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�e combination of deep neural networks and reinforcement learning had received more and more attention in recent years, and
the attention of reinforcement learning of single agent was slowly getting transferred to multiagent. Regret minimization was a
new concept in the theory of gaming. In some game issues that Nash equilibrium was not the optimal solution, the regret
minimization had better performance. Herein, we introduce the regret minimization into multiagent reinforcement learning and
propose a multiagent regret minimum algorithm.�is chapter �rst introduces the Nash Q-learning algorithm and uses the overall
framework of Nash Q-learning to minimize regrets into the multiagent reinforcement learning and then verify the e�ectiveness of
the algorithm in the experiment.

1. Introduction

Strengthening learning allows agent to continuously un-
dergo self-learning through the way of interacting with the
environment and ultimately meets the expected goals. It is a
type of try and error (TE) learning. TE learning �rst
appeared in the study of cats in 1898, and he conducted TE
experiments on cats [1]. Watkins and Dayan proposed the
famous Q-learning algorithm in 1989 [2], which combines
time series di�erence with the Markov decision process
(MDP) and Bellman equation. It is the most classic algo-
rithm of reinforcement learning. In 2015,Mnih proposed the
deep Q-learning network [3] (DQN) by combining the deep
neural network and Q-learning and achieved superhuman
performance in the game. Since then, reinforcement
learning has fully entered the deep reinforcement learning
stage.

�e achievements of deep strengthening learning are
remarkable. DQN could achieve better results in 49 ATARI
games than professional players. Google’s DeepMind team
created the Go robot AlphaGo in 2016, which uses the DQN
network and could learn itself. AlphaGo won the game with
the top Go master of human beings, and Li Shishi’s games
won all of them [4]. In-depth reinforcement learning has

also been applied to solve problems such as MUJUCO [5]
and 3D maze. In-depth strengthening learning has become
themost potential research direction in the complexity of the
real world and has also made great contributions in the �eld
of arti�cial agent.

It is di¥cult to migrate to multiagent in the success of a
single agent. Multiagent reinforcement learning (MARL)
and single agent reinforcement learning from the state of the
most di�erent one is determined by multiple agents rather
than a single agent. As the environment becomes uncertain,
each agent must face the optimal strategy movement
problem; that is, the optimal strategy is constantly changing
with the changes in other agent parties [6, 7]. Because of this,
most of the single agent reinforcement learning algorithms
are not e�ective in the multiagent environment, and as the
state action space of each agent grows in the index level, the
problem of Gaowei curse have become more serious in the
multiagent environment. Hence, MARL proposes a series of
new technologies and methods to achieve the purpose of
accelerating the entire learning process through sharing of
knowledge and learning between agent [8, 9].

Another di�erence between multiagent and single agent
to enhance learning is that there aremultiple agents, and there
could be cooperation or competition (game) relationships
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between agents, and this relationship is determined by the
reward function [10]. If there is a purely cooperative rela-
tionship between the agents, their reward functions are the
same, and the learning goals are to maximize the common
income. If there is a purely competitive relationship between
the agents, their reward function is zero-sum. If there is
neither a complete cooperation nor a complete competition,
their relationship is called mixed cooperation and competi-
tion [11]. Main challenges of multiagent reinforcement
learning are the instability of the environment, some ob-
servations, rewards allocation, and computing complexity.
*e calculation complexity is a problem that all multiagent
learning algorithms have to face. *e calculation complexity
contains other challenges.

*e combination of regrets in online learning and the
combination of multiagent strengthening learning is a new
direction in the development of multiagent in recent years.
Online learning is a type of machine learning. Unfortu-
nately, the difference between the rewards related to the
action and the return he actual actions is big [12], the regret
minimum related algorithm in the online learning could be
used to solve the problem of expansion game under non-
perfect information, such as the virtual regret minimization
(Counterfactual Regret Minimization, CFR [13]) and its
latest variant CFR+ [14]. CFR could be achieved in the game
of double zero and nonperfect information game to Nash
balance. Brown and Sandholm could defeat top professional
players in one-to-one Texas Poker with the help of Sand-
holm. Noam Brown's agent Pluribus [15] could achieve the
same excellent results in the six Texas Poker. Noam Brown
and others combined CFR with deep neural networks to
propose a deeper virtual regret minimum algorithm (DCFR
[16]). In the field of multiagent reinforcement learning, the
deep role [17] algorithm proposed by combining CFR and
self-play could identify partners and opponents in the game.
A regret-based minimization algorithm (ARM [18]) was
proposed by Jin et al in order to combine the concept of
advantageous functions in enhanced learning with CFR.
Steinber [19] also combines CFR and enhanced learning. All
these items should be redirected toMARL based on the Nash
Q-learning framework.

Nash Q-learning [20] use Nash balance to solve the
problem of zero-sum game under the multiagent body.
NASH Q-learning is an early work of multiagents to
strengthen learning. In the face of the instability of multi-
agent reinforcement learning, it is not possible to use neural
networks for powerful search, but to search each agent first,
whenever, their decisions are based on Nash balance. *e
author also proves the convergence of the algorithm under
the theoretical level.*is article draws on this idea to give the
agent a priori knowledge so that their decisions are mini-
mized based on regret and proposes multiagent regret
minimum algorithms. Multiagent regrets the minimum
algorithm compared to Nash Q-learning, which could not
only deal with zero-sum game problems but also handle
nonzero-sum games. In Nash Q-learning, theQ function has
made two changes in two aspects.*e first is to overcome the
instability. Another is the input of the Q function of the
current state and the joint action.

We herein propose a multiagent regret minimization
and strengthen the learning (MARMQ) algorithm.MARMQ
was above the Nash Q-learning framework. *e selection
part of the counterpart was improved and Lemke–Howson
algorithm was replaced with iterative regret minimum al-
gorithms not looking for the Nash balance point but to
minimize the motion of each agent. At the same time, when
the Q value was updated, the Q value of the minimum
movement in the next state was used as part of the update
and ultimately enabled the agent to learn the regret mini-
mum strategy.

2. Algorithm Design and Analysis

2.1. Construct of Multiagent Regret Minimization Q-Learning
(MARMQ). Changing the income function U to the Q
function, it was easy to introduce the relevant concepts in
iterative regret minimization algorithms into multiagent
strengthening learning.

Definition 1. DOwas defined as delete operator, DO (Qi, Ai)
deleted the movement of the agent i in action space Ai
according to Qi and did not have the minimum regret value
to delete it, and only retained the action with the minimum
regret:

DO Qi, Ai(  � ai:Regret
ai∈Ai

ai(  � Regret Ai( 
⎧⎨

⎩

⎫⎬

⎭. (1)

Definition 2. *e DOtotal operator was defined as not de-
leting the mobility of the joint action space of the agent:

DOtotal Q1, . . . , Qn, A1, . . . , An( � DO Q1, A1( 

× · · · × DO Qn, An( .
(2)

After deleting a movement space to minimize the
nonregrets, the remaining movement constituted a new
action space.*e regret of the action of this new action space
may change, and it was necessary to delete the nonregret
minimization of the movement until the action space no
longer changes.

Definition 3. *e DO∞total operator was to minimize the
computing son to iterate. It would repeat deletion unless
regret minimum combined action until the joint action
space no longer changed:

DO
∞
total Q1,...,Qn,A1,... ,An( �DO

i
total Q1,... ,Qn,RMi−1

total ,

DO
i
total �DO

i−1
total.

(3)

When the action space of each agent was limited, DO∞total

must exist because the deletion of action could not be
continued. *erefore, in order to ensure the feasibility of the
algorithm, MARMQ was only suitable for the environment
with limited space and could not solve the problem of
continuous action space.
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To execute the calculation and update the Q value, we
need to redefine the V function and Q function under
multiagent to strengthen learning.

Definition 4. In random games, the v function of agent i was
defined on (s, b1, . . . , bn), which was the expectation of
future return when all agent parties execute the regret
minimum strategy. AKI means the intelligent agent which is
the action space of the body I at k times:

vi s, b1, . . . , bn(  � v
i

s, DO
∞
total( 

� E 
∞

k�0
c

k
ri,k+1 s0, DO

∞
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⎩
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⎞⎠

⎫⎬

⎭.

(4)

Definition 5. *e Q function of agent i was defined on
(s, d1, . . . , dn), which was the reward of the current joint
action and the expectations of all agent parties when the
regret minimum strategy was executed:

Qi s,d1, . . . ,dn(  � ri s,d1, . . . ,dn( 

+e 

s′∈S

p s′ s,d1, . . . ,dn

 vi s′,b1, . . . ,bn( .

(5)

*e updated formula of Q value is

Q
t+1
i s,d1,...,dn( � 1−ft( Q

t
i s,d1,...,dn( 

+ft r
t
i +eQ

t
i s′,b1 s′( ,...,bn s′( (  .

(6)

Formulas (5) and (6) were regret minimization
strategies.

b1, . . . , bn � DO
∞
total. (7)

Although MARMQ and Nash Q-learning had many
similarities, there is a difference about how to use the Q value
of the next state to update the value of the current state. Nash
Q-learning calculated a balanced strategy with the Q table of
all agents in the following state and used the internal ac-
cumulation of a balanced strategy and the vector of the Q
value of each agent as part of theQ value of the update.*eQ
values of all movements should be iterative regret mini-
mization calculations to find the minimum movement of
regret and use theQ value of the action as part of the update.
In contrast, the single agent was used to directly select the
optimal Q value. *e specific differences are shown in
Table 1.

2.2. Traveler Game under MARMQ. First, the performance
of the MARMQ algorithm would be verified in the traveler’s
game. *e common characteristics of traveler game and
centipede game were that agent parties could choose to
cooperate to increase overall returns, but at the same time,
competition could also be selected to reduce the benefits of
the other party. *e higher the degree of cooperation, the
greater the income; the lower the degree of cooperation, the
smaller the income. *ere were two advantages while
fighting was two defeats.

*ere were two players in the traveler’s game, which
were quoted between 2 and 100, respectively. *e income of
the players with high offer was reduced to the price of players
with low quotation. Under the existing rules, if the two
players choose to cooperate to increase their quotation, their
income would increase. If players did not cooperate with
each other, they only chose to maximize their own interests.
Because people with low quotations had the highest benefits,
they would choose to reduce their quotation, but everyone’s
income would be reduced.

*e Nash balance solution was that both players would
choose the minimum quotation 2, and the tolerance of it-
erative regret was 97. *e experimental results are shown in
Figure 1. *e benefit of players in MARMQ was about 88,
and Nash Q-learning was about 8. *e income was 88 that
the lowest quotation of the two players was 86, which was
much better than Nash Q-learning. Regret minimization
under the player’s game in the game of travelers tend to
cooperate to raise quotes, and MARMQ uses regret mini-
mization strategies to choose behaviors and updates Q to
make players tend to increase the quotation so that MARMQ
could get higher returns. In this scenario, Nash balance was
the worst solution, so Nash Q-learning used Nash

Table 1: Definition of Q value under different algorithms.

Single Nash Regret
Q Q(s, a) Q(s, d1, . . . , dn) Q(s, d1, . . . , dn)

Updated
Q

Largest value under the next
state

Product of agent’s united Nash strategy and
Q value

Q value of minimum action under next state’s
regret value
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Figure 1: Experimental results of the traveler game.
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equilibrium as a strategy of agent. Each agent was also in line
with expectations that the effect of low quotation was also in
line with expectations.

2.3. Centipede Game underMARMQ. *e centipede game is
shown in Figure 2. In the centipede game, players 1 in the
first round first make decisions. If you chose not to cooperate
(D), the game would be over directly. Player 1 gets 0, and
player 2 gets 0. If the player 1 chose (R), it would enter the
second round, and it was the turn of the player 2 to choose. If
player 2 chooses not to cooperate (D), the game would be
over directly. Player 1 gets 1, and player 2 gets 3. If player 2
chooses cooperation (R), it would give the right to the
opponent and then enter the third round of the game. In the
third round, if the player 1 chooses not to cooperate (D), the
game would be over directly, player 1 gets 2, and player 2 gets
2. If the player 1 chooses the cooperation (R), it would enter
the fourth round and the player 2 gets to choose. If player 2
chooses not to cooperate (D), the game would be over di-
rectly. Player 1 gets 1, and player 2 gets 5. If the cooperation
(R) was selected, the game would be over, and both sides
would get 4.

First of all, to calculate the solution of the next iteration
of the regret minimum algorithm on the game, the first
round of regret matrix calculated based on the income, as
shown in Table 2. For convenience, player 1 in the matrix
could choose betrayal in the first, third, and fifth rounds, but
in the fourth round, the actual game ends. So the fifth round
of betrayal of player 1 represents that he chose cooperation
in the third round. Player 2 choosing the sixth round of
betrayal represents cooperation in the fourth round.
According to calculations, players’ regrets of betrayal in first,
third, and fifth rounds were 4, 2, and 1, respectively, so
player 1 would delete the first and third round betrayal
strategies. Players’ regrets in the second, fourth, and sixth
rounds of betrayal were 2, 1, and 1, respectively, so Player 2
would delete the second round of betrayal strategies and
then entered the second round of strategy to delete.

*e second round of the regret matrix is shown in
Table 3. One player had one strategy, so there was no need to
be deleted, and the regrets of the player 2 in the 4th and 6th
rounds of betrayal were 0 and 1, respectively. So under the
iterative regret minimum algorithm, player 1 would choose

to cooperate until the end, and player 2 would choose to
betray in the fourth round.

*e experimental results are shown in Figure 3. *e
benefits of the two players in Nash Q-learning were about 0,
indicating that the strategy of the first player was to choose to
betray the first round, which was consistent with the balance
of Nash. Under the Nash balance strategy, player 1 did not
allow the game to enter the second round in order to
maximize their own interests because players who also
executed the Nash balance strategy 2 would choose to end
the game in the second round and make themselves. To
maximize interests, the benefits of player 1 in this time were
less than that in the first round of betrayal.

*e results of Nash Q-learning were related to each agent
in the algorithm. MARMQ’s income was 4, which proves
that all players had chosen to cooperate to the end. Based on
the previous analysis, unfortunately the minimization
strategy would make players to give up in the fourth round
under a single cricket game. Player 1 benefits 1, and player 2
benefits 5. However, when the game was repeated, the
player’s strategy had changed, and they would choose to
cooperate till the end. It is because under the repeated game,
each player could choose to punish the other party’s un-
successful behavior. At this time, the value was far less than
the betrayal, so the final result of the two parties moved to
cooperation.

2.4. Grid-World under MARMQ. Grid-World was a classic
experimental environment for enhanced learning. Papers
such as Nash Q-learning were used to test the performance of
the algorithm. *ere were two agent parties in Grid-Worm.
As shown in Figure 4, each agent started in the corner of the
grid. *e target of each agent was to reach any target position

D Dd d

(0, 0) (-1, 3) (2, 2) (1, 5)

(4, 4)
rr 22 RR 11

Figure 2: Flow diagram of the centipede game.

Table 2: Regret matrix of the first round.

Player 2

Player 1

2 (2) 4 (1) 6 (1)
1 (4) 0,0 2,0 4,0
3 (2) 1,0 0,1 2,1
5 (1) 1,2 1,0 0,1

Table 3: Regret matrix of the second round.

Player 2

Player 1 4 (0) 6 (1)
5 (0) 0,0 0,1
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Figure 3: Experimental results of the centipede game.
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at the top. *e agent could only move one grid in each step,
and the direction of the movement could only be four di-
rections in the upper and lower left and right and could not
move obliquely. If the two agent parties tried to enter the same
grid at the same time, a collision occurs, and each agent would
not move. At the same time, it was punished by 10. In the end,
the two agent parties were rewarded by 100; otherwise, each
step was to be punished by 1.

Under the above rules, for the purpose of maximizing
income, MARMQ must ensure that both could go to the
target position as soon as possible. Because there were two
target positions, there was no competitive relationship be-
tween the agents; otherwise, they need to cooperate with
each other to avoid collisions and reach the target position as
soon as possible. At the same time, the goals of the two agent
parties could not be the same. If both agent parties chose the
left target, then the game would not end. It could move
towards your recent goals. It was difficult for the agent
parties to learn independently to complete different goals
while not colliding.

Set the size of the map to 3× 3 in the experiment in this
article. *e results of the experiment are shown in Figure 5,
where the y-axis represents the total income of the agent at
the end of this round, except for the number of steps used,
which meant the average return of one-step. MARMQ’s final
single-step reward was about 50, and Nash Q-learning was
only about 20, indicating that MARMQ was shorter than

Nash Q-learning. Both algorithms could make the agent
reach the target position, but the number of steps used by the
two agent parties in MARMQ was less than Nash
Q-learning. In Nash Q-learning, the two agents did not
choose the optimal path to reach the target, or the agent
chose a relatively far away position to make the goal, so that
the single-step income of the two agent parties was reduced.
*e differences between the results of MARMQ and Nash
Q-learning showed the different strategies of Nash equi-
librium and regret minimalization strategy. *e regret
minimization strategy tended to cooperate and considered
the maximum of global interests. *e reaction on the al-
gorithm Nash Q-learning would only make the agent reach
the target and would not make the overall benefits the
greatest, and MARMQ would consider global returns.
Another advantage of MARMQ was that MARMQ showed
low deviation and high reproducibility while the error band
of Nash Q-learning was larger and very unstable.

3. Conclusion

In summary, we had used regret minimization the study of
multiagent and put forward the MARMQ algorithm, and
compared it with Nash Q-learning. *e results showed that
MARMQ’s performance in Travelers Game, Centipede Game,
and Grid-World was better than Nash Q-learning. It showed
that when MARMQ uses regret minimization strategy of ac-
tion, it was better than the Nash strategy that was more
conducive to the maximization of its own interests. Nash
Q-learning was the maximization of their own interests as the
starting point.*is would often fall into the predicament of the
prisoner, and MARMQ was seeking to minimize the regret,
which relieved this trap to a certain extent. We also proposed
another form of training in MARMQ, i.e., independent
training. In independent training, each agent could no longer
use the Q table of other agent to minimize regret but to learn
the Q table of each agent. Such independent training had
undoubtedly increased time costs, but the performance in the
traveler’s game was very good. All algorithms and trainings
could pave the way to the direction of future research.
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