in the objective function.
�e proposed CRP is solved using the genetic algorithm (GA), and its performance is veri ed in comparison with GAMS in some
test problems. On average, the optimality gap in GA is only 0.5 percent. Finally, the proposed model is examined with real-world
data from Air India Airline. In comparison with the previous research studies, the suggested model (scoring mechanism) reduced
the number of undesirable rosters by 61.59%.

1. Introduction

Using the mathematical models in airline operations is an
interest  eld for researchers. Because of the complexity of
optimization problems in the airlines, they are usually di-
vided into several smaller problems: �ight scheduling (FS),
�eet assignment (FA), aircraft maintenance routing (AMR),
and crew scheduling (CS) [1, 2]. Flight scheduling is the
starting point of airline operations [3]. Flight scheduling
output is utilized as �eet assignment input. �e purpose of
�eet assignment is to assign �eet types to �ights scheduled in

the previous step. Following FA problem, individual aircraft
routing is planned so that maintenance requirements are
satis ed [4].

One of the major topics in airlines is crew scheduling
problem (CSP). Due to its complexity, CSP is separated into
two phases: crew pairing problem (CPP) and crew rostering
problem (CRP) [5]. Pairings are generated in CPP based on
carrier rules and regulations [6]. A pairing includes a set of
sequential duty days separated by layovers. �e purpose of
CPP is to cover all �ights in such a way that crew cost is
minimized. �e pairings created in the CPP are assigned to
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crew in CRP, and each (co)pilot’s roster is determined [7].
Although the CPP focuses on cost minimization, the aim of
CRP is to maximize crew satisfaction by assigning balanced
workload and meeting crew preferences. ,ere are three
different approaches in CRP: bidline, personalized with strict
seniority, and personalized with global objective [8]. In
bidline approach, which was common in North American
airlines, anonymous monthly schedules, called rosters, are
generated.,en, crewmembers bid for the rosters according
to their preference based on seniority. In a personalized
approach with strict seniority, which is an emerging ap-
proach in North America, crew preferences are met se-
quentially in decreasing order of seniority. In personalized
approach with global objective, crew assignment is done in
such a way that total satisfaction is maximized without
considering seniority [9].

Crew rostering problem is one of key the phases of
airline scheduling. If crew members are assigned to their
favorite rosters, a high degree of satisfactions is resulted.
Using mathematical models in rostering problem leads to
crew satisfaction. In this paper, crew members are assigned
to rosters in such a way that maximum satisfaction is
reached. To calculate the satisfaction, a new scoring system is
used. On the other hand, the issue of travel safety is one of
the most important issues for airlines. Assignment of in-
consistent crew to a single flight threatens flight safety
considerably. As a main motivation, we develop the pro-
posed model to prevent assignment of inconsonant crew to a
single flight.

A new model for CRP is formulated in this paper. ,e
objective function maximizes total weighted preference.
Instead of using simple bidline or personalized approach, a
new mechanism for calculating preference is used in this
paper. At first, each crew member declares if he/she prefers
to be assigned to a given pairing or not. If they are assigned
to one of their preferred pairings, one positive score is
calculated in the objective function. Similarly, a negative
score (penalty) is considered if a crew member is assigned to
an undesirable pairing. ,e objective function maximizes
crew preferences considering seniority. On the other hand,
the model considers a crucial qualitative factor in crew
assignment to flights. As some of the crew members may be
inconstant and have bad work relations to each other, the
model prevents to assign them to a single flight. Assignment
of the inconsistent crew to a flight may lead to irrecoverable
damage. Moreover, crew attendance at the required training
courses and some of the airline regulations such as maxi-
mum time away from the base (TAFB) and maximum flying
hours are considered in assigning crew to rosters. As TAFB
is an uncertain parameter in real-world cases, robust
counterpart of the proposed model is formulated using the
approach of Bertsimas and Sim [10]. A genetic algorithm is
used to solve the model for an Indian airline (Air India). GA
efficiency in solving the proposed model is examined by an
exact solution obtained by CPLEX in GAMS for a variety of
small and medium-size examples. ,is paper benefits from
two main contributions. ,e first one is using a scoring
mechanism instead of bidding for preferred pairings.
Against previous research studies, both willingness and

unwillingness of crew in assigning to each pairing are
considered. ,e second one is considering the issue of in-
consistent crew. ,is important qualitative factor should be
considered to ensure a safe travel for passengers.

,e organization of the paper is as follows. ,e literature
on the crew rostering problem is discussed in Section 2. In
Section 3, problem statement and mathematical model are
described in detail. Section 4 discusses the solution ap-
proach, application of the CRP model in a real-world case
study, and the obtained results. Finally, Section 5 concludes
with findings and ideas for future studies.

2. Literature Review

In this section, a comprehensive review on the CRP is
presented. Different research studies have been classified
based on if their contributions are in solution approach
(heuristic, metaheuristic, and exact) or development of the
mathematical model. Although many studies have con-
centrated on developing solution approaches, only a few
ones have contribution in mathematical formulation.

2.1. Development of the Solution Approach. Boubaker et al.
[11] proposed two heuristic algorithms to solve the CRP.,e
first approach was the standard branch-and-price algorithm,
and the second one was a combination of Elhallaoui et al.
[12] with the branch-and-price. Computational findings
indicated that the combined method for large-scale prob-
lems performed better than standard ones. Maenhout and
Vanhoucke [13] considered the use of the additional crew
and developed a scatter search algorithm to solve the CSP.
,e result of comparing the proposed approach with the
branch-and-price algorithm and variable neighborhood
search demonstrated that this technique could result in high-
quality solutions. Saddoune et al. [14] discussed the weak-
nesses of the traditional approaches, solved the CRP using
the dynamic column generation method, and implemented
it in an American airline. An integrated approach for aircraft
and crew schedule recovery problems was proposed by
Zhang et al. [15]. To solve the real problem, they used a two-
level metaheuristic algorithm and showed that it could lead
to high-quality solutions. Zhang et al. [16] used the Tabu
search algorithm to solve the CRP and used the concept of
search memory, which accelerated the convergence. By
testing the samples, the findings indicated that their method
achieves near to optimal solutions in a reasonable time. Doi
et al. [17] addressed obtaining a fair roster for the crew by
applying a two-level decomposition approach. Zhang et al.
[18] developed three multiobjective evolutionary algorithms
to search for Pareto solutions. ,e experimental results on a
Chinese airline proved that the proposed technique was
capable to improve the rosters’ quality by balancing the crew
workload. Zhang et al. [19] presented an implicit mathe-
matical model using bidline approach and developed a new
variable neighborhood search to solve it. ,e results indi-
cated that the proposed approach could provide high-quality
solutions for two different scenarios of the crew workload.
Chutima and Arayikanon [20] formulated a CSP in a low-
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cost airline and solved it using a multiobjective evolutionary
optimization algorithm (MOEA). Comparing the proposed
algorithm results with the honeybee mating optimization
(HBMO) indicated that MOEA was superior in terms of
convergence criteria. ,e improved discrete particle swarm
optimization (IDPSO) method was proposed by Zheng [21]
to solve CSP. ,e findings showed that IDPSO’s perfor-
mance was very efficient. Zhou et al. [22] improved an ant
colony algorithm to solve the CRP in a biobjective model
optimizing fairness and satisfaction. ,ey proposed a hybrid
complementary heuristic strategy and a local search strategy
to solve the model adequately. ,ey showed that the novel
method led to higher-quality solutions than the greedy al-
gorithm and other prominent multiobjective optimization
techniques. Chutima and Krisanaphan [23] considered crew
cost minimization as well as balancing the workload of
pilots. ,ey solved the proposed model with the adaptive
nondominated sorting differential evolution algorithm III
(ANSDE-III) and compared the results with the NSGA-III
and the multiobjective differential evolutionary approach
(MODE). ,e results showed that ANSDE-III performed
better than other algorithms.

2.2. Development of CR Models. Chen and Chou [24] for-
mulated pilot roster recovery problem with the aim of
minimizing the maximum flight time of each pilot after a
disruption and reduced exchange costs. ,ey solved the
model with the nondominated sorting genetic algorithm II
(NSGA-II) to find Pareto solutions and applied the con-
straint-loosening mechanism (CLM). ,e results indicated
that the proposedmethod led to high-quality solutions to the
CR problem. Crew changeability in case of delay and dis-
ruption was offered by Ilagan and Sy [25]. According to the
results, although the proposed model had increased costs,
the delay had been significantly reduced. Kasirzadeh et al.
[26] formulated the personalized CR problem with unde-
termined pairings and fixed pilots. ,e model aimed to
optimize crews’ preferences and their cost. ,ey used the
approach of Saddoune et al. [14] and obtained an acceptable
level of crew satisfaction. Armas et al. [27] proposed the CRP
with the aim of fair distribution of workload among crew
members, and they applied regulations that had not been
considered in previous studies. To solve this model, they
used the multistart randomized heuristic algorithm and
showed that this algorithm has the ability to solve the
problem with high quality. An integrated model for CSP was
presented by Zeighami and Soumis [8]. ,ey considered
pilots’ vacation requests in the CP to generate better pair-
ings. ,e authors formulated the model by minimizing
pairing costs and maximizing the desired number of va-
cations. ,e experiment results showed that combining
Benders’ decomposition algorithm and column generation
could significantly save CPU time. Quesnel et al. [28]
considered rewards for the pairings that matched the crews’
preferences in the objective function. ,ey solved the model
via column generation and implemented it to a North
American airline. ,e findings demonstrated that the sug-
gested model could improve CRP solutions compared to

previous studies. Mirjafari et al. [29] presented an integrated
model for aircraft routing and CSP with the aim of mini-
mizing crew, aircraft replacement, maintenance, and
deadhead flight costs. ,ey suggest a new frame for main-
tenance operations based on flight hours. Because the La-
grangian relaxation method results have a lower gap to an
optimum solution, this method is better than the particle
swarm optimization (PSO) algorithm. A new integrated
model for fleet assignment and crew scheduling problems
was proposed by Rashidi Komijan et al. [1]. ,ey considered
closed routes for crews and fleets simultaneously. To
compare the effectiveness of the two methods, PSO and
vibration damping optimization (VDO) algorithm solved
ten large-scale examples. ,e findings showed that VDO
leads to optimal results in a reasonable time. Saemi et al. [30]
suggested an integrated CSP to minimize crew costs. ,e
approach presented a better answer than computing CPP
and CRP consecutively. It was also possible to add a day(s)
off in a pairing to allow crew members to attend training
courses and complete health checks. A multiobjective per-
sonalized model for the airline multiskilled was proposed by
Baradaran and Hosseinian [31]. ,e multiskilled crew used
in this model was assigned to flights and aircraft due to the
crew’s experience. ,ey used multiobjective differential
evolution (MODE) and nondominated sorting genetic al-
gorithm II (NSGA-II) to analyze themodel. According to the
results, the suggested model and algorithms could generate
adequate schedules for CS problems, according to com-
parisons between algorithms. Ben Ahmed et al. [32] assigned
the aircraft and crew to each flight simultaneously and in-
cluded maintenance constraints in their model. ,ey solved
the robust mixed-integer programming model using the
decomposition approach and achieved good results. Table 1
briefly compares the proposed CRP model with the previous
research studies.

To our best knowledge and Table 1, previous research
studies mainly focused on cost minimization, fair workload
distribution, and use of bidline and personalized ap-
proaches for crew rostering. ,is paper includes two main
contributions. ,e first one is related to the issue of in-
consistent (co)-pilots. ,is critical qualitative component
should be evaluated to ensure passenger safety. ,e model
prevents to use inconsistent crew in a single flight. ,e
second contribution is that instead of suggesting preferred
pairings, a scoring method is used. In contrast to previous
studies, this strategy takes into account both the crew’s
willingness and unwillingness to assign to each pairing. In
other words, one positive score is calculated for each fa-
vorable allocation and one negative score is considered for
each undesirable allocation in the objective function. Total
weighted preference is maximized by considering crew
seniority.

3. Problem Statement

In this paper, a new mathematical model for the CRP is
proposed. ,e objective function calculates the total
weighted preference of the crew. We assume that each crew
member declares his/her preferred and undesirable pairings.
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By assigning a crew member to his/her preferred pairing, a
positive score is calculated in the objective function. Simi-
larly, if a crew member is assigned to his/her undesirable
pairing, a negative score (penalty) is calculated.,e objective
function maximizes total weighted preference by consid-
ering crew seniority.

In each airline, some of the crew members may have bad
relations with each other. Assigning inconsistent crew to a
single flight may threaten flight safety. To cover this qual-
itative factor, the model should prevent to assign incon-
sistent crew to a flight. Also, several rules and regulations
which are common in airlines are considered in the model.
Some of these rules are as follows:

(i) Time away from the base should not exceed a
predefined value

(ii) Maximum and minimum flying hours of crew are
restricted

(iii) An inexperienced co-pilot must be accompanied by
an experienced pilot

(iv) Some of the crewmembers should attend at training
courses

Due to the uncertainty of time away from the base
(TAFB), the approach of Bertsimas and Sim [10] is used to
formulate the robust counterpart.,e advantage of using the
approach of Bertsimas and Sim [10] is that the robust model
will be linear. Also, the most well-known Indian airline, Air

Table 1: Comparison between previous research studies and the proposed model.

Paper
Modeling approach

Solution method
Objective function Contribution

Nonintegrated Integrated Scoring
mechanism Others Model Solution

approach
Saddoune et al.
[14] ∗ — Dynamic column

generation — Min weighting cost — ∗

Zhang et al.
[15] — ∗ 2-stage heuristic — Min cost — ∗

Chen and
Chou [24] ∗ — Metaheuristic Minmax flight time Recovery crew —

Zhang et al.
[16] ∗ — Metaheuristic — Min delay — ∗

Ilagan and Sy
[25] ∗ — Metaheuristic — Min cost Crew swaps —

Armas et al.
[27] ∗ — Multistart heuristic — Max satisfaction Work balancing —

Doi et al. [17] ∗ — Metaheuristic — Min working time
deviation — ∗

Zhang et al.
[19] ∗ — Metaheuristic — Min cost — ∗

Zeighami and
Soumis [8] — ∗

Benders’
decomposition and
column generation

— Min weighting cost Pilots’ vacation —

Mirjafari et al.
[29] — ∗ Lagrangian

relaxation —
Min crew,

maintenance, and
deadhead costs

Fairly assigning night
flights —

Chutima and
Arayikanon
[20]

∗ — Metaheuristic —
Min repeated flight
and max senior
pilot preference

— ∗

Zhou et al. [22] ∗ — Metaheuristic — Max satisfaction — ∗
Rashidi
Komijan et al.
[1]

— ∗ Metaheuristic — Min costs Times balancing —

Saemi et al.
[30] — ∗ Metaheuristic — Min costs

Considering more
days for crew courses
and medical checks

—

Baradaran
et al. [31] ∗ — Metaheuristic —

Max vacations
planned and min
penalty costs

Multiskilled model —

Ahmed et al.
[32] — ∗ Benders — Min costs

Simultaneously
assigning aircraft and

crews
—

Chutima et al.
[23] ∗ — Metaheuristic — Min costs — ∗

,is paper
(2022) ∗ — Metaheuristic ∗
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India, is considered as a real-life case. To formulate the
model, necessary notations, parameters, and variables are
firstly described:

Max 
c∈C


p∈P

wcscorecp − 
c∈C


p∈P

wcpenaltycp, (1)


c∈C1

Xcp � 1, ∀p ∈ P, (2)


c∈C2

Xcp � 1, ∀p ∈ P, (3)

Xcp + Xc′p ≤ 1, ∀ c, c′(  ∈ Cinc; p ∈ P, (4)

TAFBpXcp ≤TAFB
max ,
c ∀c ∈ C; p ∈ P, (5)

TF
min
c ≤ 

p∈P
FpXcp ≤TF

max ,
c ∀c ∈ C, (6)

Xcp + Xcp′ ≤ 0, ∀c ∈ C; p, p′(  ∈ NA, (7)

Xcp ≤ 

c′∈C1′

Xc′p, ∀c ∈ C2′; p ∈ P,
(8)


d∈D

Ycd ≥ 1, ∀c ∈ C
inst

, (9)


p∈Pd

Xcp + Ycd ≤ 1, ∀c ∈ C
inst

; d ∈ D, (10)

2scorecp ≤Pref cp + Xcp, ∀c ∈ C; p ∈ P, (11)

penaltycp ≥Xcp − Pref cp, ∀c ∈ C; p ∈ P, (12)

Xcp ≤Basecp, ∀c ∈ C; p ∈ P, (13)

Xcp, Ycdp: Binary, (14)

scorecp, penaltycp ≥ 0. (15)

,e objective function maximizes total weighted prefer-
ence of the crew. ,e way of calculating score and penalty is
described in the constraints. Equations (2) and (3) ensure that
each pairing is handled by one pilot and one co-pilot. Con-
straint (4) prevents assignment of inconsistent crew to a
pairing. According to (5), the TAFB for each crew should not
exceed themaximum allowed value. Relation (6) indicates that
the total flying hours for a crew member should fall in the
defined interval. Some pairings cannot be handled sequentially
due to some reasons such as the destination of the first one is
not the same as the origin of the next one. Constraint (7)
prevents the assignment of a crew member to such pairings.
Constraint (8) states that in each pairing, an inexperienced co-
pilot must be accompanied with an experienced pilot. Relation

(9) is about attendance of crew at the training course or
meetings. Constraint (10) prevents concurrence of attendance
at the training course and handling a pairing. Constraints (11)
and (12) show the way of calculating score and penalty, which
have been used in objective function. According to (11), one
score is calculated if a crew member is assigned to his/her
preferred pairing. Similarly, if he/she is assigned to an un-
desirable pairing, a penalty is considered. Constraint (13)
ensures that a crew member can only be assigned to the
pairings that origin from his/her home base. Finally, Con-
straints (14) and (15) indicate decision variable types.

,e seniority weight of pilots is in the range [0, 1]. Since
the nature of this parameter is fuzzy, the Jimenez et al. [33]
method has used to convert this uncertain coefficient in the
objective function to definite. For more information, refer
the study by Jimenez et al. [33]. For this matter, the
triangular fuzzy distribution has chosen because of its
simplicity and efficiency. After performing the calculations,
the following equation replaces the indefinite objective
function (1).

Max 
c∈C


p∈P

w
p
c + 2w

m
c + w

o
c

4
 scorecp

− 
c∈C


p∈P

w
p
c + 2w

m
c + w

o
c

4
 penaltycp.

(16)

As TAFB is an uncertain parameter, the robust coun-
terpart of the nominal model is formulated using the ap-
proach of Bertsimas and Sim [10]. TAFB includes total flying
time, sit times, and layovers. TAFBp and TAFBp have as-
sumed the nominal value and tolerance of time away from
the base for pairing p. According to Bertsimas and Sim [10],
protection level (Γ) is defined to make the model robustness.
In other words, the solution’s robustness is regulated by
defining a protection level, which specifies a maximum
deviation from the nominal TAFB. ,e main purpose of this
parameter is to make the solutions generated workable for all
uncertain scenarios. If at most Γi of technical coefficients
of the constraint i change in the defined interval, the model
will definitely be robust. Also, a technical coefficient can be
changed up to(Γi − Γi without violating the relation.
Moreover, σcp and θcp are variables defined to formulate
robust counterpart.

To formulate robust counterpart, constraint (5) is
replaced by the following constraints.

TAFBpXcp + Γθcp + σcp ≤TAFB
max
c ∀c ∈ C; p ∈ P, (17)

θcp + σcp ≥ TAFBpXcp ∀c ∈ C; p ∈ P, (18)

θcp ≥ 0, σcp ≥ 0 ∀c ∈ C; p ∈ P. (19)

4. Solution Approach

According to NP-hard nature of the crew rostering problem,
an appropriate optimization strategy is required [34]. Many
rules and policies may deploy for crew rostering with
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thousands of variables in a real-world problem. Further-
more, the presence of binary variables makes the solution
approach more complicated.

Various papers in the literature use genetic algorithm to
solve the airline crew scheduling problem. ,e GA is the
second commonly applied solution technique and first
metaheuristic approach for the CSP after column generation
[35]. One of the benefits of the GA is the ability to manage
numerous solution search areas [36]. As a consequence, the
genetic algorithm is deployed as solution strategy for this
study. In this section, problems are solved by a genetic al-
gorithm in different sizes to evaluate the efficiency of the
proposed approach. ,e GA outcomes are assessed and
compared to the CPLEX solver in GAMS. Also, the solution
method presented in this work and the components of the
algorithm utilized are highlighted in Section 4.1.

4.1. Genetic Algorithm

4.1.1. Presentation of Solution. ,e genetic algorithm uses
the concept of chromosome to set parameters that offers a
proposed problem solution. In practice, the chromosome is a
string of solutions to solve the problem. ,e proposed
chromosome can be designed as a string of discrete variables,
binary numbers, and a continuous vector based on type of
the problem. As a result, choosing an appropriate display
form of the chromosome is an essential aspect of algorithm
design. ,e designed chromosome for the proposed CRP is
made up of the two-row vector. ,e number of columns in
this vector is equal to the number of pairings |P|. ,e first
and second rows specify the pilot number and the co-pilot
number, respectively.

Pilot

Co-pilot

P1 P2 P3 P4 P5 P6

C8 C7 C8 C5 C6 C5

– – – – – –

Figure 1: Chromosome with 5 co-pilots and 6 pairings.

Pilot

Co-pilot

P1 P2 P3 P4 P5 P6

C8 C7 C8 C5 C6 C5

C3 C4 C1 C3 C2 C1

Figure 2: Chromosome with 5 pilots, 5 co-pilots, and 6 pairings.

Pilot

Co-pilot

P1 P2 P3 P4 P5 P6

C8 C7 C8 C5 C6 C5

C3 C4 C1 C3 C2 C1

Pilot

Co-pilot

P1 P2 P3 P4 P5 P6

C8 C7 C6 C5 C8 C5

C3 C4 C1 C3 C2 C1

Figure 3: Swap operator.

C5

Parent 1

Parent 2

Offspring 1

Offspring 2

C8 C7 C8 C5 C6 C5

C3 C4 C1 C3 C2 C1

C8 C7 C6 C5 C8 C5

C3 C4 C1 C3 C2 C1

C8 C7 C5 C8

C3 C4 C1 C3 C2 C1

C8 C7 C8 C5 C6 C5

C3 C4 C1 C3 C2 C1

C6

Figure 4: Single crossover.

Table 2: GA parameter levels.

Parameters Levels
Max iter 200, 300, 400
Pop size 80, 100, 120
CR 0.4, 0.5, 0.6
MR 0.2, 0.3, 0.4

Table 3: GA parameter values.

Max iter Pop size CR MR
400 100 0.3 0.4

Main Effects Plot for SN ratios
Data Means

–5.0
–2.5

0.0
2.5
5.0
7.5

10.0
12.5

M
ea

n 
of

 S
N

 ra
tio

s

1 2 3 1 2 3 1 2 3 1 2 3

Signal-to-noise: Smaller is better

Maxlt npop pc pm

Figure 5: ,e S/N ratio for the genetic algorithm.
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4.1.2. Generating the Initial Solution. In this paper, the co-
pilots are randomly assigned to each pairing.,erefore, each
compatible co-pilot gets selected to operate in pairing P. As
an example, 6 pairings, 5 pilots, and 5 co-pilots are available
(pilots are numbered from 1–5, and co-pilots are numbered
from 6–10). An initial solution for the co-pilots assigned to
the pairing is shown in Figure 1. To avoid assigning of a crew
member to nonconsecutive pairings, Constraint (7) is ap-
plied to prevent the generation of infeasible solutions.

Pilot assignment process begins after all co-pilots get
placed in their pairings. Each eligible pilot may get assigned
to pairing P randomly, if the following conditions met:

(1) ,e pilot should not be in conflict with the co-pilot
(2) An inexperienced co-pilot must be accompanied by

an experienced pilot in each pairing
(3) Set of flights which may be assigned to a specific pilot

in a sequence

,e pilot row is determined according to Figure 2 for the
chromosome.

4.1.3. Generating a New Solution. A suitable operator for
generating a random neighborhood solution depends on to
the nature of the problem.,e CRP is an allocation problem;
therefore, we considered the appropriate operators to
generate new solutions. ,ese operators are defined in the
following section.

(1) Mutation Operator. By using the swap operator, two
pilots or two co-pilots are selected from two pairings and get
swapped if the following conditions are met:

(i) ,e co-pilot and the pilot are inconsistent
(ii) If an inexperienced co-pilot is not paired with an

experienced pilot
(iii) Pairings that may not be done sequentially by one

pilot or co-pilot

For the mutation operator, a random number between 0
and 1 is generated. If the number is less than 0.5, a swap
operation is performed on the co-pilots, and if it is greater
than 0.5, it is performed on the pilots. Swapping the co-pilots
of pairings P5 and P3 is presented in Figure 3.

(2) Crossover Operator. Figure 4 shows the single crossover
operator for the CRP. Selecting the pilot/co-pilot row is
similar to Section 4.1.3.1 for crossover operator as well.

,e proposed chromosome in this paper complies with
all constraints of the model except for the maximum/
minimum flight hours for crews and maximum time away
from the base for crews. To tackle this problem, a penalty
function strategy is applied. ,erefore, the average violation

Table 4: Data for 10-crew problem.

Crews TAFBmax
c (hour) TFmax

c (hour) TFmin
c (hour) Inconsistent with

Pilots

C1′ 1500 1000 150 C8
C2′ 1500 1200 150 —
C3′ 1500 1200 150 —
C4 1500 1200 150 —
C5 1500 1200 150 C7′

Co-pilots

C6′ 1400 1100 100 —
C7′ 1400 1100 100 C5
C8 1400 1200 100 C1′
C9 1400 1200 100 —
C10 1400 1200 100 —

Table 5: Crew assignment to pairings.

Pairings
Crews

Pilot Co-pilot
p1 C1′ C6′
p2 C3′ C6′
p3 C2′ C7′
p4 C3′ C8
p5 C3′ C7′
p6 C4 C10
p7 C4 C10
p8 C5 C8
p9 C3′ C6′
p10 C1′ C9
p11 C5 C10
p12 C4 C8
p13 C3′ C7′
p14 C2′ C9
p15 C5 C10
p16 C3′ C9
p17 C3′ C6′
p18 C5 C8
p19 C3′ C10
p20 C4 C9
p21 C2′ C10
p22 C4 C8
p23 C1′ C7′
p24 C2′ C7′
p25 C5 C9
p26 C2′ C6′
p27 C3′ C8
p28 C4 C10
p29 C1′ C9
p30 C5 C10
p31 C4 C8
p32 C1′ C10
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of these constraints is multiplied by a big number and then
subtracted from the objective function.

4.1.4. Genetic Parameter Tuning. In the genetic algorithm,
maximum iterations, population size, crossover rate, and
mutation rate parameters affect the performance of the
algorithm. In this study, the Taguchi [37] is applied to get the
best value for mentioned parameters. Each of the GA pa-
rameters is considered at three levels, as presented in Table 2.

Not all but only part of the factors may reach to their best
level in Taguchi’s [37] method. Each obtained result from
Taguchi [37] method experiment is converting to a “signal-
to-noise” ratio. At this rate, the optimal value (average) is
called the signal, and the undesirable value (standard de-
viation) is called the noise. According to the objective
function which is to maximize the crew’s satisfaction, the
higher S/N means more desirability of results. ,erefore, the
maximum point of the graph is selected for each parameter.
Also, the corresponding level is considered as the optimal

1 6 1 1

1 1 1

7 7

9 9 10

P1 P5 P23

P10 P29 P32

Figure 6: ,e first pilot’s monthly roster.

Table 6: ,e results of test problems.

Problem no. No. of pairing No. of crew
GAMS GA

Gap (%)
Z CPU time (s) Z CPU time (s)

Small

1 32 10 19.425 1.513 19.425 14.769 0.000
2 40 14 26.013 3.031 26.013 16.011 0.000
3 70 18 45.806 62.782 45.806 17.192 0.000
4 100 22 67.219 785.032 67.219 17.811 0.000
5 130 26 85.756 921.657 85.744 19.703 0.014
6 160 30 103.352 1002.140 101.82 20.002 1.482
7 190 34 118.484 1095.006 117.321 20.892 0.981
8 220 38 133.105 1101.482 132.008 21.475 0.824
9 250 42 153.076 1125.015 152.601 23.343 0.310
10 280 46 165.081 2925.515 165.000 27.107 0.049

Medium

11 350 60 190.380 4500.703 188.234 40.961 1.127
12 400 66 227.345 6938.796 227.011 46.145 0.146
13 450 72 253.261 9441.422 252.631 47.412 0.248
14 500 78 278.205 10800 299.008 59.604 —
15 550 84 305.829 10800 320.952 63.843 —
16 600 90 333.307 10800 392.000 68.060 —
17 650 96 361.161 10800 444.132 71.949 —
18 700 102 385.513 10800 486.060 84.737 —
19 750 108 400.192 10800 505.822 98.110 —
20 800 114 434.377 10800 589.194 98.364 —

Large

21 1000 200 539.373 10800 871.750 133.021 —
22 1500 250 801.701 10800 1003.108 152.605 —
23 2000 300 934.006 10800 1236.115 179.881 —
24 2500 350 1170.196 10800 1501.914 197.001 —
25 3000 400 1242.201 10800 1600.691 205.514 —
26 3500 450 1413.135 10800 1985.340 231.109 —
27 4000 500 1496.866 10800 2010.646 253.002 —
28 4500 550 1606.530 10800 2174.000 269.836 —
29 5000 600 1689.977 10800 2586.109 342.168 —
30 5500 650 1842.583 10800 3004.212 379.617 —
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level. ,e estimated values for GA parameters using the
Taguchi [37] method are illustrated in Table 3 and Figure 5.

4.2. Computational Results for Test Problems. ,e model is
solved for a real case: Air India airline. Before solving the
case study, 30 test problems in different scales are generated
and solved using GAMS and GA to justify GA’s efficiency in
solving the proposed model. ,is operation is performed on
a laptop with 16GB RAM and Windows 10 64 bit. To il-
lustrate the model results, a problem with 10 crew members
is explained in detail. In this example, C1′, C2′, and C3′ are
assumed experienced pilots, while C6′ and C7′ are inexperi-
enced co-pilots. Table 4 shows the data for this test problem.
By solving the model, crew assignment is done. According to
Table 5, one pilot and one co-pilot who are not inconsistent
are assigned to each pairing. Crew’s rosters can be easily
concluded from Table 5. To illustrate, Figure 6 displays the
first pilot’s monthly roster. As the planning horizon is one
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Figure 7: A CPU time comparison between the exact method and GA.
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month, a crew member may handle several pairings if flight
hour constraints are met.

,e results of applying the proposed model for 30 nu-
merical examples with different sizes are presented in Ta-
ble 6. In solving numerical examples by GAMS, the CPU
time has been set to 10,800 seconds. According to Table 5,
the performance of the GA to solve the proposed model is
justified due to two reasons: (1) the maximum optimality gap
between the genetic algorithm and exact solution is only
1.482%, and (2) in medium and large-sized problems, the
CPU times in the GA are considerably less than GAMS.

A comparison between the CPU times in GA and GAMS
is shown in Figure 7. Asmaximum solution time has been set
to 10,800 seconds in GAMS, computations in problems
14–30 are terminated after three hours.

A comparison of the results between the results of GAMS
and genetic algorithm is shown in Figure 8.,e results of the
objective function are shown in Figure 8. ,e green and
orange points represent the objective function values
resulted fromGA and GAMS, respectively. It is worth noting
that GAMS solution time has been limited to three hours. As
a result, GAMS did not reach the optimum solution in
problems 14 to 30.

4.3. Case Study. Air India is a well-known airline in India,
headquartered in New Delhi. As one of the biggest inter-
national airlines, Air India has 11% of the domestic market
share [38]. Air India’s main hub is Indira Gandhi Inter-
national Airport in New Delhi, with a secondary hub at
Chhatrapati Shivaji Maharaj International Airport in
Mumbai. According to reports in 2019, Air India fleets
include Airbus and Boeing that serve 170 destinations all
over the world [32].

To solve the proposed model for the case study, a genetic
algorithm was applied and the Taguchi [37] approach was

used to adjust its parameters. ,is case included 6190
pairings and 1340 (co)-pilots. ,e model was solved in
761.188 seconds, and the optimum value of the objective
function was 5034.002. ,e convergence of the GA results is
shown in Figure 9. Converging after 400 iterations indicates
good solution quality.

As discussed in Section 3, the objective function includes
two terms: score and penalty for assigning crew to desirable/
undesirable pairings. According to the Air India results,
crew members were assigned to their preferred pairings in
72% of assignments. Table 7 shows the monthly rosters of 20
experienced pilots, and 20 co-pilots as a small sample.
Moreover, the attendance days of 90 co-pilots in the required
training courses are presented in Table 8.

To compare the performance of the proposedmodel with
the previous research studies in which undesirable assign-
ment penalty had not been considered, penalty term was
removed from the objective function and constraint (12) was
also disabled. By removing penalty concept, 2065 undesir-
able pairings are assigned to crews. ,is means that each
crew will have an average of at least two undesirable pairings
per month. However, our proposed model has reduced the
number of undesirable rosters to 739, which is about 61.59%
less than the previous models.

4.4. Robust Optimization. In this section, Bertsimas and Sim
[10] approach is used to formulate the robust counterpart of
the proposed model. ,e approach of Bertsimas and Sim
leads to a linear robust model, while it is independent of
knowing the distribution of data and control of the level of
protection through parameter Γ [39].

TAFB is subject to several factors such as flight time,
flight duration, and connection time, which makes it an
uncertain parameter. By considering different values for Γ
(0≤Γ ≤ 1), the robust model was solved for numerical

Table 7: Monthly rosters for Air India.

Pilots Pairings Co-pilots Pairings
C1′ p3-p15-p410-p892-p2001-p3871 C791 p93-p297-p305-p1165-p1374
C2′ p765-p1380-p4200-p4811-p6152 C792 p728-p923-p1224-p2411-p3005
C3′ p1-p938-p1778-p5499-p6002-p6112 C793 p999-p1717-p2060-p3525
C4′ p57-p21-p743-p766-p1001 C794 p14-p783-p1183-p4625-p5365
C5′ p216-p1230-p2571-p4921-p5101-p5314 C795 p1338-p3902-p4382-p4902-p6190
C6′ p8-p841-p3598-p4009-p4021-p4566 C796 p210-p1403-p3788-p5582-p6128
C7′ p943-p2223-p3467-p5005-p5127-p5128 C797 p48-p655-p804-p893
C8′ p51-p394-p1857-p2311-p6188 C798 p1195-p3109-p5198-p5727
C9′ p1072-p3725-p4000-p4282-p5920 C799 p375-p831-p1289-p3911-p3927
C10′ p790-p1943-p2144-p2756-p3512-p6180 C800 p202-p876-p934-p1010-p1256
C11′ p21-p726-p1451-p2727-p5934-p6107 C801 p1689-p4405-p4816-p4970-p5037
C12′ p1191-p2980-p3104-p3788-p5582-p6128 C802 p234-p928-p1440-p1796
C13′ p285-p961-p1367-p3504-p4597-p5202 C803 p656-p1275-p2239-p3061-p3400
C14′ p1036-p4436-p4677-p4920-p5135 C804 p1008-p1115-p1152-p4636
C15′ p30-p673-p1558-p2640-p3525-p5555 C805 p1261-p1674-p1730-p1954-p2338
C16′ p470-p1379-p1776-p1969-p1985-p6161 C806 p313-p630-p1177-p2646-p4789
C17′ p1321-p3040-p5162-p5343-p5691-p6002 C807 p880-p1326-p1687-p2053-p2188
C18′ p811-p1296-p2239-p3061-p3400 C808 p1453-p2007-p2396-p5731-p5766
C19′ p277-p952-p3028-p4816-p5582-p6128 C809 p934-p2915-p3251-p3256
C20′ p500-p942-p1101-p5366-p5712-p6001 C810 p496-p1831-p3140-p6024-p6097
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Table 8: Attendance in training courses held on different days.

Co-pilots
Training course

d1 d2 d3 d4 d5

C701′ ×

C702′ ×

C703′ ×

C704′ ×

C705′ × ×

C706′ ×

C707′ ×

C708′ ×

C709′ ×

C710′ ×

C711′ ×

C712′ ×

C713′ ×

C714′ ×

C715′ ×

C716′ ×

C717′ × ×

C718′ ×

C719′ ×

C720′ ×

C721′ ×

C722′ ×

C723′ ×

C724′ ×

C725′ ×

C726′ ×

C727′ ×

C728′ ×

C729′ × ×

C730′ ×

C731′ ×

C732′ ×

C733′ ×

C734′ ×

C735′ × ×

C736′ ×

C737′ ×

C738′ ×

C739′ ×

C740′ ×

C741′ ×

C742′ ×

C743′ ×

C744′ × ×

C745′ ×

C746′ ×

C747′ ×

C748′ ×

C749′ ×

C750′ ×

C751′ ×

C752′ × ×

C753′ ×

C754′ ×

C755′ ×

C756′ ×

C757′ ×

C758′ ×

C759′ ×
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Table 9: Robust model results.

Case No. of crew No. of pairing ⌈
GAMS GA

GPA (%)
Z CPU time (U) z CPU time (U)

Numerical example 3 (small-scale) 18 70

0 45.806 63.120 45.806 19.043 0.000
0.1 45.797 9326.906 45.801 32.152 0.009
0.2 45.797 4109.891 45.797 37.766 0.000
0.3 43.815 16977.547 44.221 41.008 0.927
0.4 43.361 11378.531 43.896 35.423 1.234
0.5 42.789 6024.208 43.057 28.109 0.626
0.6 42.229 7466.002 42.612 26.155 0.907
0.7 42.229 1509.373 42.577 29.000 0.824
0.8 42.229 3882.041 42.416 29.976 0.443
0.9 42.229 1557.600 42.416 33.441 0.443
1 42.229 2493.143 42.416 34.212 0.443

Case study 1340 6190

0 — — 5034.002 784.006 —
0.1 — — 5030.811 797.155 —
0.2 — — 5023.722 849.000 —
0.3 — — 4988.430 835.637 —
0.4 — — 4988.430 802.543 —
0.5 — — 4971.959 871.012 —
0.6 — — 4965.123 896.424 —
0.7 — — 4954.700 903.111 —
0.8 — — 4954.361 928.639 —
0.9 — — 4954.361 930.007 —
1 — — 4954.361 995.295 —

Table 8: Continued.

Co-pilots
Training course

d1 d2 d3 d4 d5

C760′ ×

C761′ × ×

C762′ ×

C763′ ×

C764′ × ×

C765′ ×

C766′ ×

C767′ ×

C768′ ×

C769′ × ×

C770′ ×

C771′ ×

C772′ ×

C773′ ×

C774′ ×

C775′ ×

C776′ ×

C777′ ×

C778′ ×

C779′ ×

C780′ ×

C781′ ×

C782′ ×

C783′ ×

C784′ ×

C785′ ×

C786′ ×

C787′ ×

C788′ ×

C789′ ×

C790′ ×
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example 3, and the results of GAMS and GAwere compared.
After justifying the performance of the GA, the robust model
was applied to the case study and the results were analyzed
(Table 9).

As represented in Table 9, the optimality gap of GA for
numerical example 3 is negligible. ,erefore, the perfor-
mance of GA to solve the robust model is acceptable.
According to the robust model applied to the case study, the
model acts more conservatively by increasing of the Γ. In the
case of Γ � 1, it guarantees that feasible solution to be at its
maximum value and the objective function to be at its
minimum value. Figure 10 shows the total weighted de-
sirability obtained from the genetic algorithm for 400
iterations.

5. Conclusions

Crew scheduling problem is often divided into CPP and CRP
and solved consecutively to reduce complexity. In this ar-
ticle, a novel MIP model was introduced for CRP. ,e
difference between the proposed model and previous re-
search is considering a scoring mechanism instead of bid-
ding for preferred pairings, crew seniorities, and
inconsistent crew. In addition, the model considers common
rules and regulations as well as crew attendance at the re-
quired training courses. With this advantage, obviously,
better solutions are obtained. Moreover, the robust coun-
terpart of the nominal CRP model was presented to the
uncertainty of mission time of the crews (TAFB). In addi-
tion, the suggested model’s efficiency was assessed using
real-world data from Air India Airline. Because the model
was NP-hard, the CPLEX solver in GAMS was used for 13
first test problems, and the GA was utilized for 30 test
problems with different scales and the case study.,e results
show that GA has a 1.482% average gap in optimum solution
compared to exact solution. ,e proposed CRP is computed
utilizing Air India data, which is one of the largest inter-
national carriers. Air India provides services to 170 desti-
nations in 31 countries. ,e proposed model was tested for
6190 pairings and 1340 crews. For this real-world data, the
objective function value was 5034.002 with 761.188 seconds
of computational time.,is research has two limitations that
can be improved in future research studies. ,e first one is
that (co)-pilots’ medical checks have not been considered.
,e second one is that reserve crew have not been included

in the model. Moreover, the following suggestions can be
considered for future research [40–42]:

(i) Considering a fair distribution of working time
among crew members

(ii) Providing an integrated model for CRP with other
steps of the airline scheduling problem, and con-
sidering disruption for the crew rostering

(iii) Developing the cooperative game between airlines
to exchange crews among them

Sets and Indices

P: Set of all pairings
p: Index of pairing (p� 1, 2, . . .)
C: Set of all crew members (pilots and co-pilots)
c, c′: Index of pilots and co-pilots (c, c′ �1, 2, . . .)
C1: Set of all pilots
c1: Index of pilots (c1 �1, 2, . . ., C1)
C2: Set of all co-pilots
c2: Index of pilots (c2 �1, 2, . . ., C2)
C1′: Set of all experienced pilots
c1′: Index of experienced pilots (c1′�1, 2, . . ., C1′)
C2′: Set of all inexperienced co-pilots
c2′: Index of inexperienced co-pilots (c2′�1, 2, . . ., C2′)
Cinc: Set of inconsistent crew
Cinst: Set of crew whomust participate at the training course
Pd: Set of all pairings that include day d

NA: Set of all pairings that cannot be performed
sequentially by a (co)-pilot

D: Set of all days in which the training course is held
d: Index of training course (d �1, 2, . . .)

Parameters

TAFBp: Time away from the base of pairing p

TFp: Total flying time of pairing p

TAFBmax
c : Maximum TAFB allowed for (co)-pilot c

TFmax
c : Maximum flying hours for (co)-pilot c

TFmin
c : Minimum flying hours for (co)-pilot c

Pref cp: Binary parameter that equals 1 if pairing p is
desirable for (co)-pilot c, and 0 otherwise

Basecp: Binary parameter that equals 1 if pairing p begins
and ends at the home base of (co)-pilot c, and 0
otherwise

wc: Seniority weight of (co)-pilot c

Decision variables

Xcp: Binary variable that equals 1 if pairing p is
assigned to (co)-pilot c, and 0 otherwise

Ycd: Binary variable that equals 1 if (co)-pilot c

attends at training course held on day d, and 0
otherwise

scorecp: Score of assigning (co)-pilot c to his/her
preferred pairing p

penaltycp: Penalty for assigning (co)-pilot c to the
undesirable pairing p.
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Figure 10: ,e obtained total weighted desirability from the ge-
netic algorithm for case study.
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