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�e semisupervised semantic segmentation method uses unlabeled data to e�ectively reduce the required labeled data, and the
pseudo supervision performance is greatly in�uenced by pseudo labels. �erefore, we propose a semisupervised semantic
segmentation method based on mutual correction learning, which e�ectively corrects the wrong convergence direction of pseudo
supervision. �e well-calibrated segmentation con�dence maps are generated through the multiscale feature fusion attention
mechanism module. More importantly, using internal knowledge, a mutual correction mechanism based on consistency reg-
ularization is proposed to correct the convergence direction of pseudo labels during cross pseudo supervision. �e multiscale
feature fusion attention mechanism module and mutual correction learning improve the accuracy of the entire learning process.
Experiments show that the MIoU (mean intersection over union) reaches 75.32%, 77.80%, 78.95%, and 79.16% using 1/16, 1/8, 1/
4, and 1/2 labeled data on PASCAL VOC 2012. �e results show that the new approach achieves an advanced level.

1. Introduction

Asa fundamental task, semantic segmentation iswidelyused in
medical image diagnosis [1], automatic driving [2], and other
�elds, which is the process of de�ning the boundaries between
the various semantic entities in an image. From a technical
point of view, each pixel in the image is assigned a category or
semantic label. With the development of deep learning, fully
supervised semantic segmentations [3–7] achieve success, but
they all need enough pixel-level labels to complete the rep-
resentation learning, which requires a lot of manpower.

Weakly supervised and semisupervised semantic seg-
mentation e�ectively reduces the annotation burden.
Weakly supervised methods use weak annotations as labels
to train segmentation models. Semisupervised methods
combine additional unlabeled data with a small amount of
labeled data to improve segmentation model performance
and close the gap with supervised models trained from fully
pixel-labeled data. How to use unlabeled data for training

models to get good segmentation performance is a problem
we need to solve.

In semisupervised semantic segmentation, the methods
are mainly based on adversarial learning [8–10] and con-
sistency regularization [11, 12]. �e generative adversarial
network (GAN)-based approach [8] proposed a full con-
volution discriminator, which can learn to distinguish the
ground truth and the output of the generator, enhancing the
consistency between the predicted maps of the segmentation
network and the ground truth. Consistency regularization
enforces the prediction consistency of perturbations by
increasing the input image perturbation [11, 12], the feature
perturbation [13], and the network perturbation [14] to
make the prediction consistent among the output of multiple
perturbations. Chen et al. [15] proposed the cross pseudo
supervision loss, in which unlabeled data were input into
two segmentation networks with di�erent initializations to
generate pseudo labels for cross supervision and strengthen
the consistency of the model.
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However, the cross pseudo supervision still has two
drawbacks. First, the segmentation network generates inac-
curate pseudo labels to guide model learning, which damages
the model accuracy, and pseudo labels are directly generated
by the confidence segmentation maps of unlabeled images,
completely ignoring the ability of the network itself to im-
prove pseudo labels. Second, the cross pseudo supervision is
plagued by confirmation bias and tends to overfitting pseudo
labels that are incorrectly predicted. After one segmentation
network predicts the wrong label output, the cross pseudo
supervision trains the other model with wrong knowledge,
thus hindering the cross learning of the model.

To address the above two problems, we propose a new
semisupervised semantic segmentationmethod based on cross
pseudo supervision. Many works combine consistency regu-
larization with pseudo labels, our proposed method also in-
cludes pseudo labels [16–18] and utilizes pseudo segmentation
maps to enhance consistency. To address the first problem, we
introduce the multiscale feature fusion attention mechanism
module [19] to generate well-calibrated segmentation confi-
dence maps, and the multiscale feature fusion attention
mechanism mode fuses high-level feature maps and low-level
feature maps to generate segmentation confidence maps with
higher quality. To address the second problem, we propose
mutual correction learning to improve the model convergence
in the wrong direction caused by pseudo labels. -e mutual
correction loss uses the internal knowledge of pseudo labels for
mutual correction, which not only strengthens the consistency
of the network but also corrects the learning direction of the
model. In this way, the segmentation performance of con-
sistency training is greatly improved. To sum up, our two-fold
contributions are as follows:

(i) We propose an effective module to generate better
quality segmentation confidence maps by fusing
low-level texture information and high-level se-
mantic information of the features.

(ii) We propose mutual correction learning for semi-
supervised semantic segmentation, which uses the
intrinsic knowledge to correct the convergence di-
rection of the model and effectively ameliorates the
problem of model performance degradation by er-
roneous cross pseudo supervision.

-e rest of this article is arranged as follows: -e second
section introduces the related work of semisupervised semantic
segmentation. In the approach section, we describe the details
of mutual correction learning with pseudo labels. -e exper-
imental details and results are presented in the experiment
section. In the conclusion section, we summarize this paper.

1.1. Related Work

1.1.1. Fully Supervised Semantic Segmentation. Fully con-
volutional networks (FCNs) [3] can accept input images of
any size, and the deconvolution layer is used to perform
upsampling of the feature map of the last convolution layer
and predict each pixel. Although high-level features contain
rich semantic information, they cannot capture long-term

relationships well. -erefore, global pooling [4], dilated con-
volution [5], pyramid pooling [6], and attention mechanisms
[7] are used to better aggregate context. Deeplabv3+ [20] fuses
features of different scales to refine the object boundaries of the
segmentation results. However, training supervised segmen-
tation networks requires a large amount of labeled data, which
is expensive to collect. Our work alleviates the constraints of
annotated data by making efficient use of unlabeled data. To
make a fair comparison with previous works, we use Deep-
labv3+ as the backbone architecture.

1.1.2. Weakly Supervised Semantic Segmentation. Weakly
supervision is to further reduce the cost of data annotation
based on full supervision. Some early works use weak an-
notations such as bounding boxes [21–23], scribbles [24],
and image-level labels [25–28]. -e recent methods use object
location information to generate pseudo pixel annotations and
train the segmentation network, and their segmentation per-
formance is significantly improved. Al-Huda et al. [26] fused
activation maps and saliency maps to guide the model to
generate initial pixel-level annotations and generate more
accurate pixel labeling through iteration. Although promising
results have been obtained using the above methods, most of
them require additional training strategies. Al-Huda et al. [28]
proposed a new postprocessing method, which learned the
concept of the object scale from the intermediate features of
hierarchical structure through dynamic programming and
further improved the segmentation accuracy.

1.1.3. Semisupervised Semantic Segmentation. -e semi-
supervised method is based on incomplete supervised
learning, using partially labeled data and unlabeled data for
model training. -e semisupervised semantic segmentation
method is mainly based on the idea of consistent regula-
rization and pseudo labeling.

Consistency regularization enforces the model to make
consistent predictions concerning various perturbations. Its
effectiveness is based on the smoothing assumption or the
cluster assumption. -ese assumptions consider that data
pointing close to each other are likely from the same class,
which are often used in classification tasks [29, 30]. As for
semantic segmentation tasks, French and Ouali found that
semantic segmentation tasks do not fully comply with the
clustering assumption in [11, 13]. -erefore, Ouali et al. [13]
proposed to perturb the output of the encoder while
maintaining the clustering assumption and used multiple
auxiliary decoders to obtain a consistent prediction. French
et al. [11] found that mask-based enhancement strategies
were effective and introduced data enhancement technology
CutMix [31]. -e idea of CutMix is to mix samples by
replacing part region of the image with a patch from another
image and treat it as an extension of Cutout [32] and Mixup
[33]. Cross consistency training (CCT) [13] used shared
encoders and multiple decoders as segmentation networks,
and the prediction using different decoders enhanced
consistency. Mittal et al. [9] proposed a dual-branch method
for semisupervised semantic segmentation, the GAN-based
model solved the inaccuracy of low-level details, and the
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semisupervised multilabel classification model corrected the
misunderstanding of high-level information. Lai et al. [34]
proposed different contexts in the same area to enhance the
consistency of context awareness. Guided collaborative
training (GCT) [35] further used different initialization
segmentation networks to enhance the consistency of dis-
turbed network prediction. Our approach combines the
ideas of CutMix [31] and cross pseudo supervision (CPS)
[15] to enhance the consistency between mixed output and
mixed input prediction.

Pseudo labeling is a technique that utilizes unlabeled
data through feature learning and alternating pseudo label
prediction [16–18]. Its main goal is entropy minimization,
and it encourages the network to make confident pre-
dictions of unlabeled images and prevents features from
being trained to the wrong class. Chen et al. [17] proposed
a new two-branch network in which the pseudo network
extracted the correct pseudo labels as auxiliary supervised
information for the training segmentation network. Zhou
et al. [18] proposed a pseudo label enhancement strategy
to improve the quality of pseudo labels. -e key to pseudo
labeling is the quality of pseudo labels. Most models
[36, 37] refine pseudo labels from external guidance, such
as teachers. However, the teacher model is often fixed,
making the student inherit some inaccurate predictions
from the teacher. In order to generate better pseudo labels,
the recent approach is to update both the teacher and
student models, such as coteaching [38], dual students
[14], and metapseudo labels [39]. Furthermore, it is es-
sential that the model converges in the right direction at

the beginning of training. In the third section, mutual
correction learning is used to correct the convergence
direction of the model.

1.2. Approach. Semisupervised semantic segmentation uses
labeled imagesDl � xl, y∗  and unlabeled imagesDu � xu 

to learn a segmentation network. x ∈ RH×W×3 denotes the
images with a resolution of H × W, y∗ ∈ RH×W×K is the
ground truth corresponding to xl with pixels labeled by
Kclasses, andfis a segmentation network with a weight of θ.

-e approach proposed in the paper is shown in Fig-
ure 1. -e mutual correction learning model consists of two
parallel segmentation networks. f(θ1) and f(θ2) are the
same segmentation networks with different initialization.
-e network inputs are xu1, xu2, and xmix, unlabeled images
xu1 and xu2 are with the same augmentation, and xmix is
obtained through CutMix [31] by (1), where M ∈ (0, 1)W×H

is binary coding and represents the position of removing and
filling from two images:

xmix � M⊙ xu1 +(1 − M)⊙ xu2. (1)

p is the segmentation confidence map obtained after
softmax normalization. -e output structure with a weight
θ2 is the same as the output with θ1.

p11 � f xu1; θ1( , (2)

p12 � f xu2; θ1( , (3)
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Figure 1: Overview of mutual correction learning. Two images xu1 and xu2 are sampled from the unlabeled dataset. -e CutMix images are
generated by two source images, and they are all inputted into each segmentation network. pi1 and pi2 are mixed as pseudo segmentation
maps ymixi to supervise the other segmentation network. ⊕: CutMix, MFFA: multiscale feature fusion attention mechanism module, Lmc:
mutual correction loss, Lcps: cross pseudo supervision loss, p: segmentation confidence map, ymixi: predicted one-hot label map, and SE
module: squeeze-and-excitation module.
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pmix1 � f xmix; θ1( , (4)

y is the predicted pseudo label. At each position i, the
pseudo label y is the one-hot map computed by the seg-
mentation confidence map p, and the value of M in (5) is the
same as that in Eq. (1).

ymix1 � M⊙p11 + (1 − M)⊙p12. (5)

1.2.1. Multiscale Feature Fusion Attention Mechanism
Module. Since generating pseudo labels with rich semantic
information requires multiple convolution operations to
continuously extract features, the dimension of features
continues to expand, resulting in serious high-dimensional
information redundancy. When all channel features are
fused, the importance of features in each channel is not
considered. Hence, Hu et al. [19] proposed the squeeze-and-
excitation (SE) module for the adaptive fusion of channel
features to reduce the redundancy of high-dimensional
features.

-is paper introduces the multiscale feature fusion
attention mechanism module to fuse high-level and low-
level feature maps. -e attention mechanism uses two SE
modules to extract different attention features from low-
level features to high-level features, as shown in Figure 2.
-e module contains location details in low-level features
and semantic information in high-level features to im-
prove the accuracy of the prediction of different target
boundaries.

In (6), the role of the global mean pooling (GAP) layer is
to integrate global spatial information. It takes the feature
map as input to obtain a feature vector containing semantic
correlation. -e attention vector is obtained by (7), and the
output x of the encoder is generated by eq (8).

g xk(  �
1

W × H


H

i�1


W

j�1
xk(i, j), (6)

where k � 1, 2, 3 · · · d, dis channel dimensions, and xkis the
channel input of the module.

Ac � δ2 δ1 g(x) + bα  + bβ . (7)

x � [x1, x2, · · · , xd], g is the GAP layer, δ1 and δ2 are
activation functions ReLU and sigmoid, respectively, and bα
and bβ are the bias.

x � Ac ⊗x. (8)

-e output of the encoder is the sum of low-level xl and
high-level xh, which is decoded to obtain the segmentation
confidence map.

1.2.2. Mutual Correction Learning. -e two segmentation
networks have different learning capabilities after different
initialization, and they can learn online from the pseudo
labels generated by each other. In the training process, if the
segmentation network f(θ1) generates poor quality one-hot
labels ymix1, the segmentation network f(θ2) produces a
good quality confidence map pmix2, and the model may
converge in the wrong direction guided by the poor quality
label; the self-correction ability of the cross pseudo super-
vision is limited, which may degrade the performance of the
model.

In order to prevent the model from converging in the
wrong direction, we propose the mutual correction loss to
correct this problem, and the training objectives include
three losses: supervision loss Ls, mutual correction loss
Lmc, and cross pseudo supervision loss Lcps. -e super-
vision loss is not marked in the network structure diagram.

Ls: the labeled image xl does not require CutMix and is
input into the two networks for supervised learning. -e
supervision loss Ls can be written as follows:

Ls �
1

Nl





Dl

(1/W × H) 
W×H

i�1
lce p

i
1,y
∗ i
1  +lce p

i
2,y
∗ i
2  .

(9)

Nl represents the number of labeled images in a batch,
and W and H represent the width and height of the input
image. lce is the standard cross entropy loss function and
y∗ i
1 (y∗ i

2 ) is the ground truth.
Lmc: we propose a mutual correction loss Lmc to make

the model have the ability to self-correct. Unlabeled images
xu1 and xu2 are input to the network f(θ1) and f(θ2),
respectively, to produce the corresponding confidence maps
p11, p12 and p21, p22. Cross entropy describes the difficulty of
expressing probability distributions p11 (p12) through
probability distributions p21 (p22). -e smaller the value of
cross entropy is, the closer the two probability distributions
are. According to the consistency principle, the confidence
map similarity of p11 and p21 should be higher. In other
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Figure 2: MFFA: multiscale feature fusion attention mechanism module. σ: sigmoid, ⊗ : element multiplication, and ⊕: element addition.
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words, the loss between (p11, p21) and (p12, p22) should be as
small as possible, so the mutual correction loss Lmc can be
written in the following form:

Lmc �
1

Nu




Du

(1/W×H) 
W×H

i�1
lce p

i
11,p

i
21 +lce p

i
12,p

i
22  .

(10)

Lcps [15]: -e cross pseudo supervision loss is sym-
metric, and the pseudo label ymix1 is used to supervise the
confidencemap pmix2 generated by another network, and the
other one uses the pseudo label ymix2 to supervise the
confidence map pmix1. -e cross pseudo supervision loss
Lcps can be written in the following form:

Lcps �
1

Nu





Du

(1/W × H) 
W×H

i�1
lce p

i
mix1, y

i
mix2 

+lce p
i
mix2, y

i
mix1 .

(11)

When training the segmentation network, we use
multiple loss constraints on the segmentation network and
minimize them for tuning. c and λ are the hyperparameters
set by the experiment, and the loss function of the whole
training can be written as follows:

L � Ls + cLmc + λLcps. (12)

1.3. Experiments

1.3.1. Datasets. PASCAL VOC 2012 [40] is the most widely
used benchmark dataset for semantic segmentation tasks.
Pascal VOC 2012 training set used in this paper contains
10,582 images and annotations, and the validation set
contains 1449 images and annotations. PASCAL VOC has a
total of 20 categories, such as aircraft, bicycles, birds, and
boats.

Cityscapes [41] contains tagged images of urban street
scenes taken from vehicles driven in European cities,
specifically for semantic understanding of urban street
scenes. It has 19 category tags and contains 5000 finely
labeled images, including 2975 images for network
training, 500 images for network verification, and 1525
images for testing. In addition, we only used the fine
annotation graph for training.

Following the division protocol of GCT [35], the entire
training set was randomly divided into two groups, with 1/2
(5291), 1/4 (2646), 1/8 (1323), and 1/16 (662) of the whole
training set as the labeled set.

1.3.2. Evaluation Metrics. Mean intersection over union
(MIoU) is a common evaluation metric in semantic seg-
mentation. In (13), where TPc, FPc, and FNc represent the
prediction results of true positive, false positive, and false
negative of category c, C represents the total number of
categories.

MIoU �
1
C



C

c�1
TPc/TPc + FPc + FNc( . (13)

For all experiments, we used only one network for in-
ferential prediction, testing the results of the 1456 PASCAL
VOC 2012 value set (or 500 Cityscapes value set).

1.3.3. Implementation Details. -e PyTorch deep learning
framework was used to complete the proposed method and
related experiments. We used ResNet-101 pretrained on
ImageNet as backbone and SyncBN [42] for training. Our
method set weight decay as 0.0005 and momentum as 0.9.
-e loss weights c and λ are 1 and 1.5 on PASCAL VOC and
1.5 and 6 on cityscapes. We used a multiple learning rate
strategy, and the initial learning rate values were set to
0.0025 for PASCAL VOC, while 0.02 for Cityscapes.

1.3.4. Comparison with Other Methods. In Figure 3, the
improvements of this method are shown under different
label proportions. All methods are based on DeepLabv3+.

Figure 3(a) shows that our approach using ResNet-50
consistently outperforms the supervised baseline approach
on PASCAL VOC 2012. -e improvements of our method
over the baseline method are 8.28%, 6.80%, 4.23% and 3.28%
under 1/16, 1/8, 1/4, and 1/2 scale settings separately.
Figure 3(b) shows that our method uses ResNet-101 for
8.45%, 6.26%, 5.26%, and 4.94% lift at 1/16, 1/8, 1/4, and 1/2
scale settings, respectively.

We compared our method with some recent semi-
supervised segmentation methods, including cross consis-
tency training (CCT) [13], guided collaborative training
(GCT) [35], context-aware consistency (CAC) [34], and
cross pseudo supervision (CPS) [15] under different seg-
mentation protocols. Table 1 shows the experimental
comparison results on PASCAL VOC 2012. In different scale
settings, our method is superior to other methods, whether
ResNet-50 or ResNet-101. Especially in 1/8 and 1/4 pro-
portions, it was 1.43% and 1.20% and 1.36% and 1.27%
higher than CPS, respectively.

We further verified the effectiveness of the proposed
method by comparing with other methods on Cityscapes in
Table 2. Compared with CCT and GCT, the accuracy of our
method is greatly improved with a small number of labeled
images, especially in the case of 1/16.-emain reason for the
low improvement on Cityscapes results compared to
PASCAL VOC 2012 is that PASCAL VOC 2012 is an object-
centered semantically segmentation dataset with an average
of three objects per image. Cityscapes is a highly complex
urban street scene, and the resolution and scene complexity
of each picture are much higher than those of PASCAL VOC
2012, which will lead to the inclusion of more complex
information in the mutual correction learning and weaken
the ability of mutual correction. -erefore, our method is
more suitable for each dataset with fewer graph object
instances.
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1.3.5. Ablation Study. -e ablation study in Table 3 shows
the contribution of each function. -e ablation study was
based on PASCAL VOC 2012 with 1/8 labeled data.

DeepLabv3+ and ResNet-50 were the segmentation net-
works. -e supervised loss training (SupOnly) model was
used as the benchmark of our work.

In Table 3, ID 2 shows the performance improvement
with cross pseudo supervision losses, with 5.37% MIoU
improvement on PASCAL VOC 2012 compared to ID 1 with
supervised losses alone.

In order to prove the validity of the multiscale feature
fusion attention mechanism module, we made a com-
parison between the model with MFFA and the model
with the cross pseudo supervised loss. Features of dif-
ferent scales combine rich localization and semantic
information to generate accurate segmentation maps of
boundary information. ID 2 and ID 3 showed that the
model with the MFFA module improved by 0.36%
compared with the model with cross pseudo supervision
loss. In addition, ID 4 and ID 5 found that MFFA im-
proved by 0.82%.

In ID 2 and ID 4, the effectiveness of the mutual cor-
rection loss was compared with that of the supervised loss
and cross pseudo supervised loss. -e cross pseudo super-
vision learns the error information and corrects it effectively
through the mutual correction loss, and MIoU shows an
increase of 0.61%. ID 3 and ID 5 found that the mutual
correction loss increased MIoU by 1.07% while using the
MFFA module. According to ID 5, MIoU improved by
1.43% with the multiscale feature fusion attention mecha-
nism module and mutual correction loss.
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Figure 3: Comparison with SupOnly in PASCAL VOC 2012 (1/2, 1/4, 1/8, 1/16). (a) ResNet-50. (b) ResNet-101.

Table 1: Comparison with other methods on PASCAL VOC 2012
under different partition protocols. -e segmentation network is
DeepLabv3+. SupOnly represents supervised training, using only
labeled data.

Method
ResNet-50

1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291)
SupOnly 64.20 68.30 71.87 73.12
CCT [13] 65.22 70.87 73.43 74.75
GCT [35] 64.05 70.47 73.45 75.20
CAC [34] 70.10 72.40 74.00 76.50
CPS [15] 71.98 73.67 74.90 76.15
Ours 72.48 75.10 76.10 76.40

Method ResNet-101
1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291)

SupOnly 66.87 71.54 73.69 74.22
CCT [13] 67.94 73.00 76.17 77.56
GCT [35] 69.77 73.30 75.25 77.14
CAC [34] 72.40 74.60 76.30 78.20
CPS [15] 74.48 76.44 77.68 78.64
Ours 75.32 77.80 78.95 79.16
-e meaning of the bold values represent the best results.

Table 2: Comparison with other methods on Cityscapes under
different partition protocols. -e segmentation network is Deep-
Labv3+, and the backbone is ResNet-50. SupOnly represents su-
pervised training, using only labeled data.

Method
ResNet-50

1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)
CCT [13] 66.35 72.46 75.68 76.78
GCT [35] 65.81 71.33 75.30 77.09
CAC [34] — 69.70 72.70 —
CPS [15] 74.47 76.61 77.83 78.77
Ours 74.47 76.75 78.03 78.89
-e meaning of the bold values represent the best results.

Table 3: Ablation study. Ls: supervised loss. Lcps: cross pseudo
supervised loss. MFFA: multiscale feature fusion attention
mechanism module. Lmc: mutual correction loss.

ID Ls Lcps MFFA Lmc MIoU

1 ✓ 68.30
2 ✓ ✓ 73.67
3 ✓ ✓ ✓ 74.03
4 ✓ ✓ ✓ 74.28
5 ✓ ✓ ✓ ✓ 75.10

6 Computational Intelligence and Neuroscience



1.3.6. Qualitative Results. Figure 4 shows the results of
different methods on PASCAL VOC 2012. -e actual
labels are shown in column (b), CPS (column (c)), and
predicted boundary errors, and our method corrects
these problems in column (d). Obviously, mutual cor-
rection learning can more accurately predict the edges
and categories of objects, thus improving the feature
representation of the model.

1.3.7. Limitations. When the output predictions of the two
segmentation networks are both wrong, the error correction
of the mutual correction learning is limited. -e results also
show that our approach is influenced by the distribution of
long-tail classes on semantic segmentation datasets, which

makes pseudo labels biased towards majority classes, and we
will continue to study it and improve further.

2. Conclusion

We propose a semisupervised semantic segmentation ap-
proach based on mutual correction learning. -e MFFA
module is introduced to generate confidence maps, which in
turn yield well-calibrated pseudo labels. To alleviate the
problem of poor quality pseudo labels guiding the model to
learn misinformation, we propose a mutual correction loss,
utilizing the internal knowledge to correct the convergence
direction of the model. Experiments show our approach
further narrows the gap between fully supervised and
semisupervised semantic segmentation.

(a) (b) (c) (d)

Figure 4: Example qualitative results from PASCAL VOC 2012. All the approaches are trained under 1/8 with ResNet-101 as the backbone:
(a) input; (b) ground truth; (c) CPS; (d) ours.
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