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Cracks are one of the most common types of imperfections that can be found in concrete pavement, and they have a significant
influence on the structural strength. The purpose of this study is to investigate the performance differences of various spatial
clustering algorithms for pavement crack segmentation and to provide some reference for the work that is being done to maintain
pavement currently. This is done by comparing and analyzing the performance of complex crack photos in different settings. For
the purpose of evaluating how well the comparison method works, the indices of evaluation of NMI and RI have been selected. The
experiment also includes a detailed analysis and comparison of the noisy photographs. According to the results of the experiments,
the segmentation effect of these cluster algorithms is significantly worse after adding Gaussian noise; based on the NMI value, the
mean-shift clustering algorithm has the best de-noise effect, whereas the performance of some clustering algorithms significantly

decreases after adding noise.

1. Introduction

Pavement crack detection methods that are efficient and
reasonable must be used to evaluate the degree of pavement
damage, and appropriate maintenance measures must be
taken in order to achieve the goal of objectively detecting
pavement damage and ensuring the safety, efficiency, and
convenience of transportation on pavement [1]. In order to
achieve this goal, pavement damage must first be detected. In
recent years, there has also been some progress made in the
research of pavement crack detection; however, in the actual
operation process, manual visual inspection is still used for
the purpose of crack detection. Manual detection has been
unable to meet the rapidly developing needs of highway
maintenance, and the detection speed of cracks has not been
able to keep up with the requirements of pavement devel-
opment [2]. Only relying on manual detection of pavement
cracks is not an accurate enough method because it will lead

to issues such as missed detection and false detection, both of
which will disrupt traffic and are unable to guarantee per-
sonal safety. Even if a large number of people are sent out to
inspect and evaluate the pavement of the highway, it will still
take a significant amount of time to compile statistics based
on the data that has been collected. As a result, it is of the
utmost importance to conduct cracks in the pavement in a
prompt and efficient manner [3-5].

The most common types of pavement cracks are
transverse cracks that run in the same direction as the lane
line, longitudinal cracks that run perpendicular to the lane
line, block cracks and network cracks generated by trans-
verse and longitudinal staggered, and so on [6]. The low
contrast between the crack area and the background, the
interference caused by the background, and the uneven
damage degree of the cracks are the three factors that make it
the most difficult to detect and identify cracks. Inspections
were performed manually and visually for the most part in
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the traditional method. There will be a great deal of difficulty,
as evidenced by a single method of detection, a low detection
efficiency, a lengthy cycle, and a high risk. The proliferation
of computer technology has led to the development of an
increasing number of automatic detection methods. Auto-
matic detection technology has significantly improved in
terms of both its efficiency and accuracy in comparison with
manual detection, which eliminates the need for human
intervention wherever possible. Image processing is typically
what is utilized when looking for cracks [7-9].

The advantages of high precision, high efficiency, and
strong robustness are all possessed by modern image pro-
cessing technology, which is analogous to the visual system of
the human brain. Information about crack features can be
extracted after various features, including the texture and
geometry of cracks, which have been analyzed [10]. Image
enhancement, feature extraction, and object segmentation are
all components of the overarching process that comprises
detection methods in image processing [11, 12]. The detection
of crack defects using image processing techniques has been
the subject of a significant amount of research activity in
recent years, both domestically and internationally. Cracks
were found by Oliveira et al. by analyzing the light and dark
changes of box-borders and the distribution of dark pixels, but
this method is susceptible to noise because of its reliance on
light and dark changes. In order to achieve crack segmen-
tation, they searched for the valley that was located near the
highest peak in the gray histogram as a threshold. In order to
improve the limitations of the conditional texture anisotropy
(CTA) directional detection, Schmugge et al. proposed a free-
form anisotropy (FFA) algorithm to detect pavement cracks.
Using this algorithm, the authors sought out the path with the
least amount of weight in each direction using an iterative
search algorithm. However, due to the high amount of
computational work required, this algorithm is not appro-
priate for use in real-time detection. In order to remove noise
from crack images, Yan et al. utilized a variety of fusion and
recombination filtering methods. Using this method, it is
possible to remove various types of noise; however, it is very
easy to lose information regarding cracks. Yang et al. first
performed curve fitting on the pixels in the segmented image
and then used the SVM model to achieve classification. For
SVM training, the authors extracted the grayscale histograms
of the local crack area and the background area. This method
selected a smaller number of feature parameters, which
resulted in a poor recognition accuracy. An automatic al-
gorithm for the classification of cracks was suggested by
Lettsome et al. After the crack image has been vectorized, the
geometric features are separated, and the linear cracks are
classified according to the slope and width. This allows the
type and degree of crack damage to be determined, allowing
for the accurate and automatic extraction of crack informa-
tion. Lettsome et al. developed an improved pavement image
segmentation algorithm, which extracts the statistical data,
structure, and shape of pavement cracks in image sub-patches
to construct crack-feature vectors and identifies the categories
of sub-patches through sparse representation, so as to improve
the accuracy of pavement crack recognition. This was done in
order to improve the quality of the pavement crack
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recognition process. A method for detecting cracks in asphalt
pavement based on its spatial aggregation feature has been
proposed by one researcher. This method takes into con-
sideration the spatial distribution characteristics, grayscale
characteristics, and geometric characteristics of cracks. An
adaptive threshold method was proposed by Liang et al.,
which is capable of realizing the extraction of small cracks.
J. Knig et al. were successful in achieving their goal of
detecting pavement cracks by combining the ICS-LBP
method. This method is superior to the method of directly
using gray value features because it can achieve real-time crack
detection. Even though the methods of image processing have
made some headway in the detection of pavement cracks, they
are all based on the texture and geometric features of the
surface. They are able to produce satisfactory results when
dealing with a limited number of crack images. In spite of this,
when confronted with a large number of complex crack
images, the parameters of the texture geometry need to be
adjusted in order to obtain satisfactory results, which cannot
adapt to a greater variety of crack images [13-15].

With the advancement of technology, the use of image
processing technology to detect pavement cracks has attracted
an increasing amount of attention from scientific research
institutions. As a result, many pavement detection systems
have been developed, such as road crack, which is a pavement
detection system that was developed in Australia. In accor-
dance with the complexity of block cracks and network cracks,
these two types of cracks are intertwined with horizontal and
vertical cracks, and they develop into pavement cracks, which
are not pavement cracks that appear early on in the process. As
a result, the adaptability of the standard algorithm for crack
segmentation is insufficient. In this paper, we will implement
these mature clustering algorithms that are applied in engi-
neering, and through the performance comparison of various
algorithms, we will provide new ideas for pavement crack
detection. In addition, the results of the tests can provide a
decision-making basis for the work of maintaining the
pavement, thereby lowering the costs of maintenance, im-
proving economic benefits, ensuring driving safety, and de-
veloping a positive environment for infrastructure.

2. Related Works

2.1. Noise Model of Crack Image. Noise, as we are all aware, is
a random phenomenon that can only be characterized
statistically. There are various types of noise, such as additive
noise and multiplicative noise, among others. The statistical
distributions of various noises, as well as the effects that
those noises have on images, are each unique [16, 17].
Complex noise types can be seen in pavement images, with
additive noise being the primary type. The noise model is
presented in the following format for ease of analysis:

f(x)=x+n, (1)

where f (x) is the observed value; and x and # are the true
value and the noise matrix, respectively. Gaussian noise is
the most common additive noise. Figure 1 shows the noisy
crack image with different noises. For example, Figure 1(d)
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FiGure 1: Noisy crack image. (a) RAW image; (b) noisy image with zero mean and 5 variance; (c) noisy image with zero mean and 10

variance; (d) noisy image with zero mean and 30 variance.

shows the image with zero mean and 30 variance. It can be
seen that the noise obviously interferes with the crack and
some details have been lost.

In general, the topological structure of a pavement fracture
looks like a tree, while in specific areas it has a linear appearance.
There are a number of very fine cracks, and the contrast between
them varies quite a bit. In general, there are two types of crack
images, which are known as crack backgrounds and false-crack
backgrounds. One Rayleigh distribution and two normal dis-
tributions were chosen to simulate the statistical distribution of
the crack background; the high gray area represents the fracture
target, and a normal distribution was selected because it fits the
statistical distribution of the crack image. The statistical results
show that the probability of medium and low gray areas is
designated as the crack background. One way to explain the
statistical model is as follows:

f(x:) = @y fy(x;) + Z w f1(x1), (2)
=1

where w; (1 <1<4) is weight coeflicient; the constraints are
i w0 =1f,(x;) is the density function of Rayleigh

distribution with parameter y; and f;(x;)(1<I<3) is a
normal distribution density function with mean and vari-
ance {u;, 07}. Therefore, the parameter set of crack image
statistical distribution model is {wl,y, ul,812} ,1=1,2,3,4.
In the practical application of engineering crack detection,
the shape and structure of cracks are complex and random.
The contrast of cracks in different positions is large, and
there are a large number of peripheral cracks and fine cracks.
These characteristics increase the difficulty of crack seg-
mentation and seriously affect the accuracy of crack seg-
mentation. Therefore, the traditional single grayscale feature
of crack cannot effectively segment the crack, so the in-
fluence of crack characteristics and noise on the crack
segmentation algorithm must be eliminated by introducing
additional information. Therefore, image enhancement is
used to eliminate the influence of noise and interference in
this paper.

2.2. Crack Image Enhancement. 'The intensity of the light and
the angle at which the photograph was taken caused the
surface of the fallen concrete to produce shadows that



resembled crack structures. This occurred during the process
of acquiring the photograph. The false detection rate of
cracks is increased as a result of these noncracks. It is
challenging to differentiate between cracks and noncracks
using only two-dimensional information because there is
insufficient information regarding the depth of the three
dimensions. The image of the crack that was collected in the
real scene can be seen in Figure 2. The effect of the lighting
on the image results in a lack of contrast, and the uneven
pavement surface results in an uneven background area,
both of which contribute to the lack of contrast between the
cracks in the pavement. In addition, the red areas that can be
seen in the image are not cracks but rather road scratches.
However, the gradient characteristics of cracks are more
readily apparent than those of false cracks, and appropriate
filtering methods can be utilized to reduce the interference
caused by false cracks.

Mean filtering, median image filtering, Gaussian image
filtering, and nonlocal mean image filtering have emerged in
recent years as the primary image filtering methods. The
mean filter is the simplest, but it significantly reduces the
prominence of edge features; the salt-and-pepper noise can
be effectively removed by the median filter, but the crack
image, which contains the vast majority of speckle noise, is
not an appropriate candidate for this filter; the Gaussian
filter has a beneficial effect on smoothing, and its overall
performance is superior to that of the mean filter and the
median filter; nonlocal mean filtering has a noise reduction
effect that is comparable to that of Gaussian filtering. It also
has the ability to preserve edge characteristics, despite the
fact that the calculation is more complicated and the pro-
cessing time is longer. In order to get rid of image noise and
smooth out the gradient characteristics of false cracks, a two-
dimensional Gauss low-pass filter has been chosen. This
decision was made after taking into account the processing
speed and effect in their entirety. The expression of filter can
be shown like this:

1
G(u, U) — _e—uz+U2/20'2, (3)
2no

where ¢ = 1, and the sum of squares of u and v represents the
distance from the pixel (u,v) to the center.

The crack edge characteristics will be softened to some
amount after image de-noising, and some crack details will
be lost. As a result, it is required to improve the crack
structure as well as the contrast of the crack. The Frangi filter,
which is based on the Hessian matrix, is used to extract the
linear structure in the image and suppress background
clutter, which has a noticeable enhancing effect on the
cracks. To calculate the gradient change rate of pixels, the
Hessian matrix is built of second-order partial derivatives.
The relationship between the eigenvalues A, and A, reflects
the structure of the image. The Frangi filter detects the linear
structure in the image by using the relationship between the
eigenvalues A, and A, of the Hessian matrix and defines the
eigenvalue linear parameters R, and S to construct an en-
hancement filter function, which can distinguish the
background and the target. According to the literature [8],
these linear parameters can be written as follows:
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FIGURE 2: Comparison between cracks and noncracks.

0, A, >0,

(4)

M
Rb :r,
2

S =|Hll = {ZA§,
j<2

p and c are used to adjust the sensitivity of R, and S, which is
generally set to 0.5 and 15.

(5)

3. Classic Computational Intelligence
Algorithms for Crack Image

3.1. K-Means Clustering. The fundamental premise of the
K-means clustering algorithm is to group data samples into
k-classes, calculate the distance from other points to the
center of the cluster, assign the samples that are geo-
graphically closest to the center of the cluster to a single class,
calculate the new center of the cluster, and update the at-
tribution of each sample iteration after iteration until the
center of the cluster does not change significantly and
satisfactory clustering results are obtained. The K-means
clustering technique is a part of the hard clustering division.
Within this division, the Euclidean distance is utilized as the
similarity measure, and the sum of squares of errors is
utilized as the criterion function to calculate the cost value of
repetitive operations. The total number of deviations that
exist between the sample and the cluster center is referred to
as the sum of squared errors. When determining the ac-
curacy of a cluster, the greater the cost value, the more
significant the mistake. The optimal partition can be ob-
tained only in the case where the cost function is the smallest
possible value.

Assuming that the data samples are a data se tX =
{x1,%5,--+, x,,} with n samples, the n samples will eventually
be divided into k clusters, and the k clusters meet the fol-
lowing conditions: (1) each classification cannot be empty;
(2) each data sample exists in only one classification. First, k
samples are randomly selected as the initial cluster centers
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of K clusters, where Euclidean distance is used as the
similarity measurement and each sample is classified into the
category of the nearest cluster center according to the size of
the distance. The average value of all data samples in each
cluster is calculated with Equation (6) as the new cluster
center:

Z X = ok, (6)

1]1

where N; is the number of samples in the ith cluster.

The similarity between each sample and the new cluster
center is recalculated, and the samples are reclassified before
calculating the new cluster center. If the cluster center moves
little or no samples are reassigned before and after clus-
tering, the sample’s clustering iteration terminates and the
clustering cost function reaches a minimum. The following is
the equation for the cost function of K-means clustering:

. 2

In the process of each iteration, judging whether each
sample is assigned to the correct class is the key of K-means.
If the classification is incorrect, it is necessary to make
changes. After all samples are classified and corrected, it is
judged that all samples are classified into the correct class,
and then the cluster center is calculated and modified, and
the next iteration is started. The steps of K-means clustering
algorithm are described as follows.

Step 1. Divide the samples into k groups.

Step 2. Randomly select k points as the cluster center
(my, m,,---,my) of k groups.

Step 3. Calculate the distance from each sample x; to
k cluster centers (m,m,,---,my).

Step 4. For each sample x;, assign it to the cluster with the
closest center.

Step 5. Calculate the new cluster center according to
Equation (5).

Step 6. Calculate the cost function according to Equation

(6).

Step 7. If the value of the cost function J converges, output
the cluster centers (m,m,,---,m;) and the algorithm
terminates. Otherwise, return to Step 2.

3.2. Fuzzy C-Means. In FCM algorithm, it is given that the
data set X = {x;,x,, -, x,} with n samples has divided the
samples into ¢ fuzzy groups, where 2 < ¢ <n is the clustering
centers of ¢ fuzzy groups. The Euclidean distance function is
used to calculate the similarity between the samples and the
clustering centers, assign membership values to them, obtain

the membership matrix U of all samples, and then obtain a
new clustering center until the objective function repre-
senting the dissimilarity index finally reaches the minimum
value. Since the membership matrix U has a normalization
regulation, the total membership degree of a sample for each
category is equal to 1.

Cc
ZUijzl,ijl,Z,“wn- (8)
=1

Therefore, the objective function of FCM can be de-
scribed as follows:

](Uacl)cza"')cc)

- ; ]; ujids, (9)

When the objective function J (U, ¢, ¢, - -, ¢,) takes the
minimum value, the best clustering effect can be obtained.

7(U)C1$C2)"')Cc ) A’l s Tt A;1)
m 72
u;;d;; +Z/\ <Zu - 1)

where A;(j=1,---,n) is the Lagrangian multiplier of n
constraint expressions in (9). The obtained value when the
derivative is 0 is the value that minimizes the (10), so the
necessary conditions are as follows:

(10)

I
™M
Mx

Il
—

[i 1

J

(11)

u., = .
ij Zi:l(dij/dkj)(ym_l)

The above two essential requirements yield the new
cluster center and membership matrix. The fuzzy C-means
clustering algorithm is a straightforward iterative procedure.

3.3. Maximum Entropy Clustering. 'The maximum entropy
clustering algorithm is a deterministic annealing clustering
algorithm based on the entropy. By taking the entropy as a
constraint, it tries to maximize the entropy while minimizing
the fuzzy distortion. The algorithm regards the entropy
function as a component of the objective function to achieve
a better division of the data set.

The maximal entropy clustering algorithm can be de-
scribed by the following mathematical model. Given # vector
X ={x;,x,,++,x,} € R® with s-dimensional space, it is as-
sumed that there are ¢ fuzzy class according to some similarity
measures. The center of the ith fuzzy class is expressed as
yii=1,2,--+,c, and the posterior probability of each vector
belonging to the fuzzy class is represented by a set of real
numbers between 0 and 1, which can be denoted as {P =
(pyilx)y e R"(i=1,---,¢c;k=1,---,n. This set of real
numbers satisfies the following constraints: Y;_, p(y;|x;) =
L p(y;lx) € [0,1]; and Y5, p(y; | x;) > 0. Therefore, the
objective function of the maximum entropy clustering al-
gorithm is defined as



M=

=2

c
i=1 k

P(J’i ka) (E )’i)z
(12)
+T

Mnl

2. p(yilx)log p(yi | xe),

1 k=1

1

where Y = ()’1))/2""’yc)T € R%; d(xp, y;) = llxy - )’i”Z-
The maximum entropy clustering algorithm is to find a
probability distribution and a set of cluster centers to make
the fuzzy distortion degree L the smallest and the entropy H
to be the largest. Generally, the Lagrange multiplier method
can be used to obtain the minimum value (p*, y*) of J.

It can be seen from the description of the maximum
entropy clustering algorithm that when T is large,
Y Yr Pilxlog p(y; | x,) plays a major role in the
objective function. In addition, the probability of each
sample belonging to ¢ cluster centers is equal, which is
approximately equal to 1/c. As T gradually decreases,
Y Y p(yilx) (i — y,)* plays a more and more im-
portant role in the objective function. In addition, the
probability of each sample belonging to the cluster center
closest to it is increasing. When T'=0, each sample belongs
to the nearest cluster center with probability 1.

3.4. Gaussian Mixture Model. Gaussian mixture models are
about quantifying things precisely with multiple Gaussian
probability density functions. Each Gaussian mixture model
is composed of N Gaussian distributions, each of which is
called a cluster. These Gaussian distributions are combined
to form the probability density function of the Gaussian
mixture model.

N
p(x) =) pmp(X|n),

n=1

N (13)
p(x) = Z nnN(x | un,Zn),

n=1

where N is the number of models; 7, represents the weight
coefficient, which means the probability that each cluster
class is selected, and ZHN: 17, =1; and N(x|u,,2,) is the
Gaussian distribution density, ¥, = 2. & represents the
standard deviation of the nth class, so the nth Gaussian
model is denoted as follows:

1 R
N(x|/,tn,8i):m8nexp( (xzag") ) (14)

Assuming that there are K collected samples, these
samples can be considered to obey a Gaussian distribution,
and then the likelihood function of GMM can be written as

K K N
[Jrx = Zlog(Z nnN(x|yn,5§)>. (15)
i=1 i=1 n=1

Since the maximum value cannot be obtained directly in
(14), so the EM algorithm must be adopted. The steps of EM
algorithm for parameter estimation of Gaussian mixture
model are described as follows:
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Step 8. Determine initial value 7, y, 6.

Step 9. Calculate the probability that the sample is Gaussian
distribution.

m,N(x; |4 87)
2 ”jN<xi | 5?)

y(i,n) = (16)

Step 10. Calculate maximum likelihood function of p,
and &2.

] K
u, = K_Z y (i, n)x;,

ni=1

(17)

1 K
8= 2 v i) (5 = ) (xi =)

ni=1

Step 11. Calculate maximum likelihood function of m,,
namely, 7, = K, /K.

Step 12. Repeat iteration steps 2-4 until the parameter
likelihood function value converges.

3.5. Mean-Shift Clustering. Mean-shift is a prediction
method of gradient search through nonparametric proba-
bility density estimation, which classifies the sample data
and counts the pattern categories in the feature space of
the data samples. The mean-shift-based image segmentation
is to first estimate the probability density, then find the
convergence point through gradient search, use the con-
vergence point to filter the image, and finally achieve image
segmentation.

Nonparametric estimation refers to the process of es-
timating the density function using sample data sets. Kernel
density estimation is the most commonly used nonpara-
metric estimation, which is the process of processing the
sample according to the kernel function K (x) to obtain the
density function. For a Euclidean space with d-dimensional,
x is one of the eigenvectors, and R is a real number field. If a
function K: R* — R follows K: [0,+00] — R, we can
obtain K(x) = Ckk(llxllz), where the modulus of x is
denoted as ||x|* = xTx; C, is a standardized constant; and k
obeys non-negative and piece-wise continuous and
I k(r)dr < co.

Given the known kernel function K (x) and bandwidth
matrix H; (x) of n sampling points {x;, 1 <i<n} in the space
R4, the kernel density estimation formula of the density
function can be denoted as

7= cH| 1/2K<||x - xi||2|H,-|), (18)
i=1

w(x;) > 0 is the weight of the sampling point, which satisfies
Y w(x;) = 1 and abbreviates as w;. The kernel function K (x)
is the similarity measurement between the sample x; and the
center x. The bandwidth matrix H; represents the range of
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the kernel function estimation. The density function esti-
mate f (x) is obtained by the weighted sum of the kernel
function at each sample.

Generally, the density at x is always smaller than that at
my; (x), and the mean-shift vector should move in the di-
rection of high density. The convergence point of the mean-
shift algorithm is the local density maximum point. In order
to describe the mean-shift algorithm more simply, it is given
that the weights between sampling points are equal, namely,
w(x;) = 1/n. Since the bandwidth matrix is proportional to
the identity matrix H; = hI, then the mean-shift iteration
formula can be written as follows:

% g6 = ')
S g(lee- <)

The mean-shift algorithm firstly and randomly selects a
search area circle in the sample and calculates the average
value of all sample points in the search area through the
iterative formula. The density of the newly obtained mean
point must be greater than the density at the initial center
point. Repeat the above steps until the density change is less
than a certain value, and then converge to the maximum
density point.

my, (x) = (19)

3.6. Hierarchical Clustering. In the method known as hi-
erarchical clustering, a structure that looks like a tree is built
to correlate with the samples that are going to be clustered.
This is done in order to facilitate the clustering process. The
process of hierarchical clustering can be further subdivided
into a variety of distinct clustering algorithms depending on
the direction in which the hierarchy is constructed, either
from the bottom up or from the top down. These distinct
algorithms can then be used to cluster data in a variety of
different ways. Because of the flexibility of the hierarchical
structure, it is possible to make this distinction in either
direction during its construction. When applying the bot-
tom-up methodology, the first thing that needs to be done is
to treat every single sample as if it were its own cluster. After
that, it combines these atomic clusters to produce clusters
that are progressively larger until either all of the samples are
included within a single cluster or a termination condition is
satisfied, whichever occurs first. After that, it moves on to the
next step. The concept of similarity between clusters can be
understood quite differently depending on the approach that
is taken, despite the fact that the vast majority of hierarchical
clustering algorithms fall into this category. Hierarchical
clustering takes a different approach, one that works from
the bottom up, as opposed to the strategy that operates in the
opposite direction, from the top down. It starts by grouping
all of the samples together into a cluster, and then it
gradually divides that larger cluster into smaller and smaller
clusters until either every object spontaneously forms its
own cluster or it satisfies a condition that causes it to stop.
The relative connectivity between two clusters ¢; andc; is
defined as the absolute connectivity between two clusters c;
and c; divided by two relative connectivities in ¢; and c;.

EC
RI(C c ’ (6c) (20)

i) = <|EC(Ci) + )/2’

where [EC ¢ | is the edge-out containing ¢; and c; clusters,
so that the cluster can be decomposed into |[EC(. | and
IEC(C |- The relative approach degree between two clusters C;
and ¢ is the absolute approach degree between two clusters
¢; and ¢; divided by the approach degree within two clusters
¢; and c;:

EC (ci,cj)

RC(ci,c-) = .
! (‘xisEC(ci) +(ijEC(cj)

(21)

4. Experiment

4.1. Evaluation Indicators. In order to provide a reasonable
evaluation of the clustering performance of each clustering
algorithm, this study uses the NMI and the RI evaluation
indicators to analyze the performance of each comparison
algorithm. These two indicators have a value range of [0, 1],
and a good rule of thumb to follow is that a higher number
indicates a higher level of clustering performance. Calcu-
lating the degree of error that occurred during the process of
judging the results of the fracture segmentation can be done
with the help of an index known as the NMI index. When
this value is increased, the crack segmentation will become
more accurate as a result. The magnitude of the value is
inversely proportional to the extent of this improvement.
The RI index examines and quantifies the degree to which
the segmentation results of the crack segmentation algo-
rithm and the results of the ground-truth segmentation are
consistent along their edges. This is accomplished by
comparing the segmentation results of the two sets of data.
This is accomplished by contrasting the outcomes of the two
studies with one another. When the value is increased, the
algorithm will produce segmentation results that are of a
higher quality than they were before.

These cluster methods are first tested on a Windows
computer equipped with a 2.50 GHz Intel Core i5-1135G7
processor and 4 gigabytes of RAM, and then they are
implemented in MATLAB using the MATLAB R2012b
software, which is run on a Windows 10 64-bit operating
system. Finally, the cluster methods are validated on a
Windows computer.

4.2. Data Sources. According to the types and characteristics
of pavement cracks, this paper selects some images of dif-
ferent locations, different environments, and different time
periods. These samples cover typical cracks such as bifur-
cation, uneven thickness, uneven illumination, occlusion,
road markings, and their shadows, which can meet the
testing requirements of crack image clustering algorithm.
These crack images can be found and downloaded from the
Internet, such as https://img.xianjichina.com/editer/20210113/
image/e80456e50e92c5eb0b8b03b.jpg. For testing
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FIGURE 3: The samples of typical crack images.

requirements, the crack data set with a size of 128 % 128 or
64 * 64 pixels is formed by cutting out the crack images. Many
of them suffer from the problems of occlusion and shadow
interference cracks and fine cracks and carrying a large
number of peripheral cracks, which is difficult to segment.
Figure 3 shows the typical crack images selected in this paper,
the first row is single-crack images, and the second row is
cracks with complex background interference. We manually
annotate the ground-truth crack on test images for objective
performance evaluation.

4.3. Experimental Analysis. In this article, several pavement
crack images are processed with the help of six different
clustering algorithms. The degree of complexity of the crack
image has a significant bearing on the segmentation results
achieved by the clustering algorithm. Additionally, because
the acquisition equipment is susceptible to the influence of
light intensity and noise, the brightness of various cracks in
the crack image is typically uneven. This will have a negative
impact on the effectiveness of the crack image segmentation.
In order to properly segment cracks in an image, it is
necessary to preprocess the image first.

In this study, an image enhancement algorithm was
applied during the image preprocessing stage in order to get
rid of any noise and interference that might have been
present. Image enhancement will, simultaneously, improve
the response value of crack image similarity measure, which
will be helpful in improving the performance of crack
segmentation. Even though the main body of the crack has
been preserved thanks to image enhancement, the fine
cracks and peripheral cracks have been lost in a significant
way, which has resulted in the crack having poor continuity.
In addition, the phenomenon of under-segmentation is
more serious, and the segmentation itself presents a fracture
phenomenon. The noise in the crack segmentation result has
been greatly reduced, but the segmentation result makes it
easy to lose details; the smaller crack area is easy to connect,

but it is easy to distinguish the subtle and peripheral cracks
as noncrack area, and the cracks are disconnected, which
results in serious over-segmentation of the cracks. Therefore,
the preprocessing method that was used in this paper helps
retain the details, and the results of this method do not affect
how well the six different clustering algorithms perform
when compared to one another.

K-means clustering (K-means), fuzzy c-means clustering
(FCM), maximum entropy clustering (MEC), Gaussian
mixture mode (GMM), mean-shift, and hierarchical clus-
tering (HC) are used as comparison clustering algorithms in
order to verify the comprehensive segmentation perfor-
mance of these clustering algorithms. Test samples are
randomly selected from the pavement crack database. Be-
cause of the constraints imposed by the available space, we
can only select a select few examples of typical image seg-
mentation results for analysis, as can be seen in Figures 4-6.

It can be seen from the segmentation results that dif-
ferent algorithms can basically achieve crack segmentation,
but the segmentation results show obvious differences. The
K-means algorithm is highly sensitive to outlier noise, and
the selection of cluster centers directly affects the segmen-
tation results. The segmentation results only preserve the
main structure of the crack. Noise and the interference of the
complex background cause the segmentation algorithm to
lose a lot of details, especially the edge information.

The segmentation results show a fracture phenomenon,
there is a lot of noise, and there is an over-segmentation
phenomenon such as judging the complex background as a
crack area. The neighborhood information that introduces
crack pixels into the feature is improved compared with the
segmentation result of the K-means algorithm, but the noise
sensitivity is still high, which easily leads to the islanding
effect. It is easy to judge the background as a crack at the tip
and subtle parts of the image, and there is still a lot of noise in
the noncrack area.

Based on the gray distribution characteristics of cracks,
the GMM algorithm uses Gaussian distribution to fit the
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FIGURE 4: Performance comparison for different cluster algorithms. (a) RAW images; (b) K-means; (c) FCM; (d) MEC; (e) GMM; (f) mean-

shift; (g) HC; (h) ground-truth.
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FIGURE 5: Performance comparison for different cluster algorithms. (a) RAW images; (b) K-means; (c) FCM; (d) MEC; (e) GMM; (f) mean-

shift; (g) HC; (h) ground-truth.

feature distribution of cracks and completes the segmen-
tation of crack images through adaptive thresholds, but the
selection of parameter values calculated by the EM algorithm
directly affects the segmentation results. Although the
segmented cracks are relatively continuous, it is easy to
mistakenly identify noncrack areas as crack area, showing an
over-segmentation phenomenon, and there are a small
number of noise points around the cracks, as shown in
Figure 5(d). In a single crack, it is easy to misjudge the crack
target as a noncrack with under-segmentation phenomenon.

Figure 6(g) shows the segmentation result of the algorithm
in this paper. The segmentation effect is significantly im-
proved, and the crack fracture phenomenon is improved.
The mean-shift algorithm in this paper can completely
segment the crack structure and effectively solve the de-
tailed problems of crack image segmentation, such as fine
cracks, peripheral cracks, and branch cracks. At the same
time, the hierarchical clustering algorithm can extract clear
crack area, which can well overcome the segmentation
difficulties caused by uneven gray scale, noise, and
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FIGURE 6: Performance comparison for different cluster algorithms. (a) RAW images; (b) K-means; (¢) FCM; (d) MEC; () GMM; (f) mean-

shift; (g) HC; (h) ground-truth.

FIGURE 7: Performance comparison for different cluster algorithms with noise ((zero mean and 0.01 variance)). (a) RAW images; (b) K-
means; (¢) FCM; (d) MEC; (e) GMM; (f) mean-shift; (g) HC; (h) ground-truth.

overlapping edge. The crack segmentation results can
provide high-quality reference for subsequent data analysis
and crack classification.

Since this paper mainly analyzes the processing effects of
different clustering algorithms on different noisy images,
Figure 7 shows the result of adding Gaussian noise with zero
mean and 0.01 variance to the raw image and clustering
directly. It can be seen that the introduction of noise sig-
nificantly changes the segmentation performance. Noise

interference appeared in all results, and some background
areas were mistaken for cracks. Although the image en-
hancement function is added in the preprocessing stage of
this paper, there are still some interferences, resulting in
errors in the results, but the introduction of preprocessing is
also significantly better than the results of direct clustering.
It is worth noting that although all comparison algorithms
have some scattered speckle areas disturbed by noise, the
interference can be eliminated by edge detection.
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TaBLE 1: Performance comparison of different clustering algorithms for the same crack image without noise.

Algorithms
Images Indexes .
K-means FCM MEC GMM HC Mean-shift

1 RI 0.9637 0.9639 0.9358 0.9637 0.9720 0.9639
NMI 0.8371 0.8379 0.7707 0.8366 0.8792 0.8379

) RI 0.9985 0.9985 0.5521 0.9973 0.9979 0.9985
NMI 0.9621 0.9621 0.0792 0.9402 0.9517 0.9630

3 RI 0.9980 0.9996 0.5286 0.9944 0.9756 0.9995
NMI 0.9516 0.9886 0.0624 0.8821 0.6861 0.9853

4 RI 0.9650 0.9664 0.6653 0.9655 0.9655 0.9659
NMI 0.7014 0.7082 0.2110 0.7079 0.7090 0.7101

5 RI 0.9374 0.9383 0.8837 0.9381 0.9300 0.9386
NMI 0.7311 0.7379 0.5630 0.7371 0.6902 0.7448

6 RI 0.5918 0.5933 0.5192 0.9885 0.9837 0.9867
NMI 0.0669 0.0673 0.0442 0.7092 0.6192 0.6842

7 RI 0.9615 0.9606 0.5342 0.9696 0.9681 0.9702
NMI 0.5424 0.5377 0.0585 0.6143 0.6015 0.6194

3 RI 0.9880 0.9880 0.5187 0.9916 0.9919 0.9922
NMI 0.8694 0.8694 0.1042 0.8941 0.8989 0.9018

9 RI 0.9874 0.9874 0.5338 0.9843 0.9857 0.9956
NMI 0.8827 0.8827 0.1383 0.8668 0.8718 0.9495

RI-mean 0.9324 0.9329 0.6302 0.9770 0.9745 0.9790

Average RI-std 0.1219 0.1216 0.1558 0.0182 0.0188 0.0195
8 NMI-mean 0.7272 0.7324 0.2257 0.7987 0.7675 0.8218
NMI-std 0.2652 0.2691 0.2455 0.1034 0.1248 0.1282

TaBLE 2: Performance comparison of different clustering algorithms for the same crack image with noise (zero mean and 0.01 variance).

Algorithms
Images Indexes .
K-means FCM MEC GMM HC Mean-shift

1 RI 0.8358 0.8358 0.8358 0.8513 0.8508 0.8633
NMI 0.4663 0.4663 0.4663 0.5134 0.5116 0.5555

) RI 0.5230 0.5177 0.5177 0.7176 0.8753 0.9565
NMI 0.0620 0.0600 0.0600 0.1379 0.2645 0.4370

3 RI 0.5104 0.5065 0.5065 0.5486 0.9542 0.6283
NMI 0.0367 0.0350 0.0350 0.0450 0.1907 0.0817

4 RI 0.5653 0.5653 0.5648 0.9200 0.8567 0.9049
NMI 0.1035 0.1035 0.0992 0.4207 0.3250 0.3901

5 RI 0.8528 0.8528 0.8528 0.8580 0.8506 0.8578
NMI 0.4496 0.4496 0.4496 0.4759 0.4422 0.4741

6 RI 0.5063 0.5039 0.5035 0.5533 0.9703 0.9569
NMI 0.0297 0.0289 0.0169 0.0403 0.3236 0.2967

7 RI 0.5172 0.5134 0.5006 0.6674 0.9459 0.8982
NMI 0.0267 0.0252 0.0022 0.0688 0.3584 0.2318

8 RI 0.5957 0.5885 0.5885 0.9532 0.9345 0.9233
NMI 0.1124 0.1083 0.1083 0.5882 0.5234 0.4900

9 RI 0.5366 0.5432 0.5130 0.7466 0.6992 0.7747
NMI 0.0952 0.0996 0.1155 0.2266 0.1921 0.2704

RI-mean 0.6048 0.6030 0.5981 0.7573 0.8820 0.8627

Average RI-std 0.1309 0.1318 0.1346 0.1409 0.0788 0.0984
& NMI-mean 0.1536 0.1529 0.1503 0.2796 0.3479 0.3586
NMI-std 0.1655 0.1659 0.1687 0.2076 0.1172 0.1418

The statistics in Tables 1 and 2 show the quantitative  2.06%, and 3.85% higher than that of K-means algorithm,
indicators of different clustering algorithms for the same = MEC algorithm, and FCM algorithm, respectively; as for the
crack image with/without noise. In Table 1, the NMIindexof =~ RI index in Table 2, K-means algorithm, MEC algorithm,
mean-shift algorithm reaches 82.86%, which is 8.83%,  and FCM algorithm are 9.52%, 6.27%, and 1.23% higher,
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respectively. Therefore, for pavement crack cluster appli-
cation, the measurement index of mean-shift algorithm is
better than the comparison algorithm and meets the needs of
engineering detection.

According to the NMI-mean comparison of each clus-
tering algorithm, the effect of MEC is the worst, the effect of
other algorithms is not bad, and the gap is small, where the
mean-shift clustering algorithm has the best effect. Various
clustering algorithms have been adjusted and optimized to
achieve the optimal segmentation effect. In this experiment,
it seems that the NMI-based evaluation results are more in
line with the performance of segmentation effects, while the
segmentation results that seem to have poor effects can also
have RI value above 0.5. The segmentation effect of these
cluster algorithms is significantly worse after adding
Gaussian noise. According to the NMI value, the mean-shift
clustering algorithm has the best de-noise effect, while the
performance of K-means algorithm and FCM algorithm
decreases significantly after adding noise.

5. Conclusion

The purpose of this study is to evaluate and analyze the
performance of complex crack images in a variety of dif-
ferent environments using a number of different standard
clustering algorithms. NMI and RI have been selected to
serve as assessment indices for the purpose of determining
whether or not the comparison algorithm is effective. The
performance of a comparison analysis on the noisy photos is
an additional component of the experiment that needs to be
carried out. The NMI value indicates that the mean-shift
clustering algorithm has the best de-noise effect, whereas the
performance of the K-means algorithm and the FCM al-
gorithm significantly decreases after noise is added to the
data. The findings of the experiments indicate that the ad-
dition of Gaussian noise makes these cluster algorithms
significantly less effective at segmenting the data than they
were before.

Despite the fact that many different clustering algo-
rithms have been proposed and are continually being
improved, there has not been developed a single algorithm
that is appropriate for a variety of data features. This is
primarily the result of the fact that the algorithms used for
clustering put an excessive amount of emphasis on the
compactness that exists within clusters as well as the dif-
ferences that exist between clusters. The arrival of the era of
big data has resulted not only in an increase in the total
amount of data, but also in an increase in the complexity of
the data structure. This is due to the fact that the total
amount of data has increased. Finding a way to build a
clustering algorithm and evaluation index that is flexible
enough to accommodate a wide range of different scenarios
will be an essential goal for the work that will be done in the
future.
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