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Considering that collision accidents happen sometimes, it is necessary to predict the collision risk to ensure navigation safety.
With the information construction in maritime and the popularity of automatic identification system application, it is more
convenient to obtain ship navigation dynamics. How to obtain ship encounter dynamic parameters through automatic iden-
tification system information, assess ship collision risk, find out dangerous target ships, and give early warning and guarantee for
ship navigation safety, is a problem that scholars have been studying. As an index to measure the degree of ship collision risk, CRI,
namely, collision risk index, is usually obtained by calculating ship encounter parameters and comprehensive analysis. )ere are
many factors that affect CRI, and the values of many parameters depend on expert judgment. )e corresponding CRI has
nonlinear and complex characteristics, which is highly correlated with the time sequence. In order to enhance the prediction
accuracy and efficiency, PSO-LSTM neural network is applied in the paper to predict CRI. Experiments show that PSO-LSTM
neural network can effectively predict collision risk and provide a reference for navigation safety.

1. Introduction

Ship collision accidents are the main type of marine acci-
dent, and are more likely to occur in port areas with dense
ship traffic. It is usually accompanied by casualties, property
losses and marine environmental pollution, which often
attracts extensive attention. For example, according to
Reference [1], at approximately pm 7:50, Jan.6th, 2018, the
Panamanian tanker “Sanchi” collided with the bulk carrier
“CF CRYSTAL,” resulting in ship sinking, casualties and oil
pollution. Due to the serious consequences, people pay
special attention to ship collision, which is assessed, forecast
and forewarning, so as to avoid the occurrence of collision
accidents and reduce the related losses. Some scholars have
proposed the ship collision risk index (CRI), which is widely
used to quantify the degree of collision risk [2]. Generally,
parameters such as DCPA and TCPA are used to quantify
ship collision risk [3–5]. )en, the ship domain, which is a
safe area around the own ship, is applied to measure the

collision risk [6–9]. In Reference [10], once the target ship
enters the own ship’s domain, there may be collision risk.
With the popularity of AIS data and the convenience of data
acquisition, more and more new methods have been used to
evaluate ship collision risk. In References [11, 12], AIS data
are used to measure the risk level of ship collision in the
waters. Reference [13] uses evidence theory to evaluate ship
collision analysis. According to Reference [14], the artificial
neural network method is used to quantify ship collision
analysis. Fuzzy inference method is used to calculate ship
collision risk by Reference [15]. In Reference [16], a
quantitative assessment algorithm based on SVM technol-
ogy can obtain collision risk according to ship sailing status.
From Reference [17], images are constructed by AIS data,
and then a method based on CNN and image recognition is
used to classify ship collision risks. In short, with the trend of
intelligent navigation, more and more intelligent technol-
ogies have begun to be applied in the field of marine
transportation to serve and ensure the safety of ship
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navigation. Considering that the ship driver not only needs
to know the current collision risk of the ship, but also wants
to predict the possible risk, it is necessary to predict the
collision risk. Taking an example as follows: reference [18]
deduces an ordered probabilistic regression model to study
perceived collision risk. In Reference [19], the domain
method is adopted to carry out dynamic risk warning for
ship encounter process.

LSTM neural network, as an excellent deep learning
model, has been widely used. An automatic collision
avoidance algorithm based on LSTM for ship continuous
motion space is proposed in reference [20], and the ex-
periment shows that it is effective. PSO can optimize
hyperparameters of LSTM. )erefore, PSO-LSTM neural
network can be used for more accurate prediction. For
instance, according to reference [21], ship traffic flow pre-
diction is currently faced with problems of high randomness,
many influencing factors and low accuracy, so PSO-LSTM
prediction model is proposed to improve the prediction
accuracy. In reference [22], due to the high randomness and
complexity of ships sailing at sea, it is difficult to make
accurate prediction. PSO-LSTM is applied in forecast ship’s
comprehensive posture. Considering that the measurement
of collision risk depends on expert judgment, the ship
collision risk index has the characteristics of nonlinear,
random, empirical, fuzzy and complex, etc. Meanwhile, as
ship encounter process parameters are a time sequence with
correlation, this paper proposes using PSO-LSTMmodel for
prediction analysis.

)e main contribution of this paper is as follows: PSO-
LSTM model is applied to predict collision risk. )e feasi-
bility of the prediction method is analyzed through the
design of single-ship and multi-ship encounter situation
experiments. )e change characteristics of CRI during ship
encounter are studied and visualized. AIS data is collected by
ship maneuverability simulator test to ensure the correct-
ness, integrity and synchronization of data, so as to ensure
the accuracy of CRI prediction data sources. By comparing
with pilot’s experience in BRM practical operation test, the
conformity of CRI and its prediction with the actual situ-
ation is verified.

)e rest of this paper is organized as follows: in Section 2,
the quantitative methods of collision risk are discussed,
including ship collision parameters and fuzzy membership
quantification methods. In Section 3, the basic principles of
PSO algorithm and LSTM model are introduced, and the
ship collision risk prediction model using PSO-LSTM is
established. Simulation experiments are taken in Section 4.
Finally, the conclusion is drawn in Section 5.

2. Quantitative Method of Ship Collision Risk

At present, ship collision risk quantification methods in-
clude the collision theory analytical calculation method, ship
domainmethod, fuzzy mathematics method, artificial neural
network method, data statistics method, evidence theory
method, support vector machine method, etc. Because
collision risk index is a fuzzy concept, the fuzzy mathe-
matical method is widely used. In this paper, AIS data is used

to calculate ship encounter parameters. On this basis, CRI is
obtained by the fuzzy membership degree, so as to obtain the
time sequence data set required for ship collision risk
prediction.

2.1. Calculation of Ship Encounter Parameters. In the process
of ship encounter, DCAP, TCPA and other parameters are
usually used for quantitative analysis, so as to quantify
collision risk. Suppose that the own ship’s geographic co-
ordinate is (xo, yo), the speed is VO, and the course is φo; the
geographical coordinate of the target ship is (xt, yt), the
speed is Vt, and the course is φt. )e geometric relation of
the parameters is shown in Figure 1, and the calculation
formula of relevant parameters [23] is as follows: where D is
the relative distance (unit: nautical mile), Vr is the relative
ship speed (unit: knot), φr is the relative heading (unit:
degree), and q is the relative bearing (unit: degree).)e value
of the arc-tangent function needs to be based on the position
relationship, and the range is [0, 360°]. In Reference [24],
DCPA is the minimum encounter distance (unit: nautical
mile), and TCPA is the minimum encounter time (unit:
minute). Considering the calculation requirements of the
membership function, DCPA and TCPA are greater than
zero in this paper, and absolute values are taken when there
are negative values.
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DCPA and TCPA are the main parameters used to
measure collision risk. When DCPA and TCPA are less than
the safety value, there may be a collision. However, to obtain
the collision risk, it is not enough to consider only DCPA
and TCPA. Other factors, such as distance and relative
orientation, etc., should also be considered.

2.2. CRI and Membership Function. CRI is used to measure
ship collision risk. Usually, the value range can be [0, 1]. )e
higher the value, the more dangerous it is. DCPA, TCPA, D,
q and k (ratio of the speeds of the other and own ship) can be
used as the constituent index to measure collision risk,
which is obtained by weighting the membership degree in
fuzzy mathematics. )is paper refers to the membership
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function in Reference [13] and the weighting coefficient
which is the survey results of the experts in Reference [25].

)e membership function and weighting coefficient of the
above parameters are as follows:
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where d1 is the minimal safe encounter distance, and d2 is
the absolute safe encounter distance in (2). t1 and t2 are the
time to reach the corresponding positions of D1 and D2 by
relative motion in (3). D1 is the latest steering distance, and
D2 is the moving boundary in (4). )e above parameters are

calculated according to Reference [12] and Reference [23]. In
(5), when q is equal to 19°; the collision danger degree is the
highest. k0 is usually taken as one in (6).

Weighting the membership degree of the above pa-
rameters, the collision risk index formula is as follows:

CRI � μ(DCPA)∗w1 + μ(TCPA)∗w2 + μ(D)∗w3 + μ(q)∗w4 + μ(K)∗w5, (7)
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Figure 1: Geometric relation diagram of ship encounter parameters.
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where the values of weight coefficientsw1,w2,w3,w4, andw5
are 0.36, 0.32, 0.14, 0.10, and 0.08, respectively.

3. Collision Risk Prediction Model

3.1. LSTM Model. LSTM neural network, namely long and
short memory neural network, is an improved network of
RNN [26]. According to Reference [27], LSTM model can
remember past information and store it for a long time by
adding additional memory units, which has strong gener-
alization ability, good learning ability for both large and
small data sets, and strong advantages in dealing with
nonlinear problems. LSTM model can reflect the time de-
pendence and correlation in time sequence data of AIS date
and predict ship collision risk. )e main structure of LSTM
model has three gates. Its basic structure is shown in
Figure 2.

)e forget gate ft determines the information to be
discarded and retained according to the unit state Ct−1 at the
previous moment, and the input xt determines the value to
be updated through σ and tanh respectively and generates
new candidate values for updating [27]. )e value after the
updating operation will be updated together with the Forget
Gate ft, and the updated unit state Ct is computed with the
tanh function and Output Gate ot and then outputs ht [28].
)e state update equation of LSTM basic unit are equations
(8)–(13).

ft � σ Wf. ht−1, xt􏼂 􏼃􏼐 􏼑 + bf, (8)

it � σ Wf. ht−1, xt􏼂 􏼃􏼐 􏼑 + bi, (9)

at � tanh Wc. ht−1, xt􏼂 􏼃( 􏼁 + bc, (10)

Ct � ft.Ct−1 + it.at, (11)

ot � σ Wo. ht−1, xt􏼂 􏼃( 􏼁 + bo, (12)

ht � ot. tanh Ct( 􏼁, (13)

where xt is the input at time t; ft, it, ot represent forget,
input and output gate respectively. at is the input node state
at the corresponding moment; Ct−1 and Ct are the unit states
at the corresponding moment. ht−1 and ht are the outputs at
correspondingmoment. σ is the sigmoid activation function,
and tanh is a hyperbolic tangent function [28]; Wf, Wi, Wc,
and Wo and bf, bi, bc, and bo are the corresponding weight
matrices and offsetting vectors.

3.2. PSO Algorithm. PSO algorithm is an optimization
technology proposed according to the foraging behavior of
birds, which updates the formula with speed to make the
particles in the population constantly close to the historical
optimal value [29]. Firstly, the particle is given an initial
velocity and position information in the solution space in a
random way, and then the local and global optimal solutions
are tracked and their velocities and positions are updated in
time through the defined Fitness function. In this process,

the Fitness value is calculated through each iteration, so as to
achieve the set target Fitness value, and then the optimal
solution can be obtained.

In the search space, several particles form a population,
and after the t iteration, the velocity and position of particles
are formed, which are represented by Xi,t and Vi,t respec-
tively. During the search process, the position and velocity
are updated constantly, and two optimal solutions are
formed: one is the individual extremum pbesti, and the other
is the global optimal solution gbesti. In the process of
searching for the optimal solution, the particle updating
formulas of velocity and position [30] are (14) and (15),
respectively.

Xi,t+1 � ωXi,t + c1rand pbest − Xi,t􏼐 􏼑

+ c2rand gbest − Xi,t􏼐 􏼑,
(14)

Xi,t+1 � Xi,t + λVi,t+1, (15)

where ω is the inertia factor; c1 and c2 are individual and
global learning factors, respectively. rand is a random
number in [0, 1]. λ is the velocity coefficient.

3.3. PSO-LSTM Model for Collision Risk Prediction. As
hyperparameters greatly impact on the results, PSO algo-
rithm can improve the accuracy of LSTM model by opti-
mizing parameters [31]. )e flow chart of PSO-LSTM
prediction model is shown in Figure 3. )e steps are as
follows:

Step 1: According to the AIS data, the ship motion pa-
rameters are obtained and the ship encounter parameters are
calculated.

Step 2: CRI is obtained by calculating the membership
function value and weight coefficient by fuzzy mathematics,
and the training and test data are constructed according to
the time sequence. Since the range of CRI is already [0, 1],
normalization is not required.

σ σ tanh σ

tanh

ht-1

Ct-1

xt

ft

ht

Ct

ht

Output GateInput Gate

Forget Gate

it at

ot

Figure 2: Basic structural unit of LSTM.
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Step 3: )e particle swarm parameters are initialized, in-
cluding the population size, maximum number of iterations,
learning factor, particle positions and velocity ranges [32].
Meanwhile, the hyperparameters of LSTM neural network
are initialized, including the number of hidden layer neu-
rons, the learning rate, the maximum number of iterations of
LSTM network, and the number of steps in the input layer.

Step 4: )e LSTMmodel is established, which is trained with
the data of the training set. )e results are compared with the
training set, and RMSE is used as the Fitness function in PSO
algorithm. )e calculation formula is as follows:

RMSE �

�������������
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􏽶
􏽴
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where Yi and 􏽢Yi are the real value of the CRI time sequence
and the corresponding predicted value of the model
respectively.

Step 5: )e global optimal position gbest and local optimal
position pbest are determined by the initial Fitness value of
the particles [33], and they are regarded as the historical
optimal positions. According to the speed and position of
the updated particles, the corresponding particle Fitness

value is calculated and then updated to improve the pre-
diction accuracy.

Step 6: )e termination condition is judged to be satisfied
(the Fitness value of particles tends to be stable or reaches the
maximum number of iterations with iteration [33]). If the
termination condition is satisfied, optimal parameters are
assigned to PSO-LSTM model; otherwise, step (4) is
returned.

Step 7: PSO-LSTM prediction model is constructed from
the optimal parameter values, which is applied to predict
CRI of the test sets. )e predicted result curves are drawn,
and the ship collision risk is visualized.

4. Experiment

)is paper is based on AIS data of pilot’s BRM (bridge
resource management, which is included in the Mandatory
Enforcement Part A of the STCW convention by IMO in
2010) practice test on ship handling simulator, and the actual
operation site is shown in Figure 4. )e main reasons for
choosing the ship maneuvering simulator for the test are as
follows: first, different encounter situations are simulated by
setting the same environmental parameters. In the case of
the same other conditions, interference is eliminated so as to
compare the difference of different encounter situations.
Second, the AIS data collected by the simulator have a
complete structure and high data frequency, which can well
solve the problem of a lack of AIS data and time syn-
chronization. All these are conducive to better process
analysis. Finally, experienced pilots perform practical op-
eration experiments, which can not only ensure the pro-
fessionalism of the experiment, but also ask pilots how they
feel in the process of ship encounter, which can be verified
and compared with the results of the test data analysis. In
addition, the disadvantages of the simulator test also need to
be explained, mainly as follows: the environmental condi-
tions in a certain water area are relatively fixed, and are not
as complex as the actual water area. )e pilot’s sense of
urgency for dangerous situations is not as strong as the
actual situation, which has a certain influence on the
judgment of collision risk.

)rough data acquisition and processing, ship encounter
parameters and fuzzy collision risk index are calculated,
PSO-LSTM network is trained to predict CRI, and single-
ship encounter situation and multi-ship encounter situation
tests are carried out. Considering that disadvantage of PSO-
LSTM neural network is that it requires a long period of
training, it is necessary to set reasonable parameters to avoid
PSO optimization parameter setting too large search range
and iteration times, to improve operation efficiency.
)erefore, during the experiments, the PSO parameters are
set as follows: the learning factors c1 and c2 are both set to 2,
the range of the inertia factor ω is from 0.8 to 1.2, the
maximum number of evolution is 20, and the size of the
particle population is 5.

)e selected water area for the test is the approach
channel of Shanghai Yang Shan Port. )e main reasons for

AIS data collection
and preprocessing

Calculate ship
encounter parameters

Calculate CRI
by Fuzzy method

Build the date of
CRI Sequence

Training set

Test the trained
optimal LSTM

Initialize PSO and LSTM
parameters

Train LSTM network

Calculate the value of 
Fitness function

Update particle
position and velocity

Output optimal
LTSM parameters

Predict
Collision Risk Index

Draw
 predicted CRI curve

Test set

Meet
condition?

Obtain historical
optimum position

NO

YES

PSO algorithm optimization

Use optimal particles
to build network

Figure 3: Flow chart of collision risk prediction by PSO-LSTM
model.

Computational Intelligence and Neuroscience 5



the test in this area are as follows: Shanghai Yang Shan Port
is a world-famous container terminal, and its inbound and
outbound channels have certain typicality. At the same time,
due to the large scale of navigable ships, the navigation safety
of their waters is also a concern. )e parameters of the own
ship and target ships are shown in Table 1. )e environ-
mental parameters are shown in Table 2, which need to be
marked, because environmental conditions, especially
strong winds and waves, will affect the navigation difficulty
of ships, affect the pilots’ judgment of collision risk, and then
affect the generation and prediction results of training
datasets.

4.1. Single-Ship Encounter Experiment. AIS data are col-
lected with an interval time of 6 seconds during the en-
counter between ship OS01 and ship TS05. In the
experiment, approximately 255 groups of data is collected
and processed, with the first 175 groups of data as training
sets and the others as test sets. A complete group of data
includes AIS data of the two ships, encounter parameters
calculated by the formula, and CRI calculated by the fuzzy
method. Taking 10 groups of data as time intervals, cor-
responding to one minute, are used in the rolling window.
After the training and testing PSO-LSTM network, the
experimental result curves of DCPA, TCPA and CRI and
Fitness, etc., are smoothed and the relevant curves are
drawn as follows:

Analysis of the single-ship experiment results is as
follows:

(1) Figure 5 reflects the track of ship OS01 and ship TS05
in the encounter process. )e arrow represents the
direction of the track, and the colour filled in track
dots of the target ship TS05 reflects CRI which is
obtained according to the Fuzzy calculation method.
It can directly reflect the change in collision risk in
the encounter process. )e redder the colour is, the
more dangerous it is.

(2) From Figure 5, the risk index of the target ship
leaving the port turns red many times during the
encounter with its own ship, indicating that the
collision risk of the target ship increases significantly
during the close encounter. At this time, the ship’s
pilot needs to be vigilant and pay close attention to
the dynamics of the target ship in the encounter until
it passes clear.

(3) According to Figures 6 and 7, in the process of ship
encounter, DCPA and TCPA decrease and then
increase rapidly as the two ships get closer and
farther away. )e corresponding collision risk also
increases and then decreases.

(4) )e Fitness curve in the training process of PSO-
LSTM network is reflected in Figure 8, which is also
the RMSE convergence process. )e experiment
shows that the deviation is rapidly reduced and stable
in the iterative optimization process of PSO, and
PSO-LSTM network training process is effective.

(5) )e deviation of PSO-LSTM test prediction results is
reflected in Figure 9, which indicates that the CRI
prediction accuracy of PSO-LSTM is high, and the
overall deviation range is ±0.1.

(6) Figure 10 intuitively reflects the prediction effect of
PSO-LSTM model by comparing the original data,
the predicted data of training process and the pre-
dicted data of testing process. )e experimental
results show that PSO-LSTM model has strong
prediction ability and good prediction effect. It also
shows that PSO-LSTM model can be well adapted to
ship collision prediction in single-ship encounter
situation.

(7) Figure 11 shows the visualization of CRI prediction
results. )e changes of CRI in ship encounter can be
intuitively seen in relative coordinates, where the
arrow is the velocity vector of the target ship TS05.
From the figure, it can be easily found that when ship
TS05 approaches ship OS01, its CRI increases rap-
idly, and the colour of the position point of ship TS05
turns red rapidly.

(8) After the experiment, the pilots are consulted about
their feelings. In the process of meeting with the
target ship TS05, the pressure is obviously felt when
approaching, which is due to the close distance and
the large ship size. )e psychological danger per-
ception of the driver at that time is consistent with
the situation reflected by the CRI curve in this test.

4.2. Multi-Ship Encounter Situation Experiment.
References for the single ship test, the same test parameters
are set except for the target ship. AIS data are collected with
an interval time of 6 second during the encounter between

Figure 4: Pilot’s actual operation in ship handling simulator.
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ship OS01 and ships TS08 and TS19. In the experiment,
approximately 255 groups of data is collected and processed,
with the first 175 groups of data as training sets and the

others as test sets. Taking 10 groups of data as time intervals,
corresponding to one minute, are used in the rolling win-
dow. After the training and testing PSO-LSTM network, the

Table 1: Main parameters of the ships in experiments.

AIS number Attribute Length (m) Width (m) Draught (m) Ship type Encounter situation
OS01 own ship 274.7 40 10 5000TEU container ship —
TS05 Target ship 347 42.8 14.4 8000TEU container ship Head-on
TS08 Target ship 81.8 13.8 4.4 3000 ton river ship Starboard crossing
TS19 Target ship 263.2 32.2 8.5 3000TEU container ship Portside crossing
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Figure 5: Visualization of collision risk between ship OS01 and ship TS05 with head-on situation.
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Figure 6: DCPA curve of single-ship encounter process.

Table 2: Environmental parameters during the simulation test.

Wind direction (degree) Wind scale Flow direction (degree) Flow velocity
45 Level 4 310 1 knot
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experimental result curves of DCPA, TCPA, CRI and Fit-
ness, etc., are smoothed and the relevant curves are drawn as
follows:

)e analysis of the multi-ship experiment results is as
follows:

(1) Figure 12 reflects the track of the ship and the target
ships TS08 and TS19 in the encounter process.
According to the colour changes of the position
points, the CRI of the target ship TS08 is relatively
stable, and the risk increases slightly when the target
ship crosses and approaches the own ship from the
starboard side, indicating that the collision risk is
small. By comparison, the CRI of the target ship
TS19 changed relatively greatly, resulting in several
sudden increases. In the process of the target ship
crossing and approaching from the port side, the

corresponding position points turned red several
times, indicating the danger of collision. )e pilot
needs to pay attention to the target ship TS19 until it
passes and clears. In the experiment, the overall
collision risk of the target ship from the port side is
greater than that of ship from the starboard.

(2) Figures 13 and 14 reflect the change characteristics of
the DCPA and TCPA, respectively, in the process of
multi-ship encounter. By comparison, it is found
that with the approach and departure of the target
ship, the TCPA decreases roughly and then increases
rapidly, while the DCPA shows the characteristics of
fluctuation.

(3) In Figure 15, the Fitness curves of target ships TS08
and TS19, also known as RMSE curves, can converge,
indicating that the training process of PSO-LSTM is
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Figure 10: Predictive results of CRI in training and testing.
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Figure 11: Visualization of collision risk prediction of ship TS05 in relative coordinates of own ship center.
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effective and that the deviations are gradually re-
duced under the action of PSO optimization. )e
Fitness curves show that starboard ship is faster than
port ship in PSO optimization and that deviation
convergence is faster.

(4) In Figure 16, the CRI prediction curve analysis of the
test set shows that the prediction accuracy of PSO-
LSTM is high, with the starboard prediction devia-
tion range of ±0.05 and port prediction deviation
range of ±0.15.

(5) Figures 17(a) and 17(b) show the performance of
PSO-LSTM in the training and testing processes.

)ere is a high degree of fit between the results and
the original data, and the predicted results are close
to the actual ones. )e results show that PSO-LSTM
can effectively and accurately predict ship collision
risk, and adapt to the CRI prediction of multi-ship
encounter situation.

(6) In Figures 18(a) and 18(b), the CRI change process of
target ships TS08 and TS19 is visualized. Figure 18(a)
shows that when ship TS08 passed the bow of ship
OS01, CRI rapidly and gradually decreased and
remained at a low level, indicating a low overall risk.
From Figure 18(b), during the encounter between
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Figure 12: Visualization of collision risk in multi-ship encounter situation.
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the target ship TS19 and the own ship, there is a very
close process, and CRI turns redmany times, so there
is a collision risk, which should be considered.

(7) After the experiment, the pilots are consulted about
their feelings. During the course of the ship en-
counter, they clearly felt that the ship from the
portside was more urgent, closer and more dan-
gerous, which is consistent with CRI and its
prediction.

5. Conclusion

Collision risk analysis is an important for ship navigation
safety assurance. It is necessary to make collision risk
forecast and forewarning. CRI, namely ship collision risk
index, is mostly considered with DCPA, TCPA and other
parameters in the process of ship encounter. )ese pa-
rameters are time sequences, which in performance before
and after time are interrelated, and the corresponding CRI
also shows time correlation characteristics. )e rolling
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Figure 17: Predictive results of CRI in training and testing. (a) Target ship TS08 from Start broad. (b) Target ship TS19 from Portside.
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Figure 18: Visualization of collision risk prediction in relative coordinates of own ship center. (a) Target ship TS08 from Start broad
(b) Target ship TS19 from Portside.
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prediction mechanism and time memory ability of LSTM
model can well reflect the related characteristics. PSO al-
gorithm can optimize the hyperparameters of LTSM model,
and better prediction results can be obtained. In this paper,
through single-ship encounter and multi-ship encounter
tests, PSO-LSTM model was used to obtain good results in
CRI prediction. )e Fitness curve of PSO in the training
process converges rapidly, and the prediction deviation
range of the test results is small. )e results show that PSO-
LSTMmodel can adapt to complex encounter situations and
show high efficiency and accurate ship collision risk
prediction.

In the future, we will consider using the multi-ship
prediction capability of PSO-LSTM model to access real-
time AIS data, and train a more powerful network through
massive data learning to provide assistance for collision
risk prediction for ship pilots earlier and in a timely
manner. In addition, combined with the external envi-
ronment, the deep learning model will be more effective in
predicting and warning ship collision hazards. It is be-
lieved that with the development of navigation intelli-
gence in the future, more intelligent deep learning
methods will be more widely applied in the navigation
field to ensure navigation safety and promote the devel-
opment of the unmanned vessel and navigation
intelligence.
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