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In clinical applications, the classifcation of ultrasound images needs to be processed as an aid to diagnosis. Based on this, a hybrid
model of cascaded deep convolutional neural network consisting of two diferent CNNs and a new classifcation method are
designed and evaluated for its feasibility and efectiveness in ultrasound image classifcation. A total of 1000 pathological slides of
patients with thyroid nodular lesions kept in the Department of Pathology of the First Afliated Hospital of Lanzhou University,
China, were retrospectively collected. After image acquisition, the images were randomly divided into training set, validation set,
and test set in the ratio of 4 : 3 : 3.Tree convolutional neural networkmodels (VGG 19model, Inception V3model, and DenseNet
161 model) with pretraining parameters acquired on the training set were trained, and the models were combined to construct an
integrated learning model, and the performance of the models in recognizing pathological images was evaluated based on the test
set data.Te experimental results show that the VGG 19model is less efective in classifcation, with a correct rate of 88.20%, which
is lower than that of Inception V3 and DenseNet161 models (92.87% and 92.95%). InceptionV3 and DenseNet161 models have
signifcant advantages in terms of accuracy, number of parameters, and training efciency, where the DenseNet161 model has
faster convergence and better generalization performance, but occupies more video memory in the operation; moreover, the
DenseNet161 operation time (1986.48 s) and response time (16 s) are better than the other two models. In addition, the integrated
learning of InceptionV3 and DenseNet161 can improve the recognition of pathological images by a single model. Compared with
other methods, the performance of the cascaded CNNs proposed in this study is signifcantly improved, and the multiview
strategy can improve the performance of cascaded CNNs. Te experimental results demonstrate the potential clinical application
of cascaded CNNs, which can provide physicians with an objective second opinion and reduce their heavy workload, in addition
to making the diagnosis of thyroid nodules easy and reproducible for people without medical expertise.

1. Preface

With the continuous development of society and substantial
progress in technology, health issues are receiving more and
more attention, which has prompted the development of
medical diagnostic techniques in a more advanced direction
[1–3]. As an important part of the medical diagnostic feld,
medical imaging has gradually developed into a relatively
independent discipline. In recent decades, medical imaging
has developed very rapidly in the feld of medical diagnostic
technology, and it is an important basis for clinicians to

observe, analyze, diagnose, and treat lesions. Medical im-
aging makes it possible for clinicians to observe lesion sites
inside the human body more directly and clearly and to
diagnose and treat diseases more accurately [4–6]. With the
advent of the digital era, a variety of medical imaging
techniques have emerged in medical imaging, such as
computed tomography, magnetic resonance imaging, and
ultrasound imaging, and these imaging techniques have
been widely used in medical diagnosis.

In the feld of medical imaging technology, medical
ultrasound imaging technology is the most widely used.

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 8912566, 15 pages
https://doi.org/10.1155/2022/8912566

mailto:zhaozhen.900803@stu.xjtu.edu.cn
https://orcid.org/0000-0002-9036-1541
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8912566


Medical ultrasound imaging technology combines multiple
frontier technologies such as ultrasound physics, biomedi-
cine, and modern electronic detection technology and is a
living force in the wave-breaking trend of science and
technology. Medical ultrasound diagnosis is the technique of
applying ultrasound imaging equipment to the human body
to detect tissues and organs and determine whether they are
diseased or not [7]. Compared with the clinical applications
of computed tomography, X-ray scanning, and magnetic
resonance imaging, medical ultrasound diagnostic tech-
nology has its unique advantages. First, the propagation and
detection medium used in the medical ultrasound imaging
technology is ultrasound. Ultrasound has the advantages of
high frequency, short wavelength, concentrated energy,
good directionality, and strong penetrating power [8].
Second, ultrasound is safe and noninvasive. When the pa-
tient is exposed to ultrasound with standard energy, medical
ultrasound imaging equipment can achieve safety and
noninvasiveness to the human body parts [9]. Tird, ul-
trasound has no radiation to the human body and is safer
than the use of X-rays, computed tomography, and MRI
[10]. Fourth, medical ultrasound imaging is fast and real
time. In contrast, X-rays, computed tomography, and MRI
take longer to acquire data, and imaging is slower [11]. Fifth,
medical ultrasound imaging equipment is simple and low
cost, and with the increasing development of integration
technology and digital technology, medical ultrasound
imaging equipment is becoming smaller and more inte-
grated, which is very convenient to carry and operate and
easy to promote the use [12]. Terefore, more and more
ultrasound diagnostic devices have been used in medical
diagnosis. It has made a very great contribution to the
development and breakthrough of technology in the medical
feld. Nowadays, medical ultrasound diagnostic equipment
has become an indispensable tool in medical diagnosis.

Meraj et al. [13] focused on segmentation of breast le-
sions by a quantization-assisted U-Net approach, where
quantization-assisted U-Net based segmentation in order to
isolate the exact lesion region from the ultrasound image.
Te independent component analysis (ICA) method then
uses the separated lesion regions to extract features, which
are then fused with deep automatic features. Tis method
has a higher performance compared to the current state-of-
the-art variants. However, the disadvantages are insufcient
dataset, lack of training for segmentation and classifcation,
and lack of deep learning means for segmentation training.
Jabeen et al. [14], on the contrary, are an automated system
for breast cancer classifcation using ultrasound images. Te
breast ultrasound data were frst augmented and then
retrained using the DarkNet-53 deep learning model. Fea-
tures are then extracted from the pooling layer and then the
best features are selected using two diferent optimization
algorithms. Te selected features were fnally fused using the
proposed method and subsequently classifed using a ma-
chine learning algorithm. Tis method achieves an accuracy
of 99.1%. However, this method also has an insufcient
number of databases and also lacks a CNN model for breast
tumor classifcation, which is not sufciently convincing to
support the data for breast tumor classifcation. Irfan et al.

[15] used a deep neural network DenseNet201 with mi-
gration learning to further validate and secure features rich
in target intensity by using transfer learning-based feature
extraction.Te accuracy of the CNN-activated feature vector
and the DenseNet201-activated feature vector combined
with the support vector machine (SVM) classifer was
90.11% and 98.45%, respectively. Te accuracy of the fused
version of feature vector with SVM is 98.9%, which exceeds
the other algorithms. However, the limitation of the pro-
posed method is that the feature selection technique was not
used. Savelonas et al. [16] used K-nearest neighbor (KNN)
and support vector machine (SVM) classifers for the de-
tection of thyroid nodules with boundary features (com-
pactness, fractal dimension, and local echogenic diferences),
and the best result of SVM was an AUC of 0.95. Iakovidis
et al. [17] used local binary patterns (LBP), fuzzy local binary
patterns (FLBP), and fuzzy grayscale histogram (FGLH) to
train SVM with a polynomial kernel for thyroid nodule
detection. Te best performance was estimated to be 97.5%
according to AUC. Keramidas et al. [18] also used SVM and
KNN classifers to detect thyroid nodules based on the
features of FLBP and FGLH. Teir best classifcation ac-
curacy was estimated to be more than 95%. Bibicu et al. [19]
extracted frst-order statistical features (mean, standard
deviation, skewness, kurtosis, energy, and entropy) to detect
thyroid nodules by Z or the t-statistic test. It was able to
identify thyroid nodules with a correct classifcation rate of
83% when analyzing the whole image and 91% when ana-
lyzing the ROI. Although these studies obtained encouraging
results, they were mostly based on a series of preprocessing
based on hand-designed features extracted from the images.
Moreover, the extraction of efective features is a challenging
task that requires the help of classifers for the latter steps of
feature selection and feature integration.

To overcome the above difculties, this study proposes to
classify the benign and malignant of common pathology-
thyroid nodular disease by using ultrasound image imaging
histology and detecting thyroid nodules from two-dimen-
sional ultrasound images using cascaded convolutional
neural networks (CNNs). CNN is a deep learningmodel, and
the main structure of CNN includes convolutional layer,
pooling layer, and fully connected layer. Te convolution
layer can learn image features from the input image in the
form of a local matrix through convolution operations while
preserving the spatial relationship between pixels so that
only some nodes between adjacent connected layers need to
be connected, i.e., locally connected. Te pooling layer can
gradually reduce the spatial scale of the input representation,
i.e., reduce the feature tensor dimension, simplify opera-
tions, reduce the time and space complexity of the network,
and avoid overftting, while being able to reduce the net-
work’s sensitivity to irrelevant changes, redundant errors,
and small transformations in the input image, allowingmore
neuron nodes to fow to the main features, thus improving
the robustness of the features and speeding up the acqui-
sition of key features.Te fully connected layer plays the role
of mapping the features acquired by the network during
training to the sample labeling space. Each neuron in the
fully connected layer is fully connected to all neurons in its
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previous layer, which can integrate local information with
category diferentiation in the convolutional and pooling
layers.

In this study, our cascaded CNN takes image patches of
thyroid nodules and normal thyroid as input and then
generates feature maps as output. Multiple intermediate
layers apply convolution, pooling, and normalization op-
erations to transform the input into the output. Te network
contains millions of trainable parameters that are tuned on a
set of manually delineated thyroid image data. In addition,
the CNN automatically learns a hierarchy of efective fea-
tures from the thyroid ultrasound images by building high-
level features from low-level features. First, the region of
interest (i.e., thyroid nodule region) of the ultrasound image
is roughly delineated by the physician. Second, a CNN (with
15 convolutional layers and 2 ensemble layers) is trained to
segment the thyroid nodules and generate the corresponding
segmentation probability maps. Tird, all segmentation
probability maps are partitioned into diferent connected
regions by a new segmentation method, which consists of
successive binarization operators, erosion operators, and
dilation operators. Finally, another CNN (with four con-
volutional and four pooling layers) is used to detect thyroid
nodules based on ultrasound image patches relabeled by the
segmentation probability map. Te main contributions of
this study include the following three aspects:

(1) Cascaded CNNs are able to compress image features,
discard redundancy, efectively reduce the number of
parameters in the neural network, and improve
network learning efciency compared to traditional
neural networks, which are suitable for processing
complex and large 2D ultrasound images for
detecting medical images of thyroid nodules.

(2) A hybrid method based on CNNs is developed to
detect thyroid nodules, which is a cascade method
based on a special segmentation method, and two
diferent CNN architectures with diferent con-
volutional layers, pooling layers, fully connected
layers, etc. In addition, a multiview strategy is used to
improve the performance of cascaded CNNs.

(3) Te cascaded CNNs proposed in this study can
automatically extract and select efective features
from thyroid images without any complex pre-
processing. Compared with other conventional
methods, the method of cascaded CNNs can sig-
nifcantly improve the detection of thyroid nodules.
In addition, efective preprocessing and data en-
hancement strategies for thyroid ultrasound images
can improve the diagnostic performance.

2. Research Methods

Te research methods included in this study are described in
the following sections.

2.1. Instrumentation. Instrumentation includes KJ-2V5M
type color ultrasound (Nanjing Keyue Medical Equipment
Co., Ltd.), DW-T6 type color ultrasound (Jinan Alaibao

Instruments and Equipment Co., Ltd.), and KR-S80 type
color ultrasound (Xuzhou Kyle Medical Instruments Co.,
Ltd.).

2.2. Image Acquisition. In this study, 400 patients with
thyroid nodular lesions, 500 males and 500 females, with an
average age of (45.8± 10.5) years, of whom 665 were benign
nodules and 335 were malignant nodules, were selected and
characterized by examination in the ultrasound room of the
Department of Functional Examination of the First Afli-
ated Hospital of Lanzhou University. All patients were
scanned on their afected areas using ultrasound KJ-2V5M,
DW-T6, or KR-S80 ultrasonography machines, respectively.
All collected cases underwent surgery for thyroid nodules,
and pathological test results were used as criteria for benign
and malignant diagnosis.

2.3. Software and Hardware Tools

2.3.1. Software Tools.

(1) Te subject uses Python 3.7 as the development lan-
guage. Python as a computer programming language
is powerful, lightweight, convenient, mature, and
stable. Compared to other programming languages,
the Python language has a large selection of frame-
works and rich-class libraries for neural network
model training and has signifcant advantages such as
easy development, low-code volume, and low cost of
using internal types and library functions’ advantages
[20]. Matlab R2021a was also used as an auxiliary
software tool to implement some of the arithmetic,
testing, tabulation, and preprocessing tasks.

(2) Te computing component uses NVIDIA’s unifed
computing device architecture technology, the uni-
versal parallel computing architecture, which incor-
porates the CUDA instruction set architecture (ISA)
and the GPU’s internal parallel computing engine.
Te computational power of the GPU, the graphics
processing unit, is leveraged to address the complex
and large computational volumes in deep learning.

(3) Te deep learning framework uses the Pytorch
framework developed by Facebook in Python on the
basis of the deep learning framework Torch, which is
rich in features and has many APIs, and can quickly
complete the construction and training of deep
neural network models. Compared to the Tensor-
Flow framework, the dynamic nature of the Pytorch
framework makes the training process and changes
in data more intuitive, and the process of calculating
and modifying weights more convenient.

2.3.2. Hardware Tools. Te hardware part uses a computer
equipped with Windows 10 version, the CPU is i9-12900K,
16 cores, and 24 threads processor and the main frequency is
3.1GHz. Te GPU is NVIDIA GeForce GTX3070Ti.
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2.4. Cascaded CNNArchitecture. In this study, we designed a
cascaded CNN-based model containing two CNN architec-
tures and a segmentationmethod for detecting thyroid nodules
from ultrasound images. Figure 1 and Tables 1 and 2 show the
detailed structure of the CNNs, respectively. Te frst CNN
(referred to as CNN15) architecture consists of 15 convolu-
tional layers and 2 pooling layers. Te output of the previous
layer is used as the input of the current layer. All feature
mappings generated in the current layer are connected to all
feature mappings in the previous layer by convolutional flters.

Te frst convolutional layer has a flter size of 13×13, a
step size of 2 pixels, and a fll size of 6 pixels, generating 96
feature maps of size 177×177. Te next two convolutional
layers both generate 256 feature maps of size 45× 45 by a
flter of size 5× 5. In the second convolutional layer, the fll
size is 2 pixels and the step size is 2 pixels. In the second
convolutional layer, a 2-pixel fll and a 1-pixel step size are
used. In the third convolutional layer, a fll of 2 pixels and a
step size of 1 pixel are used, while in the remaining con-
volutional layers, a fll size of 1 pixel and a span size of 1 pixel
are used. In addition, each residual convolutional layer,
except the last two, has a flter size of 3× 3 and generates 384
feature maps of size 22× 22. For the penultimate convolu-
tional layer, 256 feature maps of size 22× 22 are generated
using a flter of size 3× 3. Te last convolutional layer, by
using a flter of size 3× 3, generates 1 feature map of size
44× 44. After the frst convolutional layer and the third
convolutional layer, there are two max-pooling layers with a
window size of 3× 3, respectively. Tese two pooling layers
have a step size of 2 pixels. Te padding size of 1 pixel is used
for the frst pooling layer only. In addition, a function pa-
rameter rectifed linear unit (PReLu) [21] is used as an
activation function whose parameters can be learned
adaptively. It can be described as follows:

f(x) � max (0, x). (1)

Te local response normalization scheme is also applied
after each of the ReLu operations. After the output of the
second fully connected layer, a softmax layer is used to
generate a distribution over the 2 class labels by minimizing
the cross-entropy loss between the predicted labels and
ground truth labels.

2.5. Training Cascade CNN Architecture. Te whole process
of the cascaded CNN designed in this study is shown in
Figure 2. Mainly, the extensive nodal variability is captured
from the input 2D ultrasound images by extracting multiple
nodal image blocks from thyroid nodules and normal thyroid
images (i.e., cropped image patches of size 353× 353 ran-
domly sampled from these thyroid nodules and normal
thyroid images are the input to CNN15). Te segmentation
probability maps of thyroid nodules and normal thyroid are
used as the output of CNN15, and the resulting image patches
are then fed into the network simultaneously to compute the
recognition features (i.e., the thyroid nodule segmentation
problem is treated as a block classifcation task, ignoring the
relationship between image patches). Te CNN in this
method uses image blocks of normal thyroid and thyroid

nodule images as input, then generates segmentation prob-
ability maps as output, and uses a multiview strategy to
improve the performance of the CNN15-based model. Fi-
nally, the CNN4 is trained with random initialization pa-
rameters using the plaque data extracted from the thyroid
nodule and normal thyroid images. Specifcally, image pla-
ques of 64× 64 size are randomly sampled. Te data obtained
from these thyroid images are the input to CNN4, which is
centered in the corresponding connected region of the seg-
mented probability map generated by segmentation and
which occupies 80% of the area of its corresponding con-
nected region in the segmented probability map after seg-
mentation. In addition, the correctly segmented thyroid
nodule region is considered as a positive sample, while the
other regions are considered as negative samples.

In this study, all parameters of the two CNNs are set as
follows: for CNN15, the learning rate is set to 2×10−4; the
parameters k, n, α, and β of the local response normalization
scheme are set as follows: k=96, n= 24, α= 0.0005, and
β= 0.75, and the batch size is 64; in the second normalization
layer, k=256, n= 16, α=0.0005, β=0.75, and batch size of 64.
In addition to this, the initial value of the slope coefcient of
the negative part of the control PReLu is set to 0.9 and de-
creases at a rate of 0.01. For CNN4, the rate is set to 1.0; when
epoch exceeds 10, set the rate to 2 to the (epoch - 6/8) power,
and the parameters of this local response normalization
scheme are set as follows: k=64, n= 24, α= 0.0005, and
β= 0.75, and batch size of 64 in the frst normalization layer;
k= 64, n= 16, α= 0.0005, and β=0.75, and the batch size is 64.
Other parameters of CNN15 and CNN4 are set as follows: the
standard deviation of random initial weights is 0.01, and the
decay of weights is 0.0005; the momentum of weights and
deviations are linear at 0.9 within 10 epochs. Also, by min-
imizing the validation set, we obtained a rough approxima-
tion of the best epoch, and all the above parameters and
epochs were used to test our CNN-basedmodel on the test set.

3. Results and Discussion

3.1. Deep Learning Network Model Implementation.
CNNs, as a feed-forward neural network, contain three main
operations: convolution, rectifed linear units (ReLu), and
pooling [22, 23]. Te neurons in the network can respond to
the surrounding neurons and perform digital image pro-
cessing to accomplish tasks such as target detection, clas-
sifcation, and segmentation [24, 25]. In this study, the raw
data are frst preprocessed, and then, the model is trained by
the migration learning method, and the results are
compared.

3.2. Image Preprocessing

3.2.1. Digital Image Processing. Te redundant images
without region of interest (ROI) were removed from the
original data. Since there are objective diferences in image
size, resolution, signal-to-noise ratio, etc., between ultra-
sound examiners of diferent manufacturers, it is necessary
to frst flter the ultrasound image data for its characteristics,
mainly using speckle reduction anisotropic difusion
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(SRAD) to reduce the amplitude of high-frequency com-
ponents and prevent the high-frequency band of the speckle
reduction anisotropic difusion (SRAD) flter is used to
reduce the amplitude of high-frequency components and
prevent the feature information in the high-frequency band
from being masked by noise, thus reducing the impact of
noise on image quality and model training results. Te data
in the dataset are grayscale transformed using histogram
equalization (HEE). Tis is then combined with morpho-
logical processing to remove the information annotated by
the physician during the examination to obtain subimages
refecting the ultrasound image information of the thyroid
tissue [26, 27]. Te above digital image processing steps
make the image features more signifcant, thus reducing the
infuence of irrelevant information on the training results.

3.2.2. Data Enhancement. CNNs’ models require a large
amount of data as support for training the network, but it is
difcult to fnd sufcient data in practice for the project.

Insufcient amount of data can make CNNs become overly
strict in order to get the consistency assumption, and thus,
overftting phenomenon occurs. Since the output image size
of ultrasound examiners of diferent manufacturers’ models
and versions vary, the image is randomly cropped to
230× 230 pixels by using random cropping, which can
enhance 1 ultrasound data image several hundred times.
However, the actual efect is poor due to the high similarity
of the meaningful part containing the thyroid gland.
Meanwhile, the training sample size is expanded with the
help of other data enhancement methods, mainly of the
spatial geometric transformation class, including operations
such as inversion, random cropping, random rotation, and
random scaling and deformation, which perform afne
transformation on the image. Te images are flled by an
interpolation method to keep the image size consistent.
Meanwhile, it has been shown that the data enhancement
multiplier should not be too large; otherwise, it will lead to
too much redundant data, and the model cannot learn more
features from the redundant data and increase the training

353×353 177×177 89×89 45×45 45×45 22×22 22×22 22×22 22×22 22×22 DS 44×44
Conv6
3×3

Conv5i
3×3

Conv5b
3×3

Conv5a
3×3

Conv4
3×3

Conv3
3×3

Conv2b
5×5

Conv2a
5×5

Conv1
13×13

Mp2
3×3

Mp1
3×3

CNN15

353×353

Input

64×64 64×64 32×32 32×32 16×16 16×16 8×8 8×8 Fc1 Fc2 softmax

Conv1
5×5

Conv2
5×5

Conv3
3×3

Conv4
3×3

Mp1
3×3

MP2
3×3

MP3
2×2

MP4
8×8

CNN4

64×64

Input

Figure 1: Detailed structure of CNNs. Conv: convolutional layer; MP: max-pooling layer; Fc: fully connected layer; DS: double size layer.
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volume in vain. In this study, the enhancement multiplier is
10, i.e., one copy of data is augmented with nine parallel
thyroid ultrasound images to improve the accuracy and
generalization performance of the model and avoid over-
ftting. Finally, the ImageFolder module is used to convert
the images into a tensor for computing.

3.2.3. Image Enhancement. In this study, we mainly use the
fexible morphology-based white tophat transform method
to achieve the enhancement efect on medical ultrasound
images.

(1) Extraction of Feature Values. Local contrast en-
hancement is the most useful method to enhance the ef-
fective information of an image. According to the feature
that the white tophat transform of fexible morphology can
efectively extract the bright features in grayscale images, this
study frst uses the bright feature values of grayscale images
extracted by fexible white tophat transform with diferent
structural elements; then, the ith layer feature can be
expressed as

fswth
i
(x, y) � f(x, y) − f(x, y) · Bi, Ai, ki􏼂 􏼃, (2)

where fswth
i(x, y) is the gray value of the (x, y) position of the

ith feature layer and [Bi, Ai, ki] represents diferent structural
elements. In this study, i� 3, that is, three diferent structural
elements are used, namely, 3× 3, 5× 5, and 7× 7 shapes (but
the middle cross is 1, and the remaining positions are 0) to
propose 3 layers of bright eigenvalues. Figure 3 shows the
original image and the eigenvalues of each layer.

In Figure 3, we extract bright eigenvalues through thewhite
tophat transformation of fexible morphology. It can be clearly
seen that the larger the template is, the more eigenvalues are
extracted, and the noise is also extracted accordingly.

(2) Enhanced Algorithm. In order to suppress the en-
hancement of noise and greatly enhance the brightness of
the edge, this algorithm selectively enhances the brightness
of the edge to ensure that the noise is not enhanced. We set a
thresholdm, try to ensure that the point (x, y) where the gray
value greater thanm is located is the edge part, and the point
where the gray value less thanm is located is the noise part or
the uniform tissue, and then, the point greater than the
thresholded points is superimposed on the extracted bright
feature values of each layer, thereby suppressing noise and
enhancing edges and improving the readability of useful
information in ultrasound images.

Te expression of the augmentation algorithm is as
follows:

f′(x, y) �
f(x, y) + 􏽘

n

i�1
kifswth

i
(x, y)f(x, y)≥m,

f(x, y)f(x, y)<m,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where f′(x, y) is the result of the fnal processing, f(x, y)

is the original ultrasound image to be processed, and
fswth

i(x, y) is the grayscale value of the ith feature layer (x,
y) position extracted using diferent structural elements
[Bi, Ai, ki], where ki corresponds to diferent values of k in

Table 2: Structure of CNN4 used in this study.

Layer Input Filter Padding Stride Output

Conv1 64× 64, 2 5× 5, 64 2× 2 1× 1 64× 64,
64

Max-
pooling1

64× 64,
64 3× 3 1× 1 2× 2 32× 32,

64

Conv2 32× 32,
64 5× 5, 64 2× 2 1× 1 32× 32,

64
Max-
pooling2

32× 32,
64 3× 3 1× 1 2× 2 16×16, 64

Conv3 16×16, 64 3× 3, 64 1× 1 1× 1 16×16, 64
Max-
pooling3 16×16, 64 2× 2 0× 0 2× 2 8× 8, 64

Conv4 8× 8, 64 3× 3,
384 1× 1 1× 1 8× 8, 384

Max-
pooling4 8× 8, 384 8× 8 0× 0 8× 8 1× 1, 384

Fc1 1× 1, 384 — — — 1× 1, 192
Fc2 1× 1, 192 — — — 1× 1, 1
conv denotes convolutional layer; Fc denotes fully connected layer; the
format of the data in the table is size × number.

Table 1: Structure of CNN15 used in this study.

Layer Input Filter Padding Stride Output

Conv1 353× 353,
2

13×13,
96 6× 6 2× 2 177×177,

96
Max-
pooling1

177×177,
96 3× 3 1× 1 2× 2 89× 89, 96

Conv2a 89× 89, 96 5× 5,
256 2× 2 2× 2 45× 45,

256

Conv2b 45× 45,
256

5× 5,
256 2× 2 1× 1 45× 45,

256
Max-
pooling2

45× 45,
256 3× 3 0× 0 2× 2 22× 22,

256

Conv3 22× 22,
256

3× 3,
384 1× 1 1× 1 22× 22,

384

Conv4 22× 22,
384

3× 3,
384 1× 1 1× 1 22× 22,

384

Conv5a 22× 22,
384

3× 3,
384 1× 1 1× 1 22× 22,

384

Conv5b 22× 22,
384

3× 3,
384 1× 1 1× 1 22× 22,

384

Conv5c 22× 22,
384

3× 3,
384 1× 1 1× 1 22× 22,

384

Conv5d 22× 22,
384

3× 3,
384 1× 1 1× 1 22× 22,

384

Conv5e 22× 22,
384

3× 3,
384 1× 1 1× 1 22× 22,

384

Conv5f 22× 22,
384

3× 3,
384 1× 1 1× 1 22× 22,

384

Conv5g 22× 22,
384

3× 3,
384 1× 1 1× 1 22× 22,

384

Conv5h 22× 22,
384

3× 3,
384 1× 1 1× 1 22× 22,

384

Conv5i 22× 22,
384

3× 3,
256 1× 1 1× 1 22× 22,

256

DS 22× 22,
256 — — — 44× 44, 64

Conv6 44× 44, 64 3× 3, 1 1× 1 1× 1 44× 44, 1
conv denotes convolutional layer; DS denotes double size layer; the format
of the data in the table is size × number.
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the fexible morphological transformation. Te use of
additive operations in the enhancement algorithm and the
avoidance of multiplicative operations can make the in-
tensity of the undercontrast region magnifed by a larger
multiple than that of the normal one, thus ensuring an
efective local contrast enhancement and avoiding the
grayscale values of other regions to be overboosted. It is
possible that the contrast under-region features are con-
tained in various feature layers of diferent size structures,
and if each layer contains the smallest size feature, then the
smaller the size feature the more it is amplifed. However,
noise is usually isolated and difers a lot from the neigh-
boring gray level, so it also tends to amplify the noise.
Terefore, if the amplifcation of each size feature is to be as
equal as possible, the morphological open operation is
considered to be idempotent, and after performing the
open operation, the image no longer contains peaks smaller
than the size of that structure element. Terefore, when
fnding the structural features of larger structural sizes, it is
necessary to solve the tophat transform of the image after
the open operation.

(3) Experimental Results and Simulation. In this study, a
series of medical ultrasound images are used to verify the
efectiveness of the proposed fexible morphology algorithm
for noise suppression and local contrast enhancement
methods in ultrasound images, and the results of its ex-
perimental simulation are shown in Figure 4.

Te structural elements used in this study are 3× 3, 5× 5,
and 7× 7 with the middle cross shape of 1 and the rest
positions of 0. A total of 3 layers of feature images are used.
In the enhancement algorithm, the thresholdm is taken to be
the two-thirds of the maximum value of gray in the image,
namely, � 2/3max (f(x, y)). From the experimental results,
it can be seen that the algorithm proposed in this secion can
efectively enhance the local contrast as well as maintain the
image details and improve the readability of the image.

4. Transfer Learning

Te CNN convolutional neural network model, which has
performed well in ImageNet image classifcation, is selected
to iteratively compare and adjust the model parameters

CNN15
Feature Learning

CNN15

CNN4
Feature Learning

Thyroid
nodule
Normal
thyroid

Classification

CNN4

Training
Step

Testing
Step

Splitting

Splitting

Thyroid
nodule
Normal
thyroid

Classification

Figure 2: Flowchart of image block classifcation based on the cascaded CNN model proposed in this study.

(a) (b) (c) (d)

Figure 3: Bright feature renderings extracted from diferent templates. (a) Original images. (b) 3× 3. (c) 5× 5. (d) 7× 7.
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through the migration learning method to obtain better
classifcation prediction results. In the feld of medical image
data, it is difcult to fnd such a large amount of data. Tis
greatly reduces the difculty of training the model and saves
valuable computing resources and time costs [28]. Figure 5
shows a schematic diagram of migration learning process.

4.1. Model Training. As more and more complex architec-
tures are proposed, to ensure better accuracy, the network
structure tends to use fewer convolution kernels, such as
1× 1 and 3× 3 convolution kernels, which shows that the
CNN design should consider computational efciency. An
obvious trend is to adopt a modular structure, which can
reduce the design space of our network. Another point is
that using a bottleneck layer in a module can reduce the
amount of computation, which is also an advantage.

Fixed CNN models were selected to train the network
and adjust the network parameters. Tree initial CNNs’
models of (visual geometry group, VGG) 19, GoogLeNet
Inception V3, and dense-convolutional network Dense-
Net161 were selected, and the network was initialized with
pretraining parameters obtained by pretraining on natural
image datasets to obtain high-dimensional features of im-
ages [29]. Te convolutional neural network migration
learning process is shown in Figure 6.

4.2.VGG19Model. TeVGGnetwork, developed and built by
the Visual Geometry Group team at the University of Oxford,
uses several consecutive 3× 3 convolutional kernels instead of
the larger convolutional kernels in the neural network. For a
given perceptual feld, the use of stacked small convolutional
kernels implies more nonlinear layers, which can increase the
advantage of the neural network in complex training and can
improve the network depth and reduce the parameters while
having the same perceptual feld, improving the accuracy of the
neural network classifcation to some extent [30].

4.3. Inception V3 Model. Google Inception Net innovates
structurally by using a global average pooling layer instead
of a fully connected layer to reduce the number of

parameters and to accelerate the convergence of the neural
network during training by introducing batch normali-
zation. Te Inception V3 model is a 47-layer neural net-
work model that innovatively splits the two-dimensional
convolutional layer into two one-dimensional convolu-
tional layers for the purpose of reducing the training
parameters and mitigating the overftting phenomenon
[31].

4.4. DenseNet 161 Model. DenseNet can be seen as a special
case of the residual neural network ResNet, where the CNNs
model of ResNet avoids the problems of gradient disap-
pearance and gradient explosion by establishing short-cir-
cuit connections between the preceding and following layers
so that the gradients can be propagated backwards during
training [32, 33]. Te DenseNet 161 model, on the contrary,
develops a dense connection that interconnects all layers’
mechanism, where each layer takes the parameters of its
previous layer as an additional input. Te dense convolu-
tional network connectivity mechanism is shown in
Figure 7.

For the N-layer network, the DenseNet 161 model
contains a total of connections, which is more densely
connected than the residual neural network. Moreover, each
layer of the DenseNet 161 model directly connects the
feature parameters of all its previous layers to achieve feature
reuse and improve network efciency.

(a) (b) (c) (d)

Figure 4: Flexible morphology enhancement efect diagram. (a) Original image. (b) Enhanced algorithm. (c) Original image. (d) Enhanced
algorithm.

Middle field

Source field
(natural images)

Target field
(medical image)

Common
factor

Common
factor

No or weak
correlation 

Figure 5: Schematic diagram of the transfer learning process.
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Te output of conventional CNNs at the nth layer is as
follows:

xn � Hn xn−1( 􏼁. (4)

ResNet cell: then, at the nth layer, the feature function
from the previous layer is added as

xn � Hn xn−1( 􏼁 + xn−1. (5)

Te DenseNet cell then connects all layers before the nth
layer to do the characteristic function as

xn � Hn x0, x1, · · · xn−1􏼂 􏼃( 􏼁. (6)

4.5. Model Training Test Analysis. In the classifcation
training, the data were labeled according to the pathological
diagnosis result criteria, and the data were randomly divided
into two parts, the training set and the test set, according to
75% and 25%, to ensure the objectivity of the classifcation
results and avoid random errors and chance. Considering the
GPU, CPU, and memory performance, 150 epochs were
chosen to run the 3 models on the same data on the same
platform as the reference results.Te results are summarized by
the highest accuracy in the test set, the average accuracy of 30
epochs after the test set, and the size of the parametric model.

We can see from Table 3 that the fnal accuracy of the
training set of all three models is >98%, where the highest
accuracy and average accuracy of the DensenNet 16l model
are higher than those of the VGG 19 model and the In-
ception V3 model, which are 98.27% and 92.95%, respec-
tively, and for the model size, the VGG 19 model is the
largest, at 550MB, while the Inception V3 model and the
DensenNet 16l model are closer in size, around 100MB.

4.6.Model ClassifcationPerformanceAnalysis. In this study,
CNNs models with pretrained parameters obtained from
natural images were trained to extract features and classify
ultrasound images of thyroid nodules, while the network
parameters were adjusted. Tree CNNs models with very
diferent structures and distinctive features, VGG 19 model,
Inception V3 model, and DensenNet 16l model, were tested,
and better results were trained on all three models, which
proved the feasibility of CNNs-based benign and malignant
classifcation of thyroid nodules and laid the foundation for
the subsequent research work. Te correctness and loss
curves of the training set and the correctness and loss curves
of the test set for the three models are shown in Figures 8 and
9.

Figures 4 and 5 show that, among the three CNNs
models, the VGG 19 model has the fastest convergence
speed and the best training efect on the training set,
showing good classifcation performance, but its perfor-
mance in the test set is inferior to that of the Inception V3
model and the DensenNet 161 model, with an average
accuracy of only 88.20%. It is speculated that this is due to
the low number of network layers and an insufcient
number of hidden layers caused by the unique concise
structure of the VGG 19 model, which is insufcient for the
extraction of high-dimensional features in the training set,
resulting in overftting of low-dimensional parameters and
causing classifcation bias in the test set [34]. Meanwhile,

Training set

Test set

Classification result

CNNs model transfer learning

Figure 6: Flowchart of migration learning of CNNs.

Figure 7: Schematic diagram of the connection mechanism of
dense convolutional network.
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the VGG 19 model takes up more computational resources
and uses more network parameters, almost fve times the
size of the parameters of the other two network models, so
the advantage in training time is not obvious. Most of the
parameters in this model originate from the frst fully
connected layer, and in subsequent tests, it was found that
removing part of the fully connected layer has little efect
on the network performance, yet it can greatly reduce the
network parameters.

Te convergence process of both Inception V3 and
DensenNet 161 models shows a steady fuctuation upward
trend, and the fnal convergence results are above 98%, with
the accuracy of 92.87% and 92.95% on the test set,

respectively, which have better classifcation results. Te
DenseNet 161 model has an aggressive dense connection
mechanism, which has a low number of parameters and a
good resistance to overftting. In general, the complexity of
nonlinear functions increases as the depth of the neural
network increases. Both Inception V3 and DensenNet 161
models have a fnal saved parameter model size of about
100MB, which is a signifcant advantage over the VGG 19
model. Considering the diference in the number of network
layers of each model, the Inception V3 and DensenNet 161
models are more conducive to extracting high-dimensional
feature values and are more efcient in training. In addition,
due to the unique backpropagation design of the DensenNet

Table 3: Training test results of three models.

Models Final accuracy of the training set
(%)

Maximum accuracy of the test set
(%)

Average accuracy of the test set
(%)

Model size
(MB)

VGG 19 >98 93.86 88.20 550
Inception V3 >98 98.10 92.87 105
DenseNet 161 >98 98.27 92.95 112
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161 model, which requires high video memory, the network
architecture needs to be optimized, and a smaller Batch Size
needs to be selected during the actual training.

5. Model Time Performance Analysis

Te results of the temporal performance training of the
three models in this study are shown in Table 1. Te ac-
curacy and precision of the VGG19, Inception V3, and
DenseNet161 models in identifying the pathological images
of thyroid nodular lesions were higher than 80%, among
which the VGG19 model had the highest recall rate of
84.67%. Te DenseNet201 model had the highest recall
rate, and AUC and AUC were 84.77% and 0.87, respec-
tively, while the computing time was the shortest at
1986.48 s, and the response time was also the shortest at
16 s, indicating that the model had the best overall per-
formance; the Inception V3 model was the second, and the
VGG19 model had the worst recognition ability for
pathological images of;thyroid nodular lesions, with a
response time 24 times that of the DenseNet161 model, the
results are shown in Table 4.

6. Integrated Learning Model
Performance Evaluation

From the 3 network models trained by migration learning, 2
models are selected two by two to be combined as individual
learners for integration. In this study, the image recognition
accuracy is the most important observation, and the accu-
racy is weighted in preference. Te results show that the
integrated learned models have signifcantly improved the
recognition of pathological images of thyroid nodular le-
sions compared with the individual models, as shown in
Table 5. Te Inception V3 integrated model with Dense-
Net161 had the highest accuracy, precision, recall, and AUC
and the best overall performance, followed by VGG19 in-
tegrated with DenseNet161. Te ROC curves of the inte-
grated learning model for the test set image recognition
results are shown in Figure 10, and the confusion matrix is
shown in Figure 11. Te ROC curves and confusion matrix
experimental results also validate the above conclusions.

Model integration learning is the combination of mul-
tiple learners to improve the robustness and generalization
ability of models to accomplish image recognition,
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classifcation, and prediction tasks more efciently. How-
ever, the readability and testability of the model architecture
and the way of code generation need to be considered in the
model integration process. Based on the individual models,
this study performs integration learning to further improve
the performance of classifcation models. As a result of the
migration learning phase of the single model, the results of
this study show that the model integrated with DenseNet161
by Inception V3 has higher accuracy, recall, and AUC,
compared with the single model. In terms of network
structure, the residual structure of Inception V3 strengthens
the image feature extraction ability of the deep network, and
the overftting resistance and generalization performance of
DenseNet161 are very powerful, so the combination of these
two networks can complement each other and bring out the
overall stronger image recognition ability. In particular, the

integrated network is more efective in terms of separate
image accuracy, which is most important for pathology
diagnosis.

7. Discussion

Reproducibility of thyroid nodule and normal tissue de-
tection plays a crucial role in optimal treatment quality and
patient prognosis. However, the detection of thyroid
nodules in ultrasound images is a challenging problem with
uneven appearance, surrounding structures such as veins
and lymph nodes, low signal-to-noise ratio, low contrast,
and blurred borders. In this study, we use a cascaded CNN-
based approach to solve the problem of thyroid nodule
detection, which can avoid the potential error caused by
inaccurate image preprocessing results and the

Table 4: Evaluation indexes of the temporal performance of the 3 models on the test set images.

Model Operation time (s) Recall rate (%) Response time (s) AUC
VGG19 2147.58 80.67 389 0.85
Inception V3 2087.31 83.67 40 0.65
DenseNet161 1986.48 84.77 16 0.87

Table 5: Evaluation indexes of the efect of the integrated model on test set image recognition.

Model Accuracy (%) Precision (%) Recall rate (%) AUC
VGG19 + inception V3 83.27 79.46 88.68 0.84
VGG19 +DenseNet161 88.35 85.45 89.52 0.88
Inception V3+DenseNet161 89.78 87.78 94.57 0.90
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classifcation bias caused by a less robust feature set. To the
best of our knowledge, although there have been several
studies on CAD of medical images based on deep learning,
this is the frst attempt to detect thyroid nodules using
CNNs. Te key advantage of CNNs over traditional ap-
proaches using manual features designed based on human
experience [16–18] is the ability to automatically learn
weights and biases to generate data-driven, custom, and
task-specifc dense feature extractors that maximize the use
of the two-dimensional structure of the input image. Te
parameters of the CNN are tuned by stochastic gradient
descent on the agent loss function associated with mis-
classifcation errors, and gradients are efciently computed
by a backpropagation algorithm. In our study, the CNN can
automatically extract efective features from 2D ultrasound
images without any hypothetical characterization of the
vision of interest. Diferent boundaries, diferent edges, and
diferent multilevel texture features can be automatically
learned through diferent convolutional fltering, pooling,
and normalization operations. With good noise tolerance,
CNNs can be suitable for handling the intrinsic noise
characteristics of ultrasound image data from various ul-
trasound systems. In addition, within certain limits, CNNs
are invariant to geometric transformations, deformations,
and illumination.

To evaluate the wide applicability of the proposed
method in this study, 22,000 images from diferent ultra-
sound systems are studied in experiments with 10-fold
cross-validation, which is used to illustrate the efectiveness
of the cascaded CNN method. And our method is com-
pared with VggNet, ZeilerNet, PreZeilerNet, and ResNet.
Te results are shown in Table 6, and Figure 12 shows the
FROC curve results for the diferent CNN models used for
detection.

Te results in Table 6 show that our method outperforms
other CNN architectures in detecting thyroid nodules. In
particular, Cascade CNNs have an AUC value of 98.89%,
which is higher than other models. On the contrary, the
clustering detection results were analyzed at the regional
level using FROC analysis. Figure 12 shows that the sen-
sitivity of our method based on Cascade CNNs is the best for
the same false positive rate per image.Temultiview strategy
is used to improve the performance of cascaded CNNs. In
addition, our special segmentation method can efectively
separate diferent connected regions so that CNN4 can
accurately obtain positive and negative sample methods
based on the automatic labels generated by the segmenta-
tion. In summary, the Cascade CNNs’ method is statistically
signifcant for the detection of thyroid nodules.

However, there are no analytical methods to determine
hyperparameters in CNNs (e.g., number of layers and cells
and size of flters), and they are mainly obtained empirically,
as we performed in this study. Our cascaded CNN could not
accurately detect some small nodules from thyroid images
(with multiple nodules or complex and similar back-
grounds). Tis is because the large image patches and deep
structures we used in CNN15 are not conducive to learning
efective features of small thyroid nodules. Some thyroid
nodules with complex backgrounds are also not accurately

detected due to the similar appearance of thyroid nodules,
blood vessels, adipose tissue, etc. More advanced features
learned by deep CNN are not accurate.

Meanwhile, this study has the following limitations:

(1) limited by the number of pathological sections,
which may still lead to model overftting
phenomenon.

(2) Te training data and validation data of the model
are from the First Afliated Hospital of Lanzhou
University, China, and there is a lack of multicenter
sample data for external validation of the model
performance.

(3) Tere is no analytical method to determine the
hyperparameters (e.g., number of layers and cells
and size of flters) in CNNs, and they are mainly
obtained empirically, as we have conducted in this
study. In addition, our cascaded CNN could not
accurately detect some small nodules (with multiple
nodules or complex and similar backgrounds) from
the thyroid images. Tis is because the large image
patches and deep structure we used in CNN15 are

Table 6: Comparative analysis of AUC performance and 95%
confdence interval CI of diferent models (number format of AUC:
mean (standard deviation); p< 0.05 is considered to be statistically
signifcant).

Method AUC (%) CI (%) p value
CascadeCNNs 98.89 (0.0015) [97.95 98.96] 2.37e− 08
ZeilerNet 94.03 (0.0025) [93.95 95.42] 7.88e− 07
VggNet 92.58 (0.004) [92.21 93.80] 1.19e− 07
ResNet 94.59 (0.0035) [93.76 94.71] 1.56e− 06
PrezeilerNet 94.21 (0.002) [93.95 95.20] 7.55e− 07
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not conducive to learning efective features of small
thyroid nodules. Some thyroid nodules with complex
backgrounds are also not accurately detected due to
the similar appearance of thyroid nodules, blood
vessels, and adipose tissue.

8. Conclusion

Accurate detection of thyroid nodules from two-dimen-
sional ultrasound images is very helpful for thyroid ul-
trasound interpretation and can improve ultrasound-
guided diagnostic performance. In this study, a model
based on cascaded CNNs is proposed to detect thyroid
nodules, which does not require any prior assumptions on
the associated visual features. In this study, we tested three
CNNs’ models with diferent network depths, widths, and
functions for classifcation training, and showed that the
CNNs models can better extract and classify features of
ultrasound images of thyroid nodules, and their results
show that the Inception V3 model has similar classifcation
accuracy as the DenseNet 161 model and has a smaller
number of parameters, a simpler model, and better ro-
bustness. In contrast, the network structure of the Den-
seNet 161 model is better for training generalization of
neural networks with a small sample size, but requires
higher hardware requirements; the Inception V3 model is
slightly inferior, but runs faster. Tis research result can
assist doctors’ diagnosis, reduce their workload, and pro-
vide a comprehensive reference basis for clinical diagnosis
and treatment. Integrating InceptionV3 and DenseNet161
for learning can improve the recognition of pathological
images by a single model. Te performance of the cascaded
CNNs proposed in this study is signifcantly improved
compared with other methods, and the multiview strategy
can improve the performance of cascaded CNNs.

Tere are no studies focused on the use of this method to
detect thyroid nodules. Furthermore, we compared the
performance of our method with that of other learning
methods. Te results show that our proposed model per-
forms signifcantly better than these methods on ultrasound
thyroid nodule images, demonstrating its potential clinical
application. Tis technique can provide physicians with an
objective second opinion and reduce their heavy workload to
avoid misdiagnosis due to overwork. We recognize that our
dataset is not sufcient for deep CNNs to learn advanced
features and obtain higher accuracy. Terefore, the actual
performance level and more robustness of this scheme need
to be further tested in future studies. In addition, we will
explore other CNN-based models, such as inputting CNN
cascades of diferent image patches and using separate
structures for large and small thyroid nodules, as well as
cascading with other methods, to achieve more accurate
automatic detection of thyroid nodules.

Tis study reconfrms that artifcial intelligence has
greater advantages and better application potential in
pathological image recognition, and we will subsequently
work on improving the accuracy of pathological image
recognition of thyroid nodular lesions, improving model
performance, establishing a database of thyroid nodular

lesion images, and promoting the clinical implementation of
the corresponding research results to truly serve the clinic
and beneft the majority of patients.

Data Availability

Te fgures and tables used to support the fndings of this
study are included within the article.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] J. Paim, C. Travassos, C. Almeida, L. Bahia, and J. Macinko,
“Te Brazilian health system: history, advances, and chal-
lenges,” Te Lancet, vol. 377, no. 9779, pp. 1778–1797, 2011.

[2] L. J. Carter, L. V. Garner, J.W. Smoot et al., “Assay Techniques
and Test Development for COVID-19 Diagnosis,” ACS Cent
Sci, vol. 6, no. 5, pp. 591–605, 2020.

[3] J. Suls and A. Rothman, “Evolution of the biopsychosocial
model: prospects and challenges for health psychology,”
Health Psychology, vol. 23, no. 2, pp. 119–125, 2004.

[4] X. Y. Jiang, “Te role and value of imagingmedicine in clinical
medicine,” Imaging Research and Medical Application, no. 09,
pp. 61-62, 2020.

[5] D. J. Zhang, “To explore the application of medical imaging in
the diagnosis of liver cancer,” Chinese Journal of Cancer
Prevention and Treatment, no. S1, pp. 297-298, 2019.

[6] R. Bar-Shalom, N. Yefremov, L. Guralnik et al., “Clinical
performance of PET/CT in evaluation of cancer: additional
value for diagnostic imaging and patient management,”
Journal of Nuclear Medicine: Ofcial Publication, Society of
Nuclear Medicine, vol. 44, no. 8, pp. 1200–1209, 2003.

[7] Y. Qiu, Q. Q. Li, Y. Wang, and Y. T. He, “Application of deep
learning technology in medical image segmentation,” Com-
puter Knowledge and Technology, vol. 16, no. 4, pp. 74-75,
2022.

[8] L. Y. Jiang and L. G. Wang, “Te application of ultrasound in
the feld of biotechnology,” Biotechnology Communications,
no. 01, pp. 126–128, 2006.

[9] Y. M. Huang, C. C. Chen, J. H. Chen, B. W. Chen, and
T. Huang, “Research progress of ultrasound elastography in
the diagnosis of non-invasive liver fbrosis,” Imaging Research
and Medical Applications, no. 11, pp. 4–6, 2022.

[10] A. A. Anosov, A. S. Kazansky, P. V. Subochev,
A. D. Mansfel’d, and V. V. Klinshov, “Passive estimation of
internal temperatures making use of broadband ultrasound
radiated by the body,” Journal of the Acoustical Society of
America, vol. 137, no. 4, pp. 1667–1674, 2015.

[11] A. Mohades Deylami and B. Mohammadzadeh Asl, “A fast
and robust beamspace adaptive beamformer for medical ul-
trasound imaging,” IEEE Transactions on Ultrasonics, Fer-
roelectrics, and Frequency Control, vol. 64, no. 6, pp. 947–958,
2017.

[12] L. L. Jiang, R. X. Li, and Q. Y. Jiang, “Review of the devel-
opment history, status quo and trend of medical ultrasound
imaging equipment,” china Medical Device Information,
no. 23, pp. 9–13+16, 2019.

[13] T. Meraj, W. Alosaimi, B. Alouf et al., “A quantization
assisted U-Net study with ICA and deep features fusion for
breast cancer identifcation using ultrasonic data,” PeerJ
Computer Science, vol. 7, p. e805, 2021.

14 Computational Intelligence and Neuroscience



[14] K. Jabeen, M. A. Khan, M. Alhaisoni et al., “Breast cancer
classifcation from ultrasound images using probability-based
optimal deep learning feature fusion,” Sensors, vol. 22, no. 3,
p. 807, 2022.

[15] R. Irfan, A. A. Almazroi, H. T. Rauf, R. Damasevicius,
E. A. Nasr, and A. E Abdelgawad, “Dilated semantic seg-
mentation for breast ultrasonic lesion detection using parallel
feature fusion,” Diagnostics, vol. 11, no. 7, p. 1212, 2021.

[16] M. Savelonas, D. Maroulis, and M. Sangriotis, “A computer-
aided system for malignancy risk assessment of nodules in
thyroid US images based on boundary features,” Computer
Methods and Programs in Biomedicine, vol. 96, no. 1,
pp. 25–32, 2009.

[17] D. K. Iakovidis, E. G. Keramidas, and D. Maroulis, “Fusion of
fuzzy statistical distributions for classifcation of thyroid ul-
trasound patterns,” Artifcial Intelligence in Medicine, vol. 50,
no. 1, pp. 33–41, 2010.

[18] E. G. Keramidas, D. Maroulis, and D. K. Iakovidis, “ΤND: a
thyroid nodule detection system for analysis of ultrasound
images and videos,” Journal of Medical Systems, vol. 36, no. 3,
pp. 1271–1281, 2012.

[19] D. Bibicu, L. Moraru, and A. Biswas, “Tyroid nodule rec-
ognition based on feature selection and pixel classifcation
methods,” Journal of Digital Imaging, vol. 26, no. 1,
pp. 119–128, 2013.

[20] T. E. Oliphant, “Python for scientifc computing,” Computing
in Science & Engineering, vol. 9, no. 3, pp. 10–20, 2007.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Advances in
Neural Information Processing systems, Springer, Berlin,
Germany, 2012.

[22] G. Papandreou, L. C. Chen, K. P. Murphy, and A. L. Yuille,
“Weakly-and semi-supervised learning of a deep convolu-
tional network for semantic image segmentation,” in Pro-
ceedings of the 2015 IEEE International Conference on
Computer Vision, pp. 1742–1750, IEEE, Santiago, Chile,
December 2015.

[23] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face
recognition: a convolutional neural-network approach,” IEEE
Transactions on Neural Networks, vol. 8, no. 1, pp. 98–113,
1997.

[24] H. Li, J. Weng, Y. Shi et al., “An improved deep learning
approach for detection of thyroid papillary cancer in ultra-
sound images,” Scientifc Reports, vol. 8, no. 1, pp. 6600–6612,
2018.

[25] Y. L. Huang and D. R. Chen, “Automatic contouring for
breast tumors in 2-D sonography,” in Proceedings of the 2005
IEEE Engineering in Medicine and Biology 27th Annual
Conference, pp. 3225–3228, IEEE, Shanghai, China, January
2006.

[26] Y. N. Su and Y. Y. Wang, “Automatic detection of regions of
interest in breast tumor ultrasound images,” Chinese Journal
of Biomedical Engineering, no. 02, pp. 178–184, 2010.

[27] J. Ma, F. Wu, T. A. Jiang, Q. Zhao, and D. Kong, “Ultrasound
image-based thyroid nodule automatic segmentation using
convolutional neural networks,” International Journal of
Computer Assisted Radiology and Surgery, vol. 12, no. 11,
pp. 1895–1910, 2017.

[28] C. Szegedy, W. Liu, Y. Jia et al., “Going deeper with con-
volutions,” in Proceedings of the 2015 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1–9, IEEE,
Boston, MA, USA, June 2015.

[29] J. Chi, E. Walia, P. Babyn, J. Wang, G. Groot, andM. Eramian,
“Tyroid nodule classifcation in ultrasound images by fne-

tuning deep convolutional neural network,” Journal of Digital
Imaging, vol. 30, no. 4, pp. 477–486, 2017.

[30] C. Szegedy, V. Vanhoucke, S. Iofe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2818–2826, IEEE, Las
Vegas, NV, USA, June 2016.

[31] G. Zhang, Z. Zeng, S. Zhang, Y. Zhang, and W. Wu, “SIFT
matching with CNN evidences for particular object retrieval,”
Neurocomputing, vol. 238, pp. 399–409, 2017.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, IEEE, Las Vegas, NV, USA, June 2016.

[33] L. L. Zhou, Z. H. Zhang, Y. C. Chen, J. J. Fu, C. N. Yin, and
H. B. Jiang, “Benign andmalignant classifcation of renal mass
CT images based on convolutional neural network,” Inter-
national Journal of Biomedical Engineering, no. 5, pp. 417–
422, 2018.

[34] H. J. Wang, X. Yu, J. J. Tian, and Z. Y. Wang, “Artifcial
intelligence in the prediction of benign and malignant thyroid
nodules in ultrasound imaging,” China Medical Equipment,
no. 12, pp. 28–31, 2019.

Computational Intelligence and Neuroscience 15




