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Human life and property are often seriously threatened and lost due to natural disasters such as earthquakes. As a spatial
information system, the geographic information system (GIS) can collect, store, and manage the local or whole related physical
data of the surface space to be measured with the support of software and hardware. e physical data is collected through GIS for
performance testing.  e data are collected from the aftershock event records of the Wenchuan earthquake. Among them, 14,000
Wenchuan earthquake events are used as the original data set, and 8,800 aftershock events are used as the test data set. Seismic data
involves the detection of multiple physical quantities, whichmakes the seismic data gradually increase, many data have no obvious
linear relationship, and traditional detection methods are di�cult to meet the detection requirements.  e arti�cial intelligence
method led by a convolutional neural network (CNN) can perform pattern matching on complex nonlinear variables, and models
with general characteristics can be generated from di�erent seismic waveforms for the prediction of seismic waveforms.  e
results show that GIS can e�ectively intercept and collect seismic physical signals.  e training and detection accuracy of CNN
combined with GIS physical data is higher than 90%. Compared with traditional training methods, CNN is obviously superior in
detection accuracy and recall rate. At the same time, a large number of microseismic events that are easily missed by manual
selection can also be found.

1. Introduction

Since the 1990s, geographic information system (GIS)
technology has been widely used in the domestic earthquake
�eld, and its application �elds include earthquake analysis,
earthquake resistance, prediction, disaster prediction, etc.
China has a vast territory and complex geological condi-
tions, and the natural geological environment that promotes
geological disasters is also complex [1]. At present, the total
number of major stations in various disaster monitoring
systems in China has reached more than 43,000, and their
geographical distribution is relatively scattered [2].  e early
earthquake prediction research needs to describe dynamic
natural factors at each station level, which makes the pre-
diction of geographical location. Accuracy and e�ciency
cannot be guaranteed [3]. Based on GIS, the dynamic in-
formation of existing stations can be centrally managed [4],
and the data analysis ability of dynamic information has

been greatly improved, providing powerful conditions for
the development of earthquake monitoring work.

Collecting seismic data to carry out its related identi�-
cation work, industry-related personnel have carried out
research on various automatic earthquake identi�cation
algorithms based on this �eld [5, 6], ratio represents the
changes of signal amplitude, frequency, etc., this method will
miss some signals with low bath ratio [7]; based on the
Akaike information criterion method, the minimum point
of the waveform curve is sought as the arrival time point of
the earthquake relative, this method strongly depends on the
signal-noise ratio and monitoring interval [8]; waveform
correlation analysis method can monitor geology from a
single area with the same focal mechanism [9], that is, it is
more e�ective for repeated earthquake detection, and the
detection accuracy depends on the number of samples used,
but the larger the number of samples, the faster the amount
of computation.  e disadvantages of traditional seismic
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facies identi�cation are heavy workload, long interpretation
time, strong subjectivity, and low e�ciency.  erefore, some
seismologists pay more attention to automatic seismic in-
terpretation.  e use of intelligent geophysical technology
can e�ectively improve the traditional seismic data pro-
cessing, interpretation e�ciency and result quality. emain
technologies include big data, machine learning, and deep
learning. Machine learning is used in geophysical data
processing, rock physical property analysis, wellbore, res-
ervoir, and oil and gas development data, but most of the
current research and analysis are basically applied to seismic
data processing. With the improvement of computer
hardware and the breakthrough of big data computing
performance, the deep learning technology represented by
deep convolution neural networks has attracted the research
interest of seismic interpretation workers in the �eld of
seismic type identi�cation.

A neural network algorithm is a class of algorithms
implemented by simulating the way the human brain learns
[10, 11]. “Neurons” represent nonlinear and correlated
variables, which form a whole with a network structure, and
construct a set of input features (such as seismic waveforms).
Complex nonlinear relationship between expected output
values (type of seismic phase), and based on the obtained
relationship to predict the features of the new input, similar
to pattern matching [12], the neural network extracts sample
data from di�erent seismic waveforms to generate Gener-
alization performance of the model.  is study uses GIS to
collect 14,000 and 8,800 earthquake aftershock events
manually selected from 30 stations in Sichuan and adjacent
areas during July and August after the Wenchuan earth-
quake as the data training set and event test set, respectively.
Analysis, compare the CNN model with other traditional
models and then analyze the performance of missed after-
shock events based on the model.

2. Acquisition of Seismic Waveform Data and
Data Scene Fitting Test

Using the secondary development function of GIS and the
Hilbert-Huang transform (HHT), the seismic waveform
signal processing by this method is generally divided into
two steps. First, EMD [13, 14] is used to obtain the multiple
intrinsic mode function (IMF) [15]; the time series variable
is transformed by Hilbert, and the frequency variable is
calculated by instantaneous frequency to obtain the corre-
sponding spectral curve. Considering that the instantaneous
frequency only has an analytical value for single-component
signals, in the acquisition of seismic data, the physical signal
contains many other interference signals, which cannot be
directly used for instantaneous frequency calculation, and
these physical signals need to be approximated, as shown in
Figure 1.

 e signal is decomposed into multiple single-compo-
nent signals by EMD, and can also be decomposed into the
sum of mixed signals containing physical information
components. From the perspective of execution, the upper
and lower values of the physical signal to be measured need
to be obtained �rst;  e value is interpolated through

multiple �ttings, so that the upper limit of the signal is
functionalized (Xmax(t)) and the lower limit is functionalized
(Xmin(t)). Average as many points as possible to get the
function Xmid(t).

Based on this method for seismic physical waveform
signal acquisition, there will be obvious errors due to the
in¦uence of noise in the mechanical measurement. When
calculating the point average value of each function, errors
will also occur in the model itself. Because of the breakpoint
phenomenon, using EMD to decompose itself also Various
computational ¦aws will arise. After analyzing the signal
intercepted by GIS, it can be seen that the Hilbert–Huang
transformation can be used to process nonlinear and non-
stationary signals. After analysis, the maximum amplitude
corresponds to the period (Tmax), the cepstral mean value
(Midcave), and the autocorrelation function.  e maximum
value (Maxcov) can represent the information of the
waveform.  e seismic scene has certain characteristics.
Based on the intercepted data, the e�ectiveness of inter-
cepting seismic vibration bands can be veri�ed. GIS is used
to screen some seismic data, and a seismic model is con-
structed in the shallow layer of the Loess Plateau. e sample
interval of the model is 2ms, and the main frequency of the
source wavelet and the number of channels are 50Hz and
400, respectively. Table 1 sets other geological parameters of
the model.

 e e�ective geological waveform is used as a template to
map to the surface wave test.  e shallow bottom signal is
concentrated in the x and z components. In addition to the
surface wave information, there are also multiple wave in-
formation. After data simulation, a large number of x and z
components are distributed in the part above the near-
migration. Surface wave data, that is, the signal strength in
this area is obvious.

3. CNN Algorithm Performance and Its Seismic
Continuous Waveform Detection

3.1. CNNNetwork Structure. In the seismic waveform-noise
classi�cation analysis, the CNN structure is introduced [16],
which has been cited inmany studies and improved based on
this structure.  e purpose of CNN is to extract the features
of things with a certain model, and then classify, recognize,
predict or make decisions according to the features.  e

Pretreatment of GIS data

The IMF component is obtained
by EMD decomposition

The IMF component is performed
by Hilbert transform

Feature parameter extraction
based on Hilbert Huang Transform

Figure 1: GIS-based seismic data acquisition process.
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most important step is feature extraction, that is, how to
extract features that can distinguish things to the greatest
extent, and how to realize this great model requires iterative
training for CNN. emodel has translation invariance, that
is, slightly changing the orientation or position of the same
object may not activate the neurons that recognize the
object;  e existence of the pooling layer will lead to the loss
of much valuable information, and will also ignore the as-
sociation between the whole and parts. In this study, a CNN
structure with the best performance in the problem of
handwritten digit classi�cation is used, as shown in Figure 2:

In the chosen CNN architecture, the convolutional layer
can be used to achieve feature extraction [17, 18], and the
pooling layer reduces the number of sample features to be
tested through dimensionality reduction [19].  e two-di-
mensional convolution structure is common in the classi-
�cation of handwritten digital images, and the seismic
waveform data is not suitable for this method.  e internal
convolution kernel and channel are set to [3, 32], 4000× 3 is
used as the training input, and the three-component
waveform is used as the waveform interval. After layer-by-
layer peeling, it is converted into a one-dimensional feature
of 20× 32. After these features go through the fully con-
nected layer, the ReLU activation function is used to cal-
culate the probability of each waveform category to be
classi�ed, and it is compared with the preset classi�cation
threshold. If it is lower than the threshold, it will be marked
as −1, that is, noise. If it is higher than the threshold, is
marked with a value greater than 0, indicating an
earthquake.

3.2. Preprocessing of SeismicWaveformDataCollected byGIS.
In 2008, a magnitude 8.0 earthquake occurred in a county-
level area called Wenchuan in Sichuan Province, China.  e
loss of people and property caused by the earthquake was
huge. At the same time, aftershocks were frequent and the
aftershocks were distributed in a wide area, with a magni-
tude of 0.2∼3.6.  ere are many large-scale aftershocks. At
the same time, many researchers have carried out a large
number of geological inspections in the area, recorded the
aftershocks and obtained a large amount of data, so as to
provide the original data for model training and waveform
classi�cation of this study.

 e use of CNN for data analysis requires a large amount
of data. Fewer samples will a�ect the recognition ability of
the training model, and at the same time, it is prone to
over�tting. An ideal data set needs a large amount of sample
data for each category, so as to cover the complex features of

seismic waveforms.  e earthquake occurred at 30 stations
in Sichuan and its adjacent areas, and the time was set
between July and August.  e data training set was 14,000
earthquake aftershock events that were manually selected,
and 8,800 events were used for model testing. All event
waveforms are taken from 8s before the arrival of P to 10s
after the arrival of S. In terms of noise, random screening is
adopted after excluding event waveforms. All data samples
are waveform data within 30 s, and manual event labeling is
reduced [20], Errors generated by noise are randomly
screened [21], and easily found labeling errors are manually
corrected. To increase the data, the enhancement method is
an ideal method, and the one-dimensional three-channel
image is used as the data format of the seismic waveform,
which is realized by the methods of phase shifting, pixel
blurring and �ltering.

3.3. Algorithm Performance of CNN. Figure 3 shows the
training and loss function curves of the preprocessed GIS
seismic waveform data. It can be seen that the processed data
set can converge faster.

In all algorithms, in order to minimize the cross-entropy
loss function, L2 regularization and stochastic gradient
descent are performed on the physical data of the training
waveform, and the ADAM algorithm is used for optimi-
zation, thereby improving the calculation speed of data
features. In the model training process of deep learning, the
data involved in the training is iterated in one cycle called
epoch [22]. Using Tensor¦ow to train 10 epochs on a 1080ti
GPU only takes 15mn, and the average calculation accuracy
during training exceeds 95%. In the recognition calculation
of 8800 samples in the test set, it is found that the test
samples can be recognized in less than 20s, and the training
accuracy reaches 94.7%, as shown in Figure 3.

Table 1: Some parameters of the simulated geological model.

Layer
thickness

(m)

Poisson’s
ratio

Shear
wave

velocity
Vs (m/s)

Longitudinal
wave velocity
Vp (m/s)

Density

1 3 0.35 180 380 1.6
2 5 0.40 260 760 1.68
3 10 0.45 265 880 1.73
4 20 0.40 400 1010 1.8
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Figure 2:  e structure of the convolutional neural network used.
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3.4. Comparison of Continuous Physical Waveform Detection
based onGIS-CNN. In the experiment, the CNNmodel with
the highest accuracy in the training set and test set is used for
the detection of continuous physical waveforms, and the
model is used for waveform recognition and comparison
with the classical fbpicker algorithm [23] and STA/LTA
algorithm [24].  e imported data comes from the con-
tinuous waveforms from August 1, 2008, to September 1,
2008, obtained by the MXI station of Sichuan Network. In
order to verify that the model can improve the missed
detection rate of aftershocks, the operation of manually
selecting event waveforms is performed in the corre-
sponding time period and 1805 events were selected for
reference.

 e precision Tand recall rate R are selected to represent
the recognition performance of di�erent algorithms [25],
and two subscripts are set for the corresponding indicators,
namely noise and event:

Te �
Ms

(Ms + Ls)
,

Re �
Ms

(Ms + Ln)
.

(1)

Among them, the subscript e represents the event, the
subscript n represents the noise,Ms represents the true case,
that is, the event recognized by the algorithm is real,

otherwise, there is a false case Ls, Mn represents the reverse
case, that is, the waveform noise recognized by the algorithm
is real On the contrary, there is a false reverse case, that is, Ln.
 e lower the false detection rate, the higher the recognition
accuracy of the algorithm, and the lower the missed de-
tection rate, the higher the corresponding recall rate. When
evaluating the e�ciency of the algorithm, the above two
indicators need to be considered at the same time in order to
verify whether the model has application value.

 e precision and recall rate of di�erent identi�cation
methods are listed in Table 2. Among them, CNN identi�ed
3767 aftershock event waveforms, of which 1805 events were
consistent with the number of reference samples. Compared
with the CNN method, the traditional identi�cation algo-
rithm had better precision and recall rate. Neither is as good
as the former.
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Figure 3:  e training process before and after data preprocessing, (a) training curve, (b) cross-entropy loss function curve.

Table 2: Comparison of CNN and traditional recognition
(fbpicker, STA/LTA) algorithms.

Method Te Re Ms Ls Ln

CNN 48.1%
(1805/3757) 95.4% (1805/1891) 1805 1952 86

Fbpicker 29.2%
(1589/5446) 85.3% (1589/1863) 1589 3857 274

STA/LTA 36%
(1666/4633) 87.6% (1666/1902) 1666 2967 236
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It should be noted that the manual aftershock waveform
samples selected for reference have undergone seismic
positioning and correlation processing, so they have high
accuracy. However, due to the limitations and subjectivity of
human identi�cation, the data lacks integrity, such as iso-
lated events or signal-to-noise. Aftershock events smaller
than the soles of the feet are easily missed. Relevant studies
have con�rmed that the CNN structure can identify after-
shocks and even small microseisms in the process of
earthquake waveform classi�cation. Based on this, in the
calculation process of Te, there are many types of events that
need to be considered, not just de�ned as Ls, so it cannot be
very good. It re¦ects the classi�cation e�ect of the CNN
algorithm.

In Figure 4, the continuous physical waveform of the
MXI station on August 23, 2008, was identi�ed as the data
source.  ere were 50 manually selected events on that day,
but through further observation, it was found that there were
about 370 small aftershocks with smaller amplitudes on that
day (Figure 4(a)).  ese small aftershocks can be better
identi�ed by CNN (Figure 4(b)), and when these missed
aftershocks are included, the precision and recall of the
algorithm reach 73.7% and 62.8%, respectively. After being
processed by the CNN model, the misclassi�ed waveform
data can be substituted into the training as part of the
metadata, so as to better distinguish di�erent seismic
waveforms.

4. Conclusion

 e Hilbert-Huang transform (HHT) has advantages in
dealing with nonlinear and non-stationary problems. In
this study, this transformation is �rst performed on the
GIS intercepted data, so that the collected data is not
restricted by linearity and stationarity, and can be used for
nonlinear Analysis of non-stationary physical signals.
HHT is self-adaptive but does not have the ability to
distinguish signals in the time domain.  e conversion
can generate corresponding databases according to the
requirements of the problem, that is, generate the required
IMFs. HHT is suitable for mutation signals and is not
restricted by the Heisenberg uncertainty principle.  e

instantaneous frequency is obtained by derivation, and
the phase function is obtained by using the Hilbert
transform. Further derivation is used to calculate the
instantaneous frequency.  e result of this index only acts
on the local fragment of the signal. Using GIS to intercept
data from seismic raw physical waveform data is only the
�rst step. At the same time as data preprocessing, the CNN
method is introduced. Compared with the traditional
identi�cation method of single or multiple feature
functions, the use of CNN can greatly improve the clas-
si�cation accuracy to be tested. At the same time, the
model has a relatively stable output e�ect. Di�erent from
the waveform similarity method, the CNN obtains the
feature of the drawn line from the training data set and is
not based on the waveform amplitude, so it has better
model coverage [26].
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