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Imbalance in hyperspectral images creates a crisis in its analysis and classi�cation operation. Resampling techniques are utilized to
minimize the data imbalance. Although only a limited number of resampling methods were explored in the previous research, a small
quantity of work has been done. In this study, we propose a novel illustrative study of the performance of the existing resampling
techniques, viz. oversampling, undersampling, and hybrid sampling, for removing the imbalance from the minor samples of the
hyperspectral dataset.�e balanced dataset is classi�ed in the next step, using the tree-based ensemble classi�ers by including the spectral
and spatial features. Finally, the comparative study is performed based on the statistical analysis of the outcome obtained from those
classi�ers that are discussed in the results section. In addition, we applied a new ensemble hybrid classi�er named random rotation forest
to our dataset.�ree benchmark hyperspectral datasets: Indian Pines, Salinas Valley, and Pavia University, are applied for performing the
experiments.We have taken precision, recall, F score, Cohen kappa, and overall accuracy as assessmentmetrics to evaluate ourmodel.�e
obtained result shows that SMOTE, Tomek Links, and their combinations stand out to be the more optimized resampling strategies.
Moreover, the ensemble classi�ers such as rotation forest and random rotation ensemble providemore accuracy than others of their kind.

1. Introduction

In recent times, images have been one of the prime data
sources. Hyperspectral images (HSIs) are currently in trend
due to the enormous amount of information it captures in an
earth surface scene. HS data are one type of data that can be
used in various ways to develop human technology [1]. HSI
refers to spectral imaging data acquired by satellites equipped
with airborne spectrometers. �e photographs take over
speci�c earth surfaces, referred to as the scene, containing
various land cover classes such as �ora, concrete, and water
bodies. Because each related land cover occupies a varied

surface area, the number of pixels representing each class
varies. However, HS data have various di�culties, including
noise, quality and quantity of labeled data, dimensionality,
and categorical sample imbalance [2]. Additionally, ana-
lyzing and interpreting HS data necessitate several processes,
including denoising, lowering hyper-dimensionality, spectral
unmixing, and, most critically, identifying land cover [3].�e
classi�cation of the imaging scene has been a preoccupation
of professionals from the inception of hyperspectral data.
Initially, they used statistics-based classi�ers in conjunction
with some preprocessing techniques. �e categorization
problem became easier to handle with breakthroughs in ML
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and the introduction of DL. It provides an excellent strategy
to deal with the dataset’s embedded concerns [4].

Imbalanced data refer to classification challenges in
which the classes are not equally represented; the major class
is the most common, while the minor class is the rarest [5].
Information security, medical imagery, bioinformatics,
network intrusion, and fraud detection are just a few ex-
amples of real-world datasets that suffer from imbalanced
classification [6]. ,e HSI dataset is also skewed since in-
sufficient data instances belong to either of the class labels
due to their different land area coverage. ,e sample dis-
tribution per class can range from a little imbalance to a
severe imbalance, with few samples in the minor class and
hundreds in the major class. Two basic criteria can also be
used to demonstrate the HSI imbalance: (1) the minor class
shortage of knowledge and (2) the imbalance ratio (ImbR),
i.e., the ratio between the minor and major classes [7]. ,e
mathematical formula is given as follows:

ImbR �
Number of class samples belonging tominor class
Number of class samples belonging tomajor class

.

(1)

Due to its complicated data structure, HSI eventually
confronts an imbalanced classification challenge. Unbal-
anced classifications complicate predictive modeling be-
cause most machine learning algorithms for classification
were created with an equal number of samples per class in
mind. As a result, models with lower prediction accuracy
arise, particularly for the minor class, posing a problem
because the minor class is frequently more significant than
the major class. As a result, categorization errors are more
probable to occur in the minor class than in the major class
[8]. Because of the dataset’s inherent complexity, learning
from it demands new views, approaches, concepts, and
methods for changing data. ,e most effective way to ad-
dress the data imbalance is to resample the data instances to
roughly equal proportions. ,e three types of sampling
procedures employed are oversampling, undersampling, and
hybrid sampling. Oversampling entails taking identical
random data samples from the minor class, leading to
overfitting. In contrast, undersampling entails removing
random knowledge from the major class, resulting in in-
formation loss. ,ere are also hybrid balancing strategies
that use a collaborative effort between an oversampler and
an undersampler to balance samples from each class in the
same dataset [9]. ,e hybrid sampling method combines an
oversampler and an undersampler that balances the dataset.
After correcting the imbalance, a suitable model must be
used to train the dataset. Logistic regression (LR), naive
Bayes (NB), support vector machine (SVM), and tree-based
classifiers are examples of benchmark machine learning
algorithms suitable for moderately balanced datasets [10].
Ensemble learning methods have become increasingly
prominent in the latest years. ,e primary objective of those
systems is to increase performance by aggregating the
findings of multiple weak classifiers. ,ese systems employ a
voting technique amongst all the weak classifiers to obtain
the ultimate classification result [11]. A decision tree (DT)

[12] is considered to be the most preliminary bagging
technique. DTfor each subset of the original dataset has been
created individually. Finally, a voting mechanism was used
to determine the final result among those DTs. Random
forest (RF) [13] is the most widely utilized tree-based en-
semble classifier based on the bagging approach for both
classification and regression. ,e insensitivity of RF to
spectral bands and its ability to handle missing and im-
balanced data are two of its most enticing characteristics. It
can also be used on noisy samples because it does not overfit
the data easily [14]. ,e extra trees (ET) or extremely
randomized trees [15] approach works by producing many
unpruned decision trees from the training dataset. In
contrast to classification, predictions are created for re-
gression by taking averages of the prediction formed by the
subordinate DTs, whereas for classification, the rule of
majority voting is applied. Unlike RF and bagging, which
build each DT using a bootstrap sample of the training
dataset, ET fits each DT to the whole training dataset. Ro-
tation forest (RoF) [16] algorithms outperform bagging on
noise-free and imbalanced data. Compared with bagging
and RF, RoF can achieve similar or more excellent results
with fewer trees. Blaser and Fryzlewicz [17] proposed an
ensemble of random and rotation forests in the name of
random rotation ensemble forest (RREF). ,e random ro-
tation efficiently creates a new coordinate system belonging
to each base learner, increasing ensemble variety without
sacrificing accuracy. Moreover, one significant distinction
between the random rotation and the random projection is
that rotations are reversible, meaning no information loss.

,e premise that motivated us to pursue our research
work is a broad analytical study of the prevailing resampling
techniques and their impacts on the hyperspectral images,
viz. oversampling, undersampling, and hybrid sampling. For
oversampling, four useful techniques are selected, namely
random oversampling (ROS) [18], synthetic minority
oversampling technique (SMOTE) [19], borderline SMOTE
(B-SMOTE) [20], and adaptive synthetic minority over-
sampling technique (ADASYN) [21]. Furthermore, four
popular undersampling methods are studied, namely ran-
dom undersampling (RUS) [22], Tomek Links (TLs) [23],
neighborhood cleaning rule (NCL) [24], and edited nearest
neighbor (ENN) [25]. Finally, two-hybrid sampling tech-
niques are considered: SMOTETomek [26], a combination
of SMOTE and TL, and SMOTEENN [27], a combination of
SMOTE and ENN. ,ese strategies are used to balance the
dataset that will be learned through training. ,ese balanced
datasets are then passed to the classifiers as train inputs for
categorizing the land covers in the HS scenes. In this work,
we have used the eminent tree-based ensemble classifiers
that are demonstrated for their compatibility with syn-
thetically balanced, huge-dimensioned HSI datasets. ,e
ensemble classifiers employed here are DT, ET, RF, RoF, and
RREF. ,ey are utilized to construct the entire comparison
study where each of these classifiers is assessed using all the
resampling techniques for individual datasets. ,e quality
and performance of the model are evaluated over testing
data using various metrics such as precision score, recall
score, F score, overall accuracy, and Cohen kappa score.
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Our work provides the following contributions:

(a) A comprehensive adaptation of conventional
resampling algorithms to correct the hyperspectral
datasets’ substantial imbalance.

(b) A novel approach to classify hyperspectral images
using efficient tree-based ensemble learning
methods, i.e., the traditional tree-based techniques
and the hybridized and modified forest methods to
structure the classification model.

(c) An advanced comparative investigation of various
oversampling, undersampling, and hybrid sampling
strategies applied to hyperspectral datasets shows
that they positively influence rectifying the major-
minor sample imbalance.

(d) ,e innovative, thorough comparison of the appli-
cations of the included tree-based ensemble classi-
fiers in categorizing the surface covers is captured in
the HSI in terms of different performance assess-
ment metrics. In addition, these classifiers are ca-
pable of learning joint spectral-spatial features of the
balanced datasets.

(e) ,e comparative case study with all the resampling
techniques used for HSI datasets can be carried
forward to the other computational intelligence and
monitoring applications with several types of data-
sets, especially in the area of medical imagery.

(f ) ,e study provides more excellent knowledge for the
researchers who deal with big data and voluminous
imagery data that suffer due to imbalanced samples.
,e comparison depicted here benefits choosing the
more appropriate strategy to work with different
datasets and provides a better view of improvising
those strategies.

,e remaining paper is divided into the following cat-
egories: Section 2 describes previous work in the area of
resampling for various imbalanced datasets, Section 3 de-
picts our research work’s methodology, Section 4 illustrates
the model evaluation and test results, and Section 5 provides
the conclusion and also deliberates the research work’s
limitations and future scope.

2. Previous Works

Unbalanced data have produced numerous problems in the
classification of hyperspectral images. Researchers have
employed preprocessing techniques to deal with the issue of
class imbalance in several application fields. Preprocessing
approaches for the imbalanced class problem include data-
driven methodologies, such as sampling. Oversampling,
undersampling, and hybrid sampling are the three types of
sampling. ,e suitable sampling technique to be chosen is
determined by the dataset, the sample size of each class, and
their ratio of imbalance (IR). Figure 1 depicts the overall
changes in themajorandminorclass samples inadatasetusing
three different sampling procedures. One class, i.e., the major
class, is dominant over another class considered minor in the

original dataset. In oversampling, the minor class samples are
overpopulated tomatch the number ofmajor class samples by
creating new synthetic instances in the neighborhood of
existing samples. On the other hand, undersampling tech-
niques remove the linked and redundant major class samples
tobringbalance.However, hybrid sampling incorporates both
strategies to eliminate the imbalance in the dataset.

Oversampling, also known as upsampling, is a sampling
technique that helps to balance a dataset by duplicating
minor class examples. ,is procedure has the advantage of
causing little or no data loss. ,is approach has the problem
of causing overfitting and adding to the computational load.
,e two types of oversampling are ROS and informative
oversampling. ROS is a technique for balancing the distri-
bution of minor classes by randomly repeating minor class
examples. ,e informative oversampling technique [28]
synthesizes minor class samples depending on a predefined
criterion. Several applications of oversampling have been
deployed for various types of datasets in recent years. A
linear SVM was used in conjunction with a few SMOTE
variations to detect malware in [29]. ,e model synthesizes
dangerous occurrences based on the signature from the
standpoint of the nominal properties. ,e malicious traffic
dataset is first clustered using a single-linkage hierarchical
technique to enrich the malicious class dataset, and then,
signatures produced by every harmful traffic cluster are used.
,e resulting balanced datasets are then applied to train a
semantic malware detection model for mobile devices.
Random forest was used as the classifier with SMOTE to
overcome the massive data imbalance problem. With a
constrained hyperparameter set and nondynamic over-
sampling rate, SMOTE is used to eliminate imbalance after
binarizing the original dataset [30]. ,is work fails for
multiclass scenarios. In [31, 32], the same combination was
used to detect insurance fraud claims and predict depression
in women due to the modern lifestyle. B-SMOTE and SVM
with kernel sigmoid were employed for data augmentation
on P300 users with poor BCI performance [33]. For the
DEAP dataset, the 1D-CNN model was utilized for classi-
fications of two emotional dimensions: valence and arousal.
B-SMOTE was employed to acquire a more homogeneous
set of features of EEG signals [34]. For classifying HSIs,
rotation forest has been combined with dynamic SMOTE
[35], where SMOTE is applied to the imbalanced classes
before each rotation tree is constructed. ,e procedure was
discovered to take a long time. ,is work is expanded upon
in [36], where the SMOTE technique is employed to create
balanced datasets by incorporating spatial information from
surrounding pixels of samples.,ese datasets are loaded into
the weighted rotation forest model, which combines the RoF
and multilevel cascaded RF. ,e cascade forest receives the
rotation feature vectors generated by the rotation forest. In
addition, the output likelihood of every level and the original
data forms a stack. Furthermore, the sample weights need to
be adjusted on a regular basis using the dynamic weight
function generated from the classification scores at each
level. According to [37], the adaptive synthetic sampling is
another excellent strategy for oversampling when combined
with a convolutional neural network to detect intrusion in a
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wireless network. ADASYN prevents the model from being
sensitive to large samples but insensitive to small samples,
which can help in small sample recognition and learning.,e
model considerably improves multiclassification jobs.
However, a simpler residual network is still needed to in-
crease small sample identification accuracy and execution
performance. Another attempt at intrusion detection is made
in [38], where ADASYN is applied to oversample the training
dataset to enhance the number of infiltration and heartbleed
attack behavior data samples. Classification and regression
trees (CARTs) were used to create the DTs for the RF ap-
proach with a Gini coefficient. Even though this method
delivers more incredible prediction performance, efficacy,
and resilience, the parameters of ADASYN were adjusted
artificially. All the above works that include oversampling
suffer from a replicated voluminous data problem that is
sometimes redundant, which leads to a common issue of high
storage, calculation, and time complexity.

Undersampling, also known as downsampling, is a
proper data balancing technique. ,e classifier obtains
training using a major class subset in this method. When we
undersample, some samples are deleted from the major class.
Random sampling and informative undersampling are the
two types of undersampling algorithms. ,e principle of
random undersampling is simple: samples from the major
class are randomly removed until the dataset is balanced.,e
informative undersampling technique selects only the nec-
essary major class instances based on a prespecified selection
criterion to balance the dataset [28]. Random undersampling

[39] has the most relevance in huge data settings since it aids
the random forest in making more accurate classifications in
less time. In [40], the same methodologies are used for ex-
tensive specialized data for bioinformatics, where feature
selection (FS) is used in conjunction with RUS, and the
relationship between the two is investigated. ,e random
forest learner is used in the FS component to compute feature
importance, and encoding is used to transform categorical
features into duplicate variables. RUS has a speedier runtime
and a lower computing burden than random oversampling;
however, the classification technique requires to be appro-
priate. Tomek connections have been demonstrated in [41],
where TLs are used to eliminate outliers, noisy, and re-
dundant samples from the major class of 10 real-world
datasets. ,e removal of potentially ineffective examples
causes the decision boundary to shift towards the minority
region, providing a favorable environment for learning on
various classifiers, including SVM. To create an application-
oriented multiclass real-life application, the model must be
supplemented withmultiple schemes/techniques to eliminate
the majority of instances with minimal data loss and faster
processing. For the overpopulated bacterial data, in the
preparation phase, the TL algorithm is used to clean data and
reduce noise and produce a better result than oversamplers
[42]. In addition, Tomek linkages are utilized to correct the
imbalance in some medical datasets [43], where balanced
data are put into the stacking ensemble after downsampling.
It works on two levels. At level 0, there are many different
classifiers, such as NB and SVM.,e level 0 output is given to

Original Dataset

Major class
Minor class

Oversampling

Major class
Minor class
New Instance

Hybrid sampling

Major class
Minor class
Samples to be cleaned

Major class
Minor class
Samples to be cleaned
New Instance

Undersampling

Figure 1: Representation of the resampling methods for balancing data.
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the level classifier for the final forecast. Base classifiers such as
LR, k-NN, and NB are applied to apply datasets that are not
more accurate and specific than contemporary research. ,e
works discussed above used limited datasets and basic

classifiers. On the one hand, undersamplingmight reduce the
computational burden, but on the other hand, it may also
remove significant information that might produce a better
outcome.

Store the HSls i n
Device Memory/

Cloud

Import the Raw
 3D Hypercube

Reshape into 2D Image

Split 2D Image into Training
and Testing Datasets

Training 
Dataset

Training 
Dataset

Resampling to Remove Imbalance

Over Sampling Under Sampling Hybrid Sampling

ROS

SMOTE

B-
SMOTE

ADASYN ENN

NCL

TL

RUS SMOTE
Tomek

SMOTEENN

Classifiers

DT ET RF RoF RRF

Training the Model

Model Simulation

Obtain Experimental Results

Comparative Analysis

Model
Construction

Data
Preprocessing

Model
Performance
Evaluation

Figure 2: Workflow of the proposed model.
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Hybrid sampling is an appropriate combination of
oversampling and undersampling procedures that correctly
balance the training data.,e oversampling strategy is used to
create fresh samples by randomly sampling the current
training data with replacement. Because the minor class is
oversampled, a new balanced training dataset is created. ,e
undersampling method is then used to reduce unwanted
overlap between classes, lowering the number of classes. As a
result, until a more assertive threshold for classifier conclu-
sions could be created, the majority of data was eliminated
[26]. Despite the small numbers, there is a significant study in
this sector. Intrusion detection is carried out in [44] utilizing a
mix of synthetic minority sampling and a neighborhood
cleaning rule. For the learning process to be unaffected by
data distribution, SMOTE generates a small number of
datasets. Furthermore, the explored dataset revealed that
border and noisy data have an impact on classification
performance. As a result, NCL rules remove noisy and
boundary data from the oversampled data. C4.5 and SVM are
used as classifiers, but the model is not robust. ,e same
hybrid resampling technique is used in conjunction with
logistic regression [45]. ,is model is proven to be the most
effective for binary categorized datasets. Another hybrid
strategy combines synthetic oversampling with Tomek
linkages, which have been used to detect fake credit cards [47]
and medical disease datasets [46]. Overall, hybrid techniques
are more prone to data loss and consume additional time.

Both works are based on a comparison of results from
various classifiers. ,e student sadness data are distributed
across universities using a combination of random over-
sampling, Tomek connections, and random forest. Only
binary and less noisy datasets are adequate for this model
[48]. A hybrid of SMOTE and ENN is used to process the
KDDCup99 dataset and tackle the difficulties of data im-
balance and sample overlapping with the classifier RF [49].
,e same combination but with classifier XGBoost is carried
forward to build a prediction model that efficiently deter-
mines the category of a person, whether healthy or pos-
sessing Parkinson’s syndrome [50]. RRE pruning is used for
HSI classification that prunes the constituent classifiers with
poor complementarity, and subsequently, the leftover
constituent classifiers with higher complementarity are
joined to produce an ensemble classifier. ,ese strategies
ensure that the component classifiers used to build the
ensemble classifier are precise but diversified, which en-
hances the ensemble classifier’s performance [51].

3. Methodology

Figure 2 displays the framework of our suggested approach
for improving hyperspectral image categorization by coping
with sample imbalance. ,e following are the steps that are
included in structuring our study.

3.1. Data Preprocessing

3.1.1. Dataset. For our experiment, we collected three
mostly explored hyperspectral datasets that are available in
the public domain [52] and stored in the memory of our

system. A brief elaboration of the datasets is as follows, along
with Figure 3.

(a) AVIRIS Indian Pines (IP): this dataset was captured
by Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor on June 12, 1992. ,e scene cap-
tured here was the Indian Pines test site in north-
western Indiana, USA. It contains an agricultural
area exemplified by its crops of common geometry
and some irregular forest zones. It consists of
145 ∗ 145 pixels with a spectral resolution of 10 nm
and spatial resolution of 20mpp and 224 spectral
reflectance bands in the wavelength range of
0.4–2.5 μm, of which 24 noisy bans are removed due
to low signal-to-noise ratio. In addition, the scene
contains 16 different classes of land covers. ,e IP
dataset acquires ImbR� 73.6.

(b) Salinas Valley (SV): this scene was obtained by
AVIRIS sensor over various agricultural fields of
Salinas Valley, California, USA, in 1998. ,e scene is
characterized by a high spatial resolution of 3.7mpp
and spectral resolution of 10 nm. ,e area is covered
by 512 ∗ 217 spectral samples with a wavelength
range of 0.4–2.5 μm. Of 224 reflector bands, 20 noisy
bands are discarded due to water absorption cov-
erage. ,e scene comprises 16 different land classes.
,e SV dataset acquires ImbR� 12.51.

(c) Pavia University (PU): this scene was captured by a
Reflective Optics System Imaging Spectrometer
(ROSIS-03) sensor during a flight campaign over the
University of Pavia in 2001. It possesses 115 spectral
bands, of which only 103 are useable. Its spectral
coverage is 0.43–0.86 μm, with spectral resolution of
4 nm and spatial resolution of 1.3mpp defined by
610 ∗ 340 pixels. ,e scene contains 9 classes with
urban environmental constructions. ,e PU dataset
acquires ImbR� 19.83.

3.1.2. Loading the Dataset and Splitting. ,e datasets are
imported as hypercubes and converted into a processable
three-dimensional format.,en, the 3D images are reshaped
into a machine-readable 2D format. ,e dataset is further
broken up into training and testing datasets in a ratio of 3 : 2;
i.e., we have used 60% of the original individual datasets for
training our model, and the residual 40% is set aside for
testing the model’s performance. ,e training set is pro-
cessed from the next step onwards, while the testing dataset
remains intact. ,e training and testing samples for each
dataset are depicted in Table 1.

3.2. Data Balancing by Resampling

3.2.1. Oversampling Techniques

(1) Random Oversampling (ROS). ROS [18] involves
selecting random examples from the minority class with
replacements and augmenting the training data with nu-
merous copies of the particular instances so that a specific
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instance could be chosen many times. Overfitting has been
shown to be more likely when ROS is applied.

(2) Synthetic Minority Oversampling Technique (SMOTE).
Chawla et al. [19] presented SMOTE as an oversampling
strategy to avoid the overfitting problem. ,is method is
considered cutting edge and is effective in a wide range of
applications, including the HSIs. ,is approach generates
synthetic data based on feature space resemblances between
prevailing minority occurrences. Making an artificial in-
stance determines each minority instance’s k-NN, chooses
one at random, and then uses linear interpolation to create a
new minor instance in the neighborhood. ,e detailed al-
gorithm of SMOTE is as follows:

Step 1: k-nearest neighbors are calculated with minor
class samples following Euclidean distance for each
minority instance xi.
Step 2: a neighbor xj is picked in a random manner
from the k-nearest neighbors of xi.
Step 3: new samples xnew are produced in between xj
and xi:

xnew � xi + β xi – xj


, (2)

where β is the random number between 0 and 1.

(3) Borderline SMOTE (B-SMOTE). B-SMOTE [20] creates a
synthetic sample dividing minor and major groups. ,is
method also aids in the division of the minor and major
groups.,eminor class observations are first classified using
this approach. If all of the neighbors are in the major class, it
identifies any minor observation as noise and ignores it
while synthesizing synthetic data. Furthermore, it resamples
completely from a few border locations that include major
and minor classes as neighborhoods.

(4) Adaptive Synthetic Minority Oversampling Technique
(ADASYN). Haibo He et al. [21], inspired by SMOTE,
present ADASYN technique, which has received consider-
able attention. ADASYN generates minor class samples
based on their density distributions. Compared with mi-
nority class samples that are simpler to learn, more artificial
data are produced for minor class samples that are chal-
lenging to learn. It computes each minor instance’s k-NN
and then uses the class ratio of the minor and major ex-
amples to produce fresh samples. It adaptively alters the
decision boundary to concentrate on those samples that are
challenging to learn by repeating this process. ADASYN
enhances learning of data distribution in two ways: (1)
minimizing the bias created by the class imbalance and (2)
adjusting the classification decision boundary in the di-
rection of the complicated examples.

(a) (b) (c)
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(d)
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9
8
7
6
5
4
3
2
1
0

(e)

9

8

7

6

5

4

3

2

1

0

(f )

Figure 3: Composite color images (CCIs) of the hyperspectral datasets such as (a) IP, (b) SV, (c) PU and the ground truth images (GTIs), (d)
IP, (e) SV, and (f) PU.
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Training dataset DTR is presumed with n samples {xi, yi},
j� 1, . . ., n, where xi is an example belonging to the n-di-
mensional feature space X and yj ∈Y� {1, −1} defines the
class label coupled with xj, and ns and nl denote the number
of minority and major class examples, respectively. ,us,
ns≤ nl and ns+ nl � n. Based on these notations, the following
steps are to be followed:

Step 1: compute the degree of class imbalance: i� ns/nl,
range of i ∈ (0, 1].
Step 2: compute the quantity of synthetic data samples
that the minor class needs to produce:

R � nl − ns(  × β, (3)

where β ∈ [0, 1] is the constraint for specifying the
required balance level after the synthetic data creation.
Step 3: for every sample xj ∈minor class, find k-nearest
neighbors found on the basis of Euclidean distance in
n-dimensional space, and compute the ratio ri de-
scribed as follows:

Pj �
Δi

k
, j � 1, . . . , ns, (4)

where Δi denotes the amount of samples in the k-
nearest neighbors of xi that belong to the major class;
thus, Pj ∈ [0, 1].
Step 4: standardize Pj according to Pj � Pj/

na

j�1 Pj so
that Pj denotes a density distribution (j

Pj � 1).
Step 5: calculate the exact number of synthetic data
samples that need to be produced for every minority
sample xj:

ri � Pj × R, (5)

where R is the overall figure of synthetic data instances
that needs to be produced for the minor class.
Step 6: for every minor class data instance xi, produce ri
synthetic data samples by choosing one minor data
example in a random way, xzj, from the k-nearest
neighbors for data xj:

si � xj + xzj–xj  × α, (6)

where (xzj − xj) is the contrast vector in the n-dimen-
sional space, and α is an arbitrary number: λ ∈ [0, 1].

Table 1: Original ground truth, training, and testing samples of IP, SV, and PU datasets.

,e
dataset

Indian Pines Salinas Valley Pavia University

Class
no. Class name Original Train Test Class name Original Train Test Class

name Original Train Test

1 Alfalfa 46 28 18 Brocoli_green_weeds_1 2009 1205 804 Asphalt 6631 3979 2652
2 Corn-notill 1428 857 571 Brocoli_green_weeds_2 3726 2236 1490 Meadows 18649 11189 7460

3 Corn-
mintill 830 498 332 cFallow 1976 1186 790 Gravel 2099 1260 839

4 Corn 237 142 95 cFallow_rough_plow 1394 836 558 Trees 3064 1838 1226

5 Grass-
pasture 483 290 193 Fallow_smooth 2678 1607 1071

Painted
metal
sheets

1345 807 538

6 Corn-trees 730 438 292 Stubble 3959 2375 1584 Bare soil 5029 3018 2011

7
Corn-
pasture-
mowed

28 17 11 Celery 3579 2147 1432 Bitumen 1330 798 532

8 Hay-
windrowed 478 287 191 Grapes_untrained 11271 6762 4,509

Self-
blocking
bricks

3682 2209 1473

9 Oats 20 12 8 Soil_vinyard_ develop 6203 3722 2481 Shadows 947 568 379

10 Soybeans-
notill 972 583 389 Corn_senesced_green_weeds 3278 1967 1311

11 Soybeans-
mintill 2455 1473 982 Lettuce_romaine_4wk 1068 641 427

12 Soybeans-
clean 593 356 237 Lettuce_romaine_5wk 1927 1156 771

13 Wheat 205 123 82 Lettuce_romaine_6wk 916 550 366
14 Woods 1265 759 506 Lettuce_romaine_7wk 1070 642 428

15
Buildings-
grass-trees-
drivers

386 231 155 Vinyard_untrained 7268 4361 2907

16 Stone-steel-
towers 93 56 37 Vinyard_vertical_trellis 1807 1084 723

Total 10249 6150 4099 54129 32477 21652 42776 25666 17110
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3.2.2. Undersampling Techniques

(1) Random Undersampling (RUS). ,e inverse of ROS is
RUS [22]. ,is approach aims to choose and eliminate
samples from the major class at random, diminishing the
number of examples in the modified data from the major
class. However, RUS has the significant disadvantage of
discarding useful information.

(2) Tomek Links (TLs). TL is a variant of Tomek’s condensed
nearest neighbor (CNN) undersampling algorithm [23].
Unlike the CNN technique, which selects samples with their
k-NNs from the major class that has to be deleted at random,
the TL method employs a rule to select pairs of observations
(suppose A and B) that meet the following criteria: (1) the
observation B is A’s closest neighbor; (2) the observation A is
B’s closest neighbor; and (3) observations A and B are from
distinct classes; i.e., A and B are members of the minor and
major classes, respectively, or vice versa.

(3) Neighborhood Cleaning Rule (NCL). NCL [24] is an
undersampling strategy that reduces data based on cleaning to
overcome the imbalanced class distribution. One of the benefits
ofNCL is that it examines the data quality to be destroyed rather
than focusing solely on the reduction in data.,e data cleansing
procedure is intended for samples from major and minor
classes. Essentially, NCL is built on the notion of one-sided
selection (OSS), a technique to reduce data based on incidences
to decrease classes carefully. On NCL, the cleaning data process
is conducted independently of the major and minor samples.

(4) Edited Nearest Neighbor (ENN). ,e ENN approach,
whichwas developed byWilson [25], works by first determining
the k-NN of every observation and then determining whether
the major class from the observation’s k-NN is the same as the
observational class or not. If the observation’s k-NN’s major
class differs from the observation’s class, the observation and its
k-NN are removed from the dataset. ,is method is more
potent than TL because ENN removes the observation and its k-
NN when the observation’s class and the major class from the
observation’s k-NN are different, rather than simply the ob-
servation and its 1-nearest neighbor. As a result, ENN is likely to
provide more thorough data cleaning than TL.

3.2.3. Hybrid Sampling Techniques

(1) SMOTETomek. ,is method, first proposed by Batista
et al. [26], blends the SMOTE’s ability to create synthetic data
for the minor class with the TL’s ability to eradicate data from
the major class that is identified as TL, i.e., samples of data
from the major class that is nearest to the minor class data.

(2) SMOTEENN. ,is method, established by Batista et al.
[27], merges the ability of SMOTE to generate synthetic
examples for minor classes with the ability of ENN to delete
some observations from both classes. ,ose observations are
identified as having different classes between the observa-
tion’s class and its k-NN major class.

3.3. Tree-Based Ensemble Classifiers

(1) Decision Tree (DT). ,emost widely used supervised data
mining approaches is the DTalgorithm [12]. DTuses a divide-
and-conquer approach. ,e operating method is to find a
feature possessing the best ability to classify and split data into
many subsets in a recursivemanneruntil a stopping criterion is
fulfilled. ,e class is predicted using decision rules derived
from the data input. Determining attribute selection param-
eters such as information gain or Gini index, the root repre-
sents the best feature. It can work with both numerical and
categorical data. Furthermore, outliers and the missing values
have a negligible impact on the model’s results. However, DT
uses a greedy technique, which might lead to overfitting [53].
,eDTalgorithm can be applied as a feature selection strategy
in addition to a classificationmethod [54].,e features used to
construct splitting rules at internal tree nodes are DT feature
selection results. DT is a filter strategy because it measures
features rather than classification accuracy.

(2) Random Forest. (RF) RF is a well-known ensemble ML
approach that stems from DT [13]. While building a model,
it canmanage the overfitting branch of DT. As a result, many
classification models are created, each constructed using a
feature selector such as the information gain, Gini index, and
gain ratio.

,ese models realize and create an impact on the pre-
diction in a discrete manner [53]. Random sample selection
and random feature selection are the essential concepts. All
trees in RF are independent of one another, allowing for
parallel training and testing. Consider the dataset Sn, which
contains n samples (U, V), with U∈RS. To begin with, m
instances are randomly chosen with replacements from the
original dataset Sn. ,e current decision tree is built using
these examples. Second, from the initial S features, p features
(p< S) are picked at random. CARTs are produced using the
Gini impurity or mean-squared error criterion. Finally, using
the majority vote criterion, the categorization result is pro-
duced [36].

(3) Extra Trees. (ET) ET [15] is an ensemble learning operating
mechanism like RF. ETcreates classification and regression by
combining the results of a large number of uncorrelated trees.
,e first of two key differences between ETand RF is that ET
samples do not require replenishment. ,e second is that it
chooses randomattributes to split the treenodes rather thanthe
best [53]. Furthermore,ETispreferable toRF in the sense that it
is faster and allows for very little noise data.

(4) Rotation Forest. (RoF) Rodriguez proposed a rotation
forest in 2006 [16], based on the random forest concept.
Feature transformation being the basic idea behind this
algorithm, it aims to enhance the difference and accuracy of
the underlying classifier. ,e following steps are used to
create a T-size rotation forest model.

Step 1:,e feature space denoted as F is segregated into
N disjoint sets of features, and every subset contains
features of K (�F/N) number.
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Step 2: A new train set is attained by utilizing a bootstrap
algorithm to select 75% of the training data randomly.
Step 3: the coefficient Av,h (h≤H, v≤V) is achieved
using the principal component analysis on every sub-
feature space Fv,h (h≤H, v≤V), and the coefficients
belonging to each subspace are arranged in a sparse
rotation matrix Rv (v≤V).
Step 4:,e columns of Rv are rearranged by duplicating
the order of initial features F to produce the rotation
matrix Rv

′. ,e new train set Bt
′� [BvRv

′, Yt] is produced
for training a specific classifier.
Step 5: ,e process mentioned above is repeated on all
different train sets and a sequence of specific classifiers
is produced. ,e majority voting rule achieves the final
result.

(5) Random Rotation Ensemble Forest. (RREF) ,e idea of
RRE was proposed by Blaser and Fryzlewicz [17] in 2016.
Regardless of utilizing the identical sequence of the random
numbers in the RF algorithm’s tree induction phase, similar
bootstrap samples and associated feature subset selections at
every decision branch for both the trees are made. ,e
random feature rotation has a considerable influence on the
resultant data partition. ,e subsequent tree is not simply a
rotated form of the unrotated tree; it has an entirely different
orientation and data division. Samples are consistently
distributed throughout all possible rotations to execute a
random rotation. For n> 2, where n denotes the number of
independent normal variates, rotating every angle in
spherical coordinates at random does not result in a con-
sistent distribution over all the rotations, implying that some
rotations are more common than others.

Let us consider x as the unit vector directing towards the
n-spherical space at an arbitrary point. ,e classification
trees T split the predictor space into Di disjoint regions, with
1≤ i≤ I, where I denotes the total count of the terminal
nodes of T. ,e random and optimization parameters are
denoted by α� {G, w} and β� Di, vi 

I

1, respectively, whereG
is the random rotation coupled with T, w is the arbitrary tree
induction sample pairs, and every randomly rotated input G
(x) performs a mapping to a constant vi, which depends on
the belonging of the input to a particular region of Di. ,us,
the tree with an indicator function J (.) formulates as follows:

T(x; α, β) � 
I

i�1
viJ G(x) ∈ Di( . (7)

3.4. Model Simulation. A classification model is built using
each of the 10 resampling techniques taken one at a time.,e
balanced data are then classified using each of the 5 tree-based
ensemble classifiers separately, as shown in Figure 2.
,erefore, our comparative experiments consist of a total of
50 trainingmodels for each dataset. Everymodel construction
requires a suitable hyperparameter setting. For oversampling,
we have mostly chosen the minor classes to create a similar
number of samples as the major classes; thus, the sampling
strategy is “minority.” Correspondingly, the sampling strategy
for undersampling techniques is chosen “majority,” where the
redundant major class samples are removed to match up with
theminor class samples.We first set the base oversampler and
undersampler with previously stated parameters and then set
the sampling strategy as “all” to the hybrid sampler for the
hybrid sampling. Also, for SMOTE and ADASYN, we have
taken 5 k-nearest neighbors, whereas for NCL and ENN we
chose 3 k-nearest neighbors.,e hyperparameters that are set
for the classifiers are shown in Table 2.

4. Experimental Outcomes

4.1. Experimental Setup. All program codes are imple-
mented using Python language with its latest versions of
embedded packages, such as Keras, TensorFlow, and scikit.
,e hardware specifications are Intel® Core™ i5-10300H
Processor, 2.5GHz, 8GB DDR4 2933MHz RAM, and 4GB
NVIDIA GeForce GTX 1650 Ti. After splitting the original
dataset into train and test sets, we (1) apply the resampling
techniques, viz. 4 oversampling, 4 undersampling, and 2
hybrid sampling strategies to our datasets individually; (2)
train each of the tree-based ensemble classifier models with
each resampling method; (3) obtain the classification per-
formance using the assessment metrics; and (4) present a
detailed comparative analysis based on the obtained metric
statistics. We have uniformly overpopulated the selected
minor class samples and removed neighborly linked major
class samples to balance the individual dataset. ,e same
strategy is used in combination for the hybrid sampling. ,e
hyperparameter setting for the classifiers is as follows:

(1) For DT, ET, RF, and RREF, we have used the Gini
criterion with a maximum tree depth of 100 and the
number of estimators as 1000, keeping the other
hyperparameters as default.

(2) For RoF, we have taken 1000 number of trees and a
total of 20 features, keeping the rest as default.

Table 2: Hyperparameter setting for the different tree-based ensemble classifiers.

Tree-based classifiers
Hyperparameter

Number of trees Criterion for
split quality

Maximum
depth of tree

Maximum number of
features for best split

DT — Entropy 50 20
ET 500 Entropy 50 20
RF 500 Gini 100 50
RoF 1000 Gini 100 50
RREF 1000 Gini 200 100
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4.2. PerformanceEvaluationMetrics (PEM). In this work, we
have adopted five prime metrics to assess our model’s
performance: precision, recall, F score, Cohen kappa, overall
accuracy, and the time elapsed to execute the entire process.
,ese are described as follows.

Let us denote Y�the total number of class labels in the
dataset, bii� true prediction of ith class, bji � false prediction
of ith class, and bij � false prediction of ith class into jth class.

(1) Precision Score. Precision is used to assess each class
classification accuracy in the imbalanced data. ,e precision
score is expected to be high for a better classifier. ,e pre-
cision score (Prec_score%) measures the testing prediction
rate of all samples and is defined in the following equation:

Prec Score% �
1
Y

bii


Y
i�1 bji

× 100. (8)

(2) Recall Score. Recall or true-positive rate is the per-
centage of correctly classified events. ,e recall is especially
well suited to assessing classification systems dealing with
many skewed data classes.,e large recall value indicates the
better performance of a classifier. ,e Rec_score% is given
by the following equation:

Rec Score% �
1
Y



Y

i�1

bii


Y
i�1 bij

× 100. (9)

(3) F_Score. In the classification of imbalanced data, the
F-measure, an assessment index derived by combining
precision and recall, has been widely employed. ,e in-
troduction of F-measure combines the two, and the greater

Table 4: Performance comparison between the undersampling techniques associated with different tree-based ensemble classifiers in terms
of the percentages of precision, recall, F score, kappa, and OA and TE calculated in seconds for the IP dataset.

Prec_score Rec_score F_score Kappa_score OA TE (in secs)

DT

RUS 53.16± 1.07 27.3± 1.35 26.27± 1.72 3.92± 1.68 27.35± 1.5 0.045
Tomek 68.59± 1.09 68.44± 1.66 68.46± 1.69 44.14± 1.45 68.42± 1.58 2.93
NCL 68.44± 1.35 74.74± 1.6 69.9± 1.46 44.68± 1.46 69.98± 1.04 2.079
ENN 66.34± 1.3 67.51± 1.22 66.57± 1.57 43.46± 1.24 67.52± 2.21 1.16

ET

RUS 65.37± 1.66 38.29± 1.28 37.95± 1.09 38.95± 1.75 38.19± 2.83 0.216
Tomek 78.32± 1.11 80.42± 1.15 78.89± 1.36 58.91± 1.53 79.95± 2.6 3.734
NCL 75.17± 1.46 76.65± 1.39 75.28± 1.23 54.61± 1.95 76.6± 2.59 2.406
ENN 72.3± 1.37 73.76± 1.29 72.24± 1.82 51.44± 1.41 73.75± 2.31 1.248

RF

RUS 64.84± 1.56 34.15± 1.27 32.23± 1.09 47.22± 1.76 34.06± 1.03 0.214
Tomek 79.4± 1.73 80.69± 1.36 79.46± 1.15 61.25± 1.38 80.6± 1.58 4.297
NCL 75.68± 1.04 77.1± 1.1 75.68± 1.43 56.29± 1 76.96± 2.72 3.557
ENN 71.36± 1.37 72.84± 1.41 71.14± 1.63 51.55± 1.95 72.77± 2.54 0.515

RoF

RUS 67.87± 1.26 37.61± 1.13 38.62± 1.41 49.5± 1.35 40.84± 1.96 957.643
Tomek 80.5± 1.34 82.14± 1.38 80.31± 1.49 76.35± 1.19 84.83± 2.08 1267.89
NCL 74.33± 1.58 74.89± 1.15 74.29± 1.45 63.44± 1.4 79.25± 2.77 1043.895
ENN 73.77± 1.31 72.61± 1.16 69.53± 1.1 59.83± 1.54 74.12± 1.68 996.054

RREF

RUS 69.11± 1.55 38.17± 1.46 39.21± 1.14 56.3± 1.04 44.37± 2.41 5.946
Tomek 82.47± 1.24 82.61± 1.47 80.48± 1.37 78.58± 1.63 85.32± 2.76 9.279
NCL 75.47± 1.23 75.97± 1.19 72.13± 1.66 62.1± 1.27 79.85± 1.15 6.789
ENN 73.58± 1.62 71.51± 1.75 69.88± 1.28 60.62± 1 75.31± 2.09 6.241

Table 5: Performance comparison between the hybrid sampling techniques associated with different tree-based ensemble classifiers in terms
of the percentages of precision, recall, F score, kappa, and OA and TE calculated in seconds for the IP dataset.

Prec_score Rec_score F_score Kappa_score OA TE (in secs)

DT SMOTETomek 68.39± 1.77 68.46± 1.13 68.37± 1.46 45.21± 1.92 68.49± 2.38 16.956
SMOTEENN 66.16± 1.35 67.14± 1.48 66.31± 1.72 46.78± 1.5 67.134± 2.18 16.357

ET SMOTETomek 78.56± 1.2 80.15± 1.57 79.09± 1.51 59.69± 1.76 80.09± 1.34 15.672
SMOTEENN 72.55± 1.04 74.2± 1.39 72.44± 1.84 52.31± 1.48 73.96± 2.31 15.118

RF SMOTETomek 79.12± 1.26 80.55± 1.71 79.46± 1.32 61.37± 1.17 80.54± 2.19 18.171
SMOTEENN 72.13± 1.82 73.36± 1.72 71.64± 1.99 52.67± 1.55 73.317± 2.33 16.613

RoF SMOTETomek 82.37± 1.12 84.23± 1.66 81.56± 1.12 64.74± 1.17 82.74± 2.16 4195.326
SMOTEENN 74.66± 1.58 75.82± 1.75 73.73± 1.78 54.85± 1.43 76.19± 1.73 3628.153

RREF SMOTETomek 81.71± 1.02 81.13± 1.59 79.93± 1.44 62.83± 1.6 82.32± 1.36 89.452
SMOTEENN 74.12± 1.29 74.29± 1.85 73.16± 1.67 53.19± 1.56 75.43± 1.01 85.31
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the F-measure, the better the classifier’s performance. ,e
computation of F_score% is given as follows:

F Score% �
2
Y


Y
i�1 Ri · 

Y
i�1 Pi


Y
i�1 Ri + 

Y
i�1 Pi

× 100, (10)

where Ri and Pi denote the precision and recall of class i,
respectively.

(4) Cohen_Kappa_Score. Cohen kappa is a statistic that
evaluates the predictability of the findings and determines
whether the consistency is genuinely random. ,e greater
the Cohen_kappa, the better the classifier’s performance.
Kappa_score% is equated as follows:

Kappa Score% �
Overall Accuracy − 

Y
i�1 qi · qi

′

1 − 
Y
i�1 qi · qi

′
× 100,

(11)

Table 6: Performance comparison between the oversampling techniques associated with different tree-based ensemble classifiers in terms of
the percentages of precision, recall, F score, kappa, and OA and TE calculated in seconds for the SV dataset.

Prec_score Rec_score F_score Kappa_score OA TE (in secs)

DT

ROS 88.51± 2.86 89.54± 2.75 89.59± 2.46 42.17± 2.57 88.78± 1.74 27.487
SMOTE 89.48± 1.38 89.49± 1.87 90.91± 2.56 46.63± 2.17 89.36± 1.19 32.258
B-SMOTE 89.47± 2.45 89.39± 1.95 89.47± 2.75 46.22± 2.11 89.05± 1.35 37.898
ADASYN 89.64± 2.43 89.62± 1.84 89.67± 1.3 48.3± 2.06 89.59± 1.63 39.618

ET

ROS 93.36± 2.71 93.33± 2.31 93.32± 2.22 60.78± 2.02 92.05± 1.84 51.385
SMOTE 93.35± 2.82 93.29± 2.2 93.24± 2.1 62.69± 2.72 93.11± 1.22 52.384
B-SMOTE 93.36± 1.41 93.32± 1.86 93.34± 2.45 61.88± 1.57 92.67± 1.47 64.989
ADASYN 93.46± 2.86 93.35± 2.13 93.48± 2.86 62.92± 2.5 93.3± 1.13 65.096

RF

ROS 93.31± 2.29 93.26± 2.9 93.29± 1.11 59.76± 2.78 92.26± 1.23 67.545
SMOTE 93.36± 1.15 93.32± 1.47 93.26± 2.09 61.84± 1.86 93.27± 1.7 68.773
B-SMOTE 93.11± 2.21 93.6± 2.02 93.23± 1.96 60.44± 2.31 93.04± 1.41 68.56
ADASYN 93.48± 1.37 93.32± 1.58 93.31± 2.99 62.88± 2.05 94.64± 1.36 68.796

RoF

ROS 94.47± 1.04 94.55± 1.78 94.52± 1.83 71.79± 2.77 94.85± 1.23 4644.89
SMOTE 95.43± 1.72 95.56± 2.75 95.27± 1.35 72.36± 1.68 95.48± 1.27 4889.134
B-SMOTE 95.48± 2.59 95.59± 2.46 95.25± 1.31 72.51± 1.51 95.18± 1.36 4755.675
ADASYN 95.6± 1.8 95.87± 1.57 95.75± 2.84 72.68± 2.89 95.7± 1.86 5023.45

RREF

ROS 94.23± 2.27 94.07± 2.63 94.59± 2.94 81.86± 1.41 93.27± 1.42 75.543
SMOTE 94.25± 1.16 93.97± 2.59 94.3± 2.78 81.12± 1.4 95.57± 1.18 87.642
B-SMOTE 94.47± 2.18 92.45± 2.32 94.21± 1.79 80.12± 2.07 94.25± 1.13 89.654
ADASYN 95.43± 1.45 94.83± 1.85 94.82± 2.7 82.94± 1.02 95.84± 1.33 95.437

Table 7: Performance comparison between the undersampling techniques associated with different tree-based ensemble classifiers in terms
of the percentages of precision, recall, F score, kappa, and OA and TE calculated in seconds for the SV dataset.

Prec_score Rec_score F_score Kappa_score OA TE (in secs)

DT

RUS 82.74± 2.98 76.44± 2.5 77.23± 1.49 39.94± 2.09 76.4± 1.47 2.067
Tomek 89.81± 2.48 89.42± 2.91 89.32± 2.68 46.75± 1.65 79.83± 1.06 3.705
NCL 89.86± 1.99 89.89± 2.05 89.87± 2.77 46.17± 1.64 79.97± 1.19 2.13
ENN 89.3± 2.75 88.94± 2.78 88.98± 2.48 45.7± 2.47 78.93± 1.15 3.545

ET

RUS 86.91± 2.42 82.9± 1.15 83.45± 2.19 58.68± 2.11 82.95± 2.69 3.256
Tomek 93± 2.55 93.9± 2.56 93.6± 1.02 60.42± 2.16 93.22± 1.24 19.895
NCL 91.51± 2.4 91.45± 1.62 91.35± 2.77 58.67± 1.93 91.36± 1.72 18.444
ENN 90.67± 1.24 90.46± 1.99 90.45± 1.53 57.58± 1.8 90.44± 1.32 18.404

RF

RUS 87.12± 1.14 83.35± 2.74 83.8± 1.31 69.4± 2.46 83.35± 1.15 3.244
Tomek 93.12± 2.37 93.18± 2.65 93.35± 1.47 70.31± 1.95 93.56± 1.25 29.694
NCL 91.68± 2.89 91.55± 1.54 91.55± 1.77 68.73± 2.06 91.49± 2.12 28.271
ENN 90.57± 1.6 90.43± 2.9 90.48± 2.4 67.49± 1.06 90.41± 1.73 27.399

RoF

RUS 88.77± 1.94 83.54± 2.24 84.1± 2.73 80.1± 1.53 85.32± 1.81 103.763
Tomek 93.44± 2.83 94.8± 1.99 94.92± 1.65 81.45± 1.58 94.41± 1.5 3219.078
NCL 92.26± 2.34 93.23± 2.57 93.37± 2.42 80.27± 2.38 93.68± 2.84 2964.741
ENN 90.29± 2.73 92.32± 2.82 91.7± 2.49 79.17± 2.59 93.54± 2.98 2895.973

RREF

RUS 88.65± 1.03 81.8± 2.19 79.79± 1.84 79.62± 2.09 84.93± 2 19.439
Tomek 93.88± 2.39 94.48± 2.57 94.94± 1.32 81.59± 2.63 94.44± 2.31 25.452
NCL 91.82± 1.58 92.26± 2.15 91.32± 1.41 78.8± 2.21 93.7± 2.6 21.214
ENN 89.88± 1.98 90.68± 2.52 91.94± 2.65 79.11± 1.46 93.18± 2.41 20.84
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where qi and qi
′ denote the original and predicted sample

sizes of class i, respectively.
(5) Overall Accuracy. Overall accuracy, being a perfor-

mance-metric, assigns the similar weight to every of the data
types, regardless of their number of instances. ,e definition
of OA is given as follows:

OA% �
1
Y



Y

i�1

bii


Y
i�1 bji + bii 

× 100. (12)

(6) Time Elapsed. Time complexity is a factor in real-time
computation. Lesser the time complexity, the higher the
quality of the classifier. Time elapsed for execution is defined
as follows:

TE(in seconds) � End time of execution
–Start time of execution. (13)

4.3. Comparative Performance Analysis of the Model

4.3.1. For Indian Pines Dataset

(1) Effect of Oversampling. Table 3 describes the comparison
between the tree-based classifier model performances due to
the oversampling of the data. It is evident that SMOTE achieves
better results in all performancemetrics for all classifiers. RREF
attains the highest accuracy of 89.49%, with an approximation
of 1.32, slightly higher than RoF. Also, the total time consumed
is maximum for ADASYN for all the classifiers, especially for
RoF.

Table 8: Performance comparison between the hybrid sampling techniques associated with different tree-based ensemble classifiers in terms
of the percentages of precision, recall, F score, kappa, and OA and TE calculated in seconds for the SV dataset.

Prec_score Rec_score F_score Kappa_score OA TE (in secs)

DT SMOTETomek 89.55± 2.04 89.54± 1.64 89.58± 1.16 46.28± 1.87 89.46± 2.11 91.796
SMOTEENN 88.72± 2.24 88.62± 1.54 88.6± 2.53 45.18± 2.76 88.59± 1.95 83.808

ET SMOTETomek 93.12± 2.67 93.19± 1.61 93.12± 1.21 60.34± 2.82 93.01± 2.35 105.412
SMOTEENN 90.64± 2.36 90.41± 1.14 90.49± 1.71 57.31± 1.96 90.38± 1.87 99.811

RF SMOTETomek 93.01± 2.42 93.28± 2.9 93.29± 1.32 68.35± 1.15 92.97± 2.14 59.343
SMOTEENN 90.59± 1.96 90.31± 1.25 90.21± 2.06 67.27± 2.51 90.26± 1.84 52.498

RoF SMOTETomek 94.89± 1.39 94.77± 1.74 94.81± 1.54 79.28± 1.03 93.89± 2.24 6297.542
SMOTEENN 91.72± 1 92.12± 1.26 91.94± 1.18 69.11± 1.81 91.77± 1.68 6031.47

RREF SMOTETomek 93.29± 2.83 93.14± 2.09 93.57± 1.26 78.49± 2.07 93.17± 2.12 186.743
SMOTEENN 91.09± 1.12 91.17± 1.54 91.79± 1.46 88.2± 1.52 91.41± 1.48 163.265

Table 9: Performance comparison between the oversampling techniques associated with different tree-based ensemble classifiers in terms of
the percentages of precision, recall, F score, kappa, and OA and TE calculated in seconds for the PU dataset.

Prec_score Rec_score F_score Kappa_score OA TE (in secs)

DT

ROS 78.96± 1.91 79.28± 2.13 79.1± 3.36 37.12± 2.93 77.17± 1.86 28.216
SMOTE 79.45± 2.14 79.96± 2.61 79.89± 1.47 37.92± 1.22 79.94± 1.17 29.025
B-SMOTE 78.73± 3.17 78.43± 3.04 78.62± 3.33 35.15± 3.54 78.37± 1.06 28.815
ADASYN 78.63± 2.27 78.12± 3.04 78.41± 2.54 35.45± 1.9 78.57± 1.7 30.451

ET

ROS 84.79± 2.64 85.77± 1.35 83.58± 3.44 43.85± 2.98 84.67± 1.95 56.781
SMOTE 84.93± 2.65 85.86± 3.15 83.69± 2.74 45.9± 1.26 85.71± 1.59 57.864
B-SMOTE 84.74± 3.2 85.72± 1.33 83.55± 3.84 44.82± 2.91 85.17± 1.89 57.336
ADASYN 84.61± 1.1 85.69± 2.51 83.43± 1.87 44.27± 2.12 85.51± 1.8 59.337

RF

ROS 84.28± 2.66 85.26± 3.95 83.15± 2.39 45.24± 3.28 84.25± 1.65 62.336
SMOTE 84.56± 1.41 85.96± 2.73 83.8± 3.6 48.04± 1.31 86.89± 1.97 65.369
B-SMOTE 83.17± 3.28 85.9± 1.48 81.9± 1.82 37.28± 2.41 84.01± 1.43 65.57
ADASYN 83.92± 2.99 84.82± 2.87 81.94± 1.13 38.87± 3.27 86.04± 1.88 66.634

RoF

ROS 86.57± 1.34 86.85± 3.49 84.96± 2.48 50.25± 3.32 87.24± 1.25 3982.435
SMOTE 87.93± 3.64 88.26± 3.12 88.17± 2.29 52.93± 1.2 91.89± 1.45 3543.257
B-SMOTE 87.52± 3.56 88.22± 1.28 88.03± 2.55 43.48± 1.47 88.55± 1.56 3421.805
ADASYN 87.49± 1.93 88.1± 3.46 88.1± 3.64 40.16± 2.83 90.38± 1.1 4721.63

RREF

ROS 86.59± 3.82 86.83± 3.38 84.99± 3.65 50.28± 3.83 87.24± 1.4 85.87
SMOTE 88.96± 3.32 88.79± 1.83 88.95± 1.46 52.32± 1.5 91.98± 1.16 87.654
B-SMOTE 87.54± 3.74 88.2± 3.61 88.09± 2.17 43.48± 2.71 88.53± 1.83 84.764
ADASYN 87.45± 3.83 88.19± 1.18 88.17± 2.92 51.24± 3.07 90.58± 1.74 88.453
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(2) Effect of Undersampling. Table 4 describes the compar-
ison between the tree-based classifier model performances
due to the oversampling of the data. It is imperative that TL
achieves better results in all performance metrics for all
classifiers, except for DT, where NCL attains the highest OA.
RREF attains the highest accuracy of 85.32%, with an ap-
proximation of 2.76, which is slightly higher than RoF. Also,
the total time consumed is maximum for TL for all the
classifiers, especially for RoF.

(3) Effect of Hybrid Sampling. Table 5 compares the tree-
based classifier model performances due to the hybrid
sampling of the data. It can be inferred that SMOTETomek
achieves better results in all performance metrics for all
classifiers. RoF attains the highest accuracy of 82.74%, with
an approximation of 2.16, slightly higher than RoF. Also, the
total time consumed is maximum for SMOTETomek for all
the classifiers, especially for RoF.

4.3.2. For Salinas Valley Dataset

(1) Effect of Oversampling. Table 6 compares the tree-based
classifier model performances due to the oversampling of the
data. ADASYN achieves better results in all performance
metrics for all classifiers. RREF attains the highest accuracy
of 95.84%, with an approximation of 1.33, slightly higher
than RoF. Also, the total time consumed is maximum for
ADASYN for all the classifiers, especially for RoF.

(2) Effect of Undersampling. Table 7 describes the compar-
ison between the tree-based classifier model performances
due to the oversampling of the data. It is imperative that TL
achieves better results in all performance metrics for all
classifiers. RoF attains the highest accuracy of 95.41%, with
an approximation of 1.5, which is slightly higher than RREF.
Also, the total time consumed is maximum for TL for all the
classifiers, especially for RoF.

Table 10: Performance comparison between the undersampling techniques associated with different tree-based ensemble classifiers in terms
of the percentages of precision, recall, F score, kappa, and OA and TE calculated in seconds for the PU dataset.

Prec_score Rec_score F_score Kappa_score OA TE (in secs)

DT

RUS 78.92± 1.16 43.2± 1.55 48.35± 2.9 15.29± 1.57 42.96± 1.85 0.818
Tomek 78.76± 2.81 79.17± 1.14 78.99± 2.88 36.7± 1.26 79.13± 1.79 3.185
NCL 79.82± 1.46 81.79± 2.49 80.36± 1.77 39.89± 1.86 82.51± 2.35 2.588
ENN 79.38± 2.85 81.53± 1.71 79.78± 2.13 39.82± 2.86 81.69± 1.91 2.566

ET

RUS 83.24± 2.33 44.17± 2.06 48.14± 2.15 17.74± 1.15 44.06± 2.5 11.806
Tomek 84.4± 2.39 85.53± 2.64 83.22± 2.91 42.91± 2.15 85.49± 1.84 14.223
NCL 83.87± 1.59 84.96± 1.93 82.57± 1.28 42.25± 2.88 84.92± 2.2 13.34
ENN 82.83± 1.8 84.11± 1.91 81.36± 2.98 37.48± 1.49 84.13± 1.81 13.806

RF

RUS 83.36± 2.52 43.2± 1.51 47.17± 1.63 17.16± 1.79 43.16± 2.71 23.161
Tomek 84.19± 1.31 85.33± 1.05 83.12± 1.17 43.17± 1.82 85.29± 2.17 28.126
NCL 83.75± 1.55 84.91± 2.43 82.7± 2.23 42.84± 2.25 84.97± 2.67 27.781
ENN 82.81± 2.1 84.12± 1.68 81.43± 1.75 38.27± 1.56 84.1± 2.17 27.765

RoF

RUS 85.32± 1.64 48.46± 1.66 49.77± 2.67 19.87± 2.67 47.29± 1.11 1769.731
Tomek 85.97± 2.34 86.34± 1.44 85.34± 2.43 47.52± 1.35 88.71± 1.34 2135.432
NCL 84.31± 2.23 85.81± 2.26 83.2± 1.91 47.63± 2.58 87.43± 2.58 1960.372
ENN 83.11± 1.02 84.59± 2.82 81.8± 2.73 41.22± 3 87.11± 1.75 1904.97

RREF

RUS 85.13± 1.38 47.71± 2.68 49.28± 2.9 18.85± 1.96 46.85± 1.16 17.298
Tomek 85.33± 1.22 85.95± 1.64 85.81± 2.47 46.24± 1.09 89.92± 2.11 23.064
NCL 84.02± 1.8 85.49± 1.29 83.69± 2.27 45.87± 2.26 87.81± 2.32 21.873
ENN 82.91± 1.57 84.8± 2.38 82.24± 1.6 39.97± 2.78 87.03± 1.84 20.09

Table 11: Performance comparison between the hybrid sampling techniques associated with different tree-based ensemble classifiers in
terms of the percentages of precision, recall, F score, kappa, and OA and TE calculated in seconds for the PU dataset.

Prec_score Rec_score F_score Kappa_score OA TE (in secs)

DT SMOTETomek 78.77± 1.32 78.93± 2.3 78.82± 2.93 35.37± 1.11 78.89± 2.51 89.671
SMOTEENN 79.45± 2.63 81.53± 2.85 79.88± 2.93 37.62± 2.05 81.47± 2.18 80.852

ET SMOTETomek 84.46± 2.78 85.47± 1.67 83.18± 1.18 42.71± 1.04 85.36± 1.34 97.329
SMOTEENN 82.91± 1.23 84.17± 2.25 81.42± 1.85 39.77± 1.32 84.12± 2.45 94.81

RF SMOTETomek 82.95± 2.23 83.85± 1.69 80.74± 1.25 48.99± 1.6 83.84± 2.67 101.411
SMOTEENN 82.61± 1.08 83.73± 2.88 80.72± 1.18 48.68± 2.66 83.73± 2.71 96.546

RoF SMOTETomek 85.28± 2.34 86.95± 2.75 87.37± 1.95 66.42± 2.64 86.12± 2.14 5231.754
SMOTEENN 85.18± 1.69 86.71± 2.51 87.48± 1.51 49.88± 2.68 85.54± 1.07 4987.34

RREF SMOTETomek 84.79± 1.8 85.7± 2.7 86.52± 1.75 78.13± 1.14 85.83± 2.32 162.864
SMOTEENN 84.44± 2.29 85.27± 2.97 85.74± 2.08 50.49± 2.93 85.17± 1.33 149.063
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(3) Effect of Hybrid Sampling. Table 8 describes the comparison
between the tree-based classifiermodel performances due to the
hybrid sampling of the data. It can be inferred that SMOTE-
Tomek achieves better results in all performance metrics for all

classifiers. RoF attains the highest accuracy of 94.89%, with an
approximation of 2.24, which is slightly higher than RoF. Also,
the total time consumed is maximum for SMOTETomek for all
the classifiers, especially for RoF.
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Figure 4: OA% comparison between SMOTE and ADASYN associated with the tree-based ensemble classifiers for IP, SV, and PU datasets.
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Figure 5: OA% comparison between TL and NCL associated with the tree-based ensemble classifiers for IP, SV, and PU datasets.
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4.3.3. For Pavia University Dataset

(1) Effect of Oversampling. Table 9 depicts the comparison
between the tree-based classifier model performances due to
the oversampling of the data. It is evident that SMOTE
achieves better results in all performance metrics for all
classifiers. RoF attains the highest accuracy of 91.89%, with
an approximation of 1.45, which is slightly higher than RoF.
Also, the total time consumed is maximum for ADASYN for
all the classifiers, especially for RoF.

(2) Effect of Undersampling. Table 10 describes the com-
parison between the tree-based classifier model perfor-
mances due to the oversampling of the data. It is imperative
that TL achieves better results in all performance metrics for
all classifiers, except for DT, where ENN attains the highest
OA. RoF attains the highest accuracy of 89.91%, with an
approximation of 1.34, which is slightly higher than RREF.
Also, the total time consumed is maximum for TL for all the
classifiers, especially for RoF.

(3) Effect of Hybrid Sampling. Table 11 describes the com-
parison between the tree-based classifier model perfor-
mances due to the hybrid sampling of the data. It can be
inferred that SMOTETomek achieves better results in all
performance metrics for all classifiers. RREF attains the
highest accuracy of 85.83%, with an approximation of 2.32,
which is slightly higher than RoF. Also, the total time
consumed is maximum for SMOTETomek for all the clas-
sifiers, especially for RoF.

4.3.4. Comprehensive Discussion. ,e total number of land
cover pixels in each band of the IP, SV, and PU datasets is
10249, 54129, and 42776, respectively. Also, SV represents a
valley scene, whereas the others represent urban sites. From
the tables above, certain inferences can be drawn. As an
oversampling technique, SMOTE stands out to be best for IP
and PU datasets, but for SV, ADASYN produces the best
result throughout all classifiers. SMOTE and ADASYN
achieve better outcomes for all the datasets than other

(a) (b)

(c) (d)

(e)

Figure 6: Comparison of the PEM for oversampling, undersampling, and hybrid sampling applied on the IP dataset. (a) Prec_score%. (b)
Rec_score%. (c) F_score%. (d) Kappa_score%. (e) OA%.
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oversampling methods. Figure 4 depicts the graphical
comparison of the performances of SMOTE and ADASYN
in terms of OA%. TL is the best technique for achieving good
results for the HS datasets for the undersampling approach.
,e statistics for NCL have been closer to the outcomes of
TL, although it has outperformed TLwith DTclassifier for all
the datasets. Figure 5 represents the performance compar-
ison between TL and NCL based on OA%. SMOTETomek
has surpassed SMOTEENN in all aspects of performance for
all the datasets.

Figures 6–8 represent all EM data plotted in graphs to
understand better the effects of resampling techniques on
the HS datasets, viz. IP, SV, and PU.,e blue, red, and green
curves represent the oversampling, undersampling, and
hybrid sampling technique that produces a better result than
other resampling techniques. We can infer the more ap-
propriate strategy for further research from these graphical
illustrations. Figures 6(a)–6(e) show that the PEMs, viz.
precision, recall, F_score, kappa, and OA of the over-
sampling techniques with the classifier RREF, are the highest
for the IP dataset, whereas DT is the least impactful. For

hybrid sampling, RoF achieves the best overall PEM scores.
,e SV dataset obtains the best outcome in oversampling
and RREF, whereas there is only a little difference between
the performance measures, statistically, that dwells between
RoF and RREF. ,e same scenario applies to the PU dataset
in terms of PEMs, as shown in Figures 7(a)–7(e). For the IP
dataset, represented by Figures 8(a)–8(e), with the lowest
dimension containing less spectral resolutions, RREF per-
forms best for oversampling and undersampling, but RoF
stands out in hybrid sampling. ,e other two datasets, SV
and PU, have higher dimensions enriched with more dif-
ferentiative spectral features. When they undergo under-
sampling or hybrid sampling, RoFmakes themost corrective
decisions.,ese figures conclude that DT, a simple and basic
tree-based ensemble classifier, produces the least accuracy
for all datasets. However, RREF is an ensemble of two ef-
ficient and state-of-art tree-based ensemble classifiers. It
generates maximum OA for all datasets associated with the
oversampling techniques, SMOTE and ADASYN, and the
undersampling technique, TL. However, hybrid sampling is
found to be more compatible with RoF.

(a) (b)

(c) (d)

(e)

Figure 7: Comparison of the PEM for oversampling, undersampling, and hybrid sampling applied on the SV dataset. (a) Prec_score%. (b)
Rec_score%. (c) F_score%. (d) Kappa_score%. (e) OA%.
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,e calculation and comparison of elapsed time for
executing the entire training system, i.e., the time com-
plexity, also play a vital role. ,is comparison is graphically
illustrated in Figure 9 as a 3D bar chart.,e figure shows that
hybrid sampling is the amalgamation of an oversampler, and
an undersampler holds a more complex structure and takes
the highest time to build the model. ,en come the over-
sampling techniques that generate synthetic samples to
recreate the balanced dataset, which takes a certain amount
of time. Finally, the order is followed by undersampling
strategies whose elapsed time is least due to the deletion of
linked neighborhood data samples. ,is order is thoroughly
followed irrespective of the type of the applied tree-based
ensemble classifier.

,e comparison between the elapsed time with units in
seconds is also inevitable for the different ensemble tree-
based classifiers we used in our work.,e order of increment
in time of execution for those classifier models is consistent:
DT<ET<RF<RREF<<RoF. According to the previous
discussion, RREF and RoF provide the best outcomes for all
the resampling strategies. ,e time taken by RoF is at most
136.85 times (undersampling in IP) and at least 32.12 times
(hybrid sampling in PU) higher than RREF.,e other TE (in

secs) ratios for RREF and RoF, as shown in Figure 9, lie
within the said range.

,e entire study summarizes that oversampling strate-
gies are more compatible with hyperspectral images as they
are more consistent than undersampling and hybrid sam-
pling strategies. Oversampling provides the creation of new
synthetic instances that inevitably regenerate the existing
dataset and bring in a balance between the samples of major
and minor classes. Due to the overpopulation of the samples,
the dataset does not suffer from the lack of labeled data, and
no feature or information is lost, which is an issue in
undersampling. ,e fully balanced dataset is then fed to the
tree-based ensemble classifier models as input. ,e decision
trees are made in equilibrium with the balanced samples and
produce elementary decisions. ,ose decision outcomes are
passed into forests, and the averaged classification result is
ultimately obtained. However, from Tables 2, 5, and 8, we
found that SMOTE is mostly better than ADASYN when the
ratio of class imbalance is high. ,is is due to the SMOTE-
augmented minority class overall anticipated value being the
same as the original minority class expected value, but its
variance is lower. As a result, SMOTE has little effect on
classifiers that use mean values and total variances to

(a) (b)

(c) (d)

(e)

Figure 8: Comparison of the PEM for oversampling, undersampling, and hybrid sampling applied on the PU dataset: (a) Prec_score%. (b)
Rec_score%. (c) F_score%. (d) Kappa_score%. (e) OA%.
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determine categorization rules. ADASYN is also helpful in
reducing the learning bias caused by the data distribution of
the original imbalanced dataset. ,e disadvantage of
ADASYN over SMOTE is that the procedure is more
complex and time-consuming due to its adaptive nature.
Additionally, the contrasts are found to be minor between
the PEMs derived by RREF and RoF as tree-based ensemble
classifier models with each of the oversampling, under-
sampling, and hybrid sampling procedures. Finally, we can
say that the classifier RREF, in combination with the
oversampling algorithms such as SMOTE and ADASYN, is
capable of producing outstanding classification results for
balanced hyperspectral datasets.

5. Conclusion

Data imbalance has been a delicate issue in big data scenarios
with enormous and high-dimensional data. Due to imbal-
ance, classifiers suffer from low accuracy and quality. In our
work, we have offered a brilliant study of comparison be-
tween the effects of oversampling, undersampling, and
hybrid sampling on three highly imbalanced hyperspectral
datasets. Furthermore, we rely on the fact presented by
previous researchers that the tree-based ensemble classifiers
are more useful when the data samples belonging to different
classes are nearly balanced. As an effect, we have incorpo-
rated a handful of eminent ensemble tree strategies that have
achieved remarkable outcomes. For building our models for
each resampling strategy and the individual classifier, we
executed 50 models for each dataset. For all HS datasets,

our findings revealed that in oversampling, SMOTE and
ADASYN, while in undersampling, Tomek Links, and in
hybrid sampling, SMOTETomek techniques are more
compatible with RoF and RREF. Practically and ex-
perimentally, oversamplers achieve higher performance
statistics than other resampling techniques as they
sustain and sometimes add further features for better
classification. On the other hand, in undersampling and
hybrid sampling, there is a provision for removing re-
dundant data from major classes, which sometimes may
lead to loss of information, which affects the classifi-
cation performance abruptly. Furthermore, there is
enough scope to improve all the sampling strategies to
become compatible with voluminous real-life datasets
for robust applicabilities.

As a limitation to our present work, we can list specific
points: (1) the classifiers used need to be cross-validated to
produce more optimized outcomes; (2) a limited number of
resampling techniques are used with limited hyperpara-
meters; and (3) the computation and time complexity are
high. In the future, we plan to incorporate recently devel-
oped variants of SMOTE and ADASYN along with more
efficient forest ensembles. Also, we will try to explore the TL
and its possibility of being optimized to achieve a more
accurate outcome.
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Figure 9: Comparison of maximumTE (in secs) for the oversampling, undersampling, and hybrid sampling techniques taken for each of the
classifiers applied on IP, SV, and PU datasets.

20 Computational Intelligence and Neuroscience



GIS: Geographic information system
PCA: Principal component analysis
ML: Machine learning
DL: Deep learning
IP: Indian Pines
SV: Salinas Valley
UP: University of Pavia
LR: Logistic regression
NB: Naive Bayes
k-NN: K-nearest neighbor
SVM: Support vector machine
DT: Decision tree
ET: Extra trees or extremely randomized trees
RF: Random forest
RoF: Rotation forest
RREF: Random rotation ensemble forest
ROS: Random oversampling
SMOTE: Synthetic minority oversampling technique
B-
SMOTE:

Borderline synthetic minority oversampling
technique

ADASYN: Adaptive synthetic minority oversampling
technique

RUS: Random undersampling
TLs: Tomek Links
NCL: Neighborhood cleaning rule
ENN: Edited nearest neighbor
CART: Classification and regression tree.
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