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Anomaly detection in videos is a challenging computer vision problem. Existing state-of-the-art video anomaly detectionmethods
mainly focus on the structural design of deep neural networks to obtain performance improvements. Di�erent from the main
research trend, this paper focuses on combining ensemble learning and deep neural networks and proposes an approach based on
ensemble generative adversarial network (GAN). In the proposed method, a set of generators and a set of discriminators are
trained together, so each generator gets feedback from multiple discriminators and vice versa. Compared with a single GAN, the
proposed ensemble GAN can better model the distribution of normal data to better detect anomalies. In the experiments, the
performance of the proposed method is tested on two public datasets. �e results show that ensemble learning signi�cantly
improves the performance of a single detection model, which outperforms some existing state-of-the-art methods.

1. Introduction

Anomaly detection in surveillance video is a fundamental
computer vision task that plays a crucial role in video
analysis. It can be well used in potential applications such as
accident prediction, urban tra�c analysis, and evidence
investigation. Although the problem has attracted intense
attention in recent years, video anomaly detection is still a
very challenging work due to the severe imbalance between
normal and anomalous samples, the lack of detailed anomaly
labeled data, and the inconsistent de�nitions of anomalous
behaviors.

To address this problem, researchers have proposed a
number of methods. According to the literature review [1],
existing anomaly detection methods can be divided into
ones based on density estimation and probabilistic models,
ones based on single-class classi�cation, and ones based on
reconstruction. �e methods based on density estimation
and probability model [2, 3] mainly calculate the probability
density function of the samples at �rst and then make the
judgement by obtaining the distance between the sample and
the center of the density function. While the classical
nonparametric density estimators perform reasonably well

when dealing with low-dimensional problems, the sample
size they require to achieve a �xed level of accuracy grows
exponentially in the dimension of the feature space. One-
class classi�cation-based methods [4, 5] try to avoid full
estimation of density as an intermediate step in anomaly
detection, and these methods aim to directly learn the de-
cision boundary corresponding to the positive samples, by
testing whether the samples under test are within the
boundary. Reconstruction-based methods [6, 7] learn a
model that is optimized to reconstruct normal data instances
well, thereby detecting anomalies by failing to reconstruct
them accurately under the learned model.

In recent years, the deep learning models learn e�cient
representations from the multiple sources of data by training
�exible multi-layer deep neural networks, which has
achieved breakthroughs in many applications involving
complex data types, such as computer vision [8, 9], speech
recognition [10, 11], or natural language processing [12, 13].
Methods based on deep neural networks are able to exploit
the often inherent hierarchical or latent structure of data
through their multi-layer distributed feature representa-
tions. Furthermore, advances in parallel computing, sto-
chastic gradient descent optimization, and automatic
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differentiation have made it possible to apply deep learning
at scale on large datasets. For anomaly detection problems,
deep learning methods can optimize the entire anomaly
detection model end-to-end and can also learn represen-
tations specifically for the anomaly detection problem. In
addition, the ability of deep learning methods for large
datasets helps to greatly improve the utilization of labeled
normal data or some labeled anomalous data.

Under the framework of deep learning, this paper
proposes an anomaly detectionmethod based on single-class
classification. 'is approach is an improved form of gen-
erative adversarial network (GAN) called GAN ensembles.
GAN exploits the competition between the generator and
the discriminator, where the generator learns the distribu-
tion of samples and the discriminator learns how to detect
anomalies. An ensemble GAN consists of multiple encoder-
decoders and discriminators that are randomly paired and
trained via adversarial training. In this process, the encoder-
decoder gets feedback from multiple discriminators, and the
discriminator gets “training samples” from multiple gen-
erators. Compared with a single GAN, the proposed en-
semble GAN can better model the distribution of normal
data so it can be better employed to detect anomalies. Fi-
nally, the total anomaly score is obtained by taking the
average of the calculated anomaly scores from all encoder-
decoder discriminator pairs for discrimination. Experi-
mental results on two public benchmark datasets show that
the proposed method significantly outperforms some
existing methods on a range of anomaly detection tasks.

2. Basic Principle

2.1. Description of Problem. Assuming that the normal
sample training set is X � xi ∈ Rd: i � 1, . . . , N , which
contains N samples from an unknown distribution D, the
sample x′ ∈ Rd to be tested may not belong to the unknown
distributionD. 'en, the problem of anomaly detection is to
train the model from X such that the model can classify x′ as

a normal sample if x′ belongs to the unknown distribution
D. Conversely, it is anomalous if x′ comes from a different
distribution. Typically, the model computes the anomaly
score y′ ∈ Rd of x′ and determines the label of x′ by
thresholding y′. Figure 1 shows the general framework of
the proposed method.

2.2. GAN. A typical GAN consists of two neural networks,
i.e., a generator and a discriminator. Among them, the
generator contains an encoder Ge(·; ϕ) and a decoder
Gd(·;ψ). 'e encoder encodes the sample x into a vector z,
and the decoder reconstructs it into vector x. 'e basic
process is as follows:

z � Ge(x; ϕ),

x � Gd(z;ψ).
(1)

'e discriminator D(·; c) judges the probability that the
test sample comes from the dataset X rather than the
generator generated samples.'en, the discriminator should
provide higher reconstruction error values for normal
samples. Since themodel consists of an encoder-decoder and
a discriminator, the training process usually takes into ac-
count loss functions inherited from both models. 'e
adversarial loss coming from GAN training is defined as
follows:

La−g(x) � logD(x) + log 1 − D Gd Ge(x)( ( ( . (2)

Another one is the reconstruction loss, which is used to
train the encoder and decoder. In fact, the difference be-
tween the original sample and the reconstruction result is
often calculated by the l-norm as follows:

Lr(x) � x − Gd Ge(x)( 
����

����
l

l
. (3)

Previous studies have shown that the hidden vector h of a
sample in the last hidden layer of the discriminator D(·; c) is
useful for distinguishing normal samples from abnormal

Result

Figure 1: 'e methodology of abnormal event detection based on GAN ensembles.
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samples. Define h � D(x; c) as the hidden vector in D(·; c);
then, the discriminant loss based on h can be calculated as
follows:

Ld(x) � fD(x) − fD Gd Ge(x)( ( 
����

����
l

l
. (4)

Furthermore, GAN also considers the difference between
the encoded vector of a normal sample x and its recon-
struction x. In particular, it encodes the reconstructed x
using a separate encoder Ge(·; ϕ). 'en, the encoding loss is
as follows:

Le(x) � Ge(x; ϕ) − Ge Gd Ge(x; ϕ); ϕ  
�����

�����
l

l
. (5)

In (5), the encoder parameters ϕ and ϕ are distinctly
different. To train the discriminator, the GAN model needs
to maximize the adversarial loss, which is defined as follows:

max
c



N

i�1
La xi; ϕ,ψ, c( . (6)

After the GAN parameters are trained, the anomaly
score A(x′) needs to be calculated for the test sample x′.
'en, the anomaly score is obtained by calculating the
weighted sum of the reconstruction loss and the discrimi-
nant loss as follows:

A x′(  � Lr x′(  + βLd x′( . (7)

In (7), the weight β is obtained through empirical se-
lection. A higher anomaly score indicates a high anomaly
probability.

2.3. Anomaly Detection Based on GAN. 'is paper proposes
an anomaly detection method based on ensemble GANs.
'e model contains multiple generators and discriminators,
with different parameterizations. Assuming that I generators
Ge(·; ϕi), Gd(·;ψi): i � 1, · · · , I  and J discriminators De

(·; ci), : j � 1, · · · , J} are defined, a single generator or dis-
criminator is the same as the base model. During the
adversarial training, each generator is matched with each
discriminator, which is then evaluated by each discrimi-
nator. Also, the discriminator receives synthetic samples
from each generator.

For multiple pairs of generators and discriminators, both
adversarial and discriminative losses are computed from all
generator-discriminator pairs. 'e loss between each gen-
erator-discriminator pair is calculated as follows:

L
ij
a � La x; ϕi,ψi, cj ,

L
ij

d � Ld x; ϕi,ψi, cj .
(8)

Similarly, the reconstruction loss and encoding loss for a
single generator are calculated as follows:

L
i
r � Lr x; ϕi,ψi( ,

L
i
e � Lr x; ϕi,ψi( .

(9)

'e discriminator is then trained bymaximizing the sum
of adversarial losses, while the generator is trained by

minimizing the sum of all losses. 'e objective function is as
follows:

max
cj( 

J

j�1



I

i�1


J

j�1
L

ij
a ,

max
ϕi ,ψi( )

I

j�1



I

i�1


J

j�1
α1L

ij
a + α2L

i
r + α3L

ij

d + α4L
i
e.

(10)

In one training iteration, only one pair of generator-
discriminators is updated rather than all generators and
discriminators. In particular, a generator and a discrimi-
nator are randomly chosen and the loss is computed with a
random batch of training data. Afterwards, for multiple
generators and discriminators, the anomaly score of the
sample x′ under test is

A x′(  �
1
IJ



I

i�1


J

j�1
A xi; ϕ,ψ, c( . (11)

'e average of the outlier scores helps eliminate spurious
scores if the model is not well trained on a particular test
instance. 'e threshold θ is set to judge whether the test
sample is abnormal as follows:

A x′( > θ. (12)

3. Experiment

3.1. Experimental Data. In order to evaluate the qualitative
and quantitative results of the proposed method and
compare it with the state-of-the-art algorithms, this paper
selects two public video anomaly detection datasets for
experiments, namely, CUHKAvenue [14] and ShanghaiTech
[15]. 'e CUHK Avenue dataset was filmed on the streets of
the Chinese University of Hong Kong, which consists of 16
training and 21 testing videos collected from fixed scenes.
'e training normal data only include pedestrian walking,
and there are 47 abnormal events including running and
packet loss. Compared to the CUHK Avenue dataset, the
ShanghaiTech dataset is very challenging and contains
videos from 13 scenes with complex lighting conditions and
camera angles. 'e total number of frames for training and
testing reaches 274,000 and 42,000, respectively. 'e test set
includes 130 abnormal events such as chases, quarrels, and
sudden movements, which are scattered in 17,000 frames.

3.2. Evaluation Indicators. Based on previous work [14, 15],
this paper adopts the area under the ROC curve (AUC) to
evaluate the performance. 'e ROC curve is obtained by
calculating the predicted anomaly score at each frame level
by varying the threshold.

3.3. Experimental Setup. For both datasets, each frame of
video is resized to 286× 286, and video blocks of size
256× 256 are randomly cropped during each iteration. 'e
structure of the generator adopts C64× (4× 4)-C128× (4× 4)
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-C256× (4× 4)-C512× (4× 4)-C512× (4× 4)-DC256× (4× 4)
-DC128× (4× 4)-DC64× (4× 4) structure.'e first half is the
encoder, and the second half is the decoder. 'e encoder first
uses 64 convolutional layers with 4× 4 convolution kernels
and then uses 128 convolutional layers with 4× 4 convolution
kernels. 'e decoder and encoder structures are completely
opposite and contain deconvolutional layers of the same size.
'e BatchNorm layer and the ReLU activation function are
connected after each layer. 'e discriminator includes a total
of 5 convolutional layers, and the size of the convolution
kernel is also 4× 4. 'e structure adopts C64× (4× 4)-
Pooling-C128× (4× 4)-Pooling-C256× (4× 4)-Pooling-
C512× (4× 4) and finally outputs one-dimensional data. 'is
paper uses TensorFlow2.0 to implement the GAN ensemble
method and uses the Adam optimizer (ρ1 � 0.9, ρ2 � 0.999)
to optimize it. 'e initial learning rate is set to 1e−4 and
decays by 0.8 after every 50 epochs, for a total of 300 epochs of
training.

3.4. Experimental Results. In order to verify the advantages
of the method proposed in this paper, it is compared with
some existing methods, which are from different types. 'e
first ones are based on density estimation and probability
models including VEC [16] and Conv-VRNN [17]. 'e
second ones are single-class classification-based methods
includingMNAD-P [18] and AMDN [19].'e third ones are
reconstruction-based methods including Conv2D-AE [6]
and StackRNN [20]. 'e comparative results are given in
Table 1, and the results of other methods are obtained from
related papers.

From Table 1, it can be observed that the GAN en-
semble model proposed in this paper achieves better
results than the state-of-the-art methods on both datasets,
which proves the effectiveness of the proposed method. In
particular, it achieves an AUC of 91.1% on the CUHK
Avenue dataset. It is worth noting that the performance of
these methods on CUHK Avenue dataset is better than
that on ShanghaiTech dataset, which is due to the fact that
ShanghaiTech is a newly proposed dataset with a large
number of frames and a large variation in different sample
resolutions. In spite of this, the method proposed in this
paper achieves 75.1% frame-level AUC on the Shang-
haiTech dataset, which also exceeds the best VEC [16]
among other methods by 0.3%.

Figure 2 shows anomalous examples of the two test
datasets for the proposed method. 'e anomaly curve
shows the anomaly scores for all frames of the video in
turn, through which the performance of the method can
be observed more intuitively. 'e green area represents
the anomalous part of the ground truth, and the blue area
represents the abnormal area detected by the method. It
can be seen that the blue area can correspond to the green
area. In the normal frame part, the proposed GAN en-
sembles have low anomaly scores and are very stable. Also,
when anomalies occur, such as bicycles and cars on the
sidewalk, fights, and pushes, the anomaly score suddenly
increases. 'e scores in the figure correspond exactly to the
occurrence of these scenes. All the above results show that the
proposed method can achieve superior results on video
anomaly detection by comparison with some state-of-the-art
methods.

Table 1: Comparison of frame-level anomaly detection performance with the state-of-the-art methods (AUC (%)).

Methods CUHK Avenue ShanghaiTech
VEC [16] 90.2 74.8
Conv-VRNN [17] 85.8 —
MNAD-P [18] 88.5 70.5
AMDN [19] 84.6 —
Conv2D-AE [6] 70.2 —
StackRNN [16] 80.9 68.0
Proposed 90.6 75.1
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Figure 2: Two examples of anomaly detection comparison on CUHK Avenue dataset and ShanghaiTech dataset.
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4. Conclusion

'is paper introduces ensemble learning into a GAN-based
anomaly model for anomaly detection. 'e discriminator of
GAN is very effective for anomaly detection, and ensemble
learning can further improve the training of the discrimi-
nator. 'erefore, the method proposed in this paper is not a
simple combination of ensemble learning and GAN. 'e
ensemble learning can effectively affect the prediction quality.
Experiments on two datasets demonstrate that the proposed
method outperforms some state-of-the-art methods for video
anomaly detection. Extensive experiments show that the
ensemble approach achieves superior results on both datasets
compared to a single model [21, 22].
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