Hindawi

Computational Intelligence and Neuroscience
Volume 2022, Article ID 9028580, 11 pages
https://doi.org/10.1155/2022/9028580

Research Article

@ Hindawi

Clairvoyant: AdaBoost with Cost-Enabled Cost-Sensitive
Classifier for Customer Churn Prediction

Hiren Kumar Thakkar ®,' Ankit Desai®,> Subrata Ghosh,’ Priyanka Singh,4

and Gajendra Sharma

'Department of Computer Engineering, Marwadi University, 360003 Rajkot, Gujarat, India

2Ahmedabad University, Ahmedabad, Gujarat, India
3 Ambient Scientific, Bangalore, Karnataka, India

*Department of Computer Science and Engineering, School of Engineering and Sciences, SRM University, Amaravati 522240,

Andhra Pradesh, India

School of Engineering, Department of Computer Science and Engineering, Kathmandu University, Dhulikhel,

Kavre 45200, Nepal

Correspondence should be addressed to Gajendra Sharma; gajendra.sharma@ku.edu.np

Received 28 September 2021; Revised 9 November 2021; Accepted 27 November 2021; Published 22 January 2022
Academic Editor: Gaurav Singal

Copyright © 2022 Hiren Kumar Thakkar et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Customer churn prediction is one of the challenging problems and paramount concerns for telecommunication industries. With
the increasing number of mobile operators, users can switch from one mobile operator to another if they are unsatisfied with the
service. Marketing literature states that it costs 5-10 times more to acquire a new customer than retain an existing one. Hence,
effective customer churn management has become a crucial demand for mobile communication operators. Researchers have
proposed several classifiers and boosting methods to control customer churn rate, including deep learning (DL) algorithms.
However, conventional classification algorithms follow an error-based framework that focuses on improving the classifier’s
accuracy over cost sensitization. Typical classification algorithms treat misclassification errors equally, which is not applicable in
practice. On the contrary, DL algorithms are computationally expensive as well as time-consuming. In this paper, a novel class-
dependent cost-sensitive boosting algorithm called AdaBoostWithCost is proposed to reduce the churn cost. This study
demonstrates the empirical evaluation of the proposed AdaBoostWithCost algorithm, which consistently outperforms the discrete
AdaBoost algorithm concerning telecom churn prediction. The key focus of the AdaBoostWithCost classifier is to reduce false-
negative error and the misclassification cost more significantly than the AdaBoost.

1. Introduction

In developing countries, smartphones play a significant role
in human life, and the number of mobile operators is rapidly
increasing in every technologically advanced country. By the
end of 2019, several billion people subscribed to mobile
services, accounting for nearly two-thirds of the global
population [1]. These incessantly growing telecom operators
are coming up with various value-added subscriptions to
retain their loyal customers. Hence, customer retaining with
the same service provider became questionable. In this fierce
competitive nature of the wireless telecommunication

industry, customers have unlimited freedom to migrate from
one service provider to another. This phenomenon is known
as churn. A few reasons for churn are dissatisfaction in
services such as unattractive recharge plans, frequent call
drops, insufficient bandwidth, frequent customer care calls,
unreachable networks, and slow Internet speed. In general,
several techniques are used to address the customer churn
prediction such as statistical learning [2], machine learning
[3], evolutionary optimization technique [4], and deep
learning [5]. Boosting is an ensemble technique that at-
tempts to create a robust classifier from several weak clas-
sifiers. AdaBoost (adaptive boosting) is the first successful

mailto:gajendra.sharma@ku.edu.np
https://orcid.org/0000-0002-4196-7651
https://orcid.org/0000-0003-3109-9608
https://orcid.org/0000-0001-5695-8611
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9028580

algorithm developed for binary classification to improve
accuracy. It has now become a somewhat feasible method for
different kinds of boosting in machine learning paradigms.
However, AdaBoost is inherently a cost-insensitive boosting
algorithm; therefore, it has limited applications where costs
need to be treated differently for different misclassification
errors. This study is interested in attempting to mitigate the
limitation.

In many real-world applications like anomaly detection
scenarios such as bank loan defaulter, telecom churn pre-
diction, fraudulent transactions in banks, domain feature
retrieval [6], and rare diseases identification, the problem of
cost-sensitive classification is predominant. The critical
reasons for rising telecom churning are telecommunications’
technological development, liberalization, and aggressive
competition. In a highly competitive market, mobile oper-
ators mainly rely on incessant profits from existing loyal
customers. In practice, the cost of acquiring a new customer
is five to ten times higher than the cost of retaining an
existing customer [7]. Increased churn rate is considered the
plague in revenue generation because losing a royal cus-
tomer client indicates losing revenue. Therefore, the leit-
motiv of marketing strategy is now royal customer retention
for the telecom industry. In many real-world applications,
classification with imbalanced datasets encounters the
misclassification costs of rare or minority classes which are
usually more expensive than those of the majority classes,
especially in telecom churn, medical diagnosis, and prog-
nosis [8]. For effective customer churn management, it is
essential to build an accurate churn prediction model.

Recently, cost-sensitive learning [9-14] has gained
considerable interest. With the rapid use of ensemble
classifiers to improve accuracy, this paper proposes a design
of a misclassification cost-sensitive boosting algorithm as an
extension of favourably voted boosting method AdaBoost.
The clairvoyant study empirically evaluates the Ada-
BoostWithCost cost-sensitive boosting method to predict
customer churn rate with higher accuracy than the funda-
mental AdaBoost classifier. In general, boosting is an en-
semble technique that attempts to create a robust classifier
from several weak classifiers. AdaBoost (adaptive boosting)
is the first successful boosting algorithm developed for bi-
nary classification using this concept to achieve more ac-
curacy. It has now become somewhat of a go-to method for
different kinds of boosting in machine learning paradigms.
However, AdaBoost fundamentally is not a cost-insensitive
boosting algorithm; therefore, it has inherent limitations for
applications where costs need to be treated differently for
different misclassification errors. It is interested in
attempting to mitigate this limitation. Most classification
algorithms treat all kinds of misclassification errors, which
may not be accurate in all applications in reality. In telecom
churn rate prediction, the customer who will churn if
mispredicted by the model has a severe impact on revenue
perspective. Therefore, model accuracy may not be the
correct measure index for real-world cost-sensitive appli-
cations. However, instead of optimizing the accuracy, the
classification algorithm should then minimize the total
misclassification cost. Therefore, the paper’s key focus is on

Computational Intelligence and Neuroscience

empirical evaluations and the proposed AdaBoostWithCost
algorithm’s theoretical issues to reduce the cumulative
misclassification cost considerably better than the AdaBoost.

1.1. Cost-Sensitive Learning. Cost-sensitive learning is a type
of learning that considers the misclassification costs [15].
The primary objective of this type of learning is to minimize
the cumulative misclassification cost. The key difference
between cost-sensitive learning and cost-insensitive learning
is that cost-sensitive learning treats different misclassifica-
tion errors differently. The cost of labelling a positive ex-
ample as negative can be different from labelling a negative
example as positive. Cost-insensitive learning does not
consider misclassification costs. When researchers first
confronted the variable cost issue, they entertained the cost-
sensitive adjustments in binary classification settings [16].
Cost-sensitive learning is a distinct subfield of machine
learning that takes the costs of prediction errors into account
while training a machine learning model. One extra input,
namely, the cost matrix, is supplied in the model-building
phase of the classification process used to construct cost-
sensitive models. When the cost matrix is used in association
with boosting, it is said to be cost-sensitive boosting.

1.1.1. The Problem of Class Imbalance. Today classification
algorithms assume a proportionate distribution of examples
in each class label, which is not always valid in practice. The
data are said to suffer from a class imbalance problem when
the class distributions are highly imbalanced. These datasets
have a skewed class distribution, and they are also known as
imbalanced classification problems. In this context, many
classification learning algorithms have low predictive ac-
curacy for the infrequent class [17]. In addition to assuming
that the class distribution is balanced, most classifiers also
assume that the costs of all types of misclassification error
are equal. This assumption is not always valid in many real-
world applications. In this situation, the predictive model
developed using conventional machine learning algorithms
could be biased and inaccurate. Researchers have put serious
thought and significant attention to minimizing the mis-
classification cost instead of minimizing the errors. There-
fore, in recent years, cost-sensitive learning has been a
common approach to solving this class imbalance problem.

1.1.2. Issue of Cost Sensitivity. Over the past few years, it has
been observed that most of the classification algorithms
assume the costs of all types of misclassification errors
generated by a model as equal [36], which is often not the
case for imbalanced classification problems. In class im-
balance problems, the wrong prediction of a positive or
minority class case is worse than incorrectly classifying an
example from the negative or majority class. In recent years,
cost-sensitive learning has drawn significant interest because
of the increasing number of applications that involve costs
such as customer churn prediction [18], fraud detection, and
bank loan defaulter.

Computational Intelligence and Neuroscience

In Section 2, the problem of mobile operators along with
the boosting algorithm AdaBoost is discussed. In Section 1.1,
cost-sensitive learning is discussed along with problems and
issues. The discussion is carried out on various classification
algorithms and various popular cost-sensitive boosting al-
gorithms in Section 2. Then, in Section 3, Ada-
BoostWithCost is proposed with a detailed algorithm,
equations, and explanation. An empirical evaluation is
performed in Section 4 by taking a dataset to investigate the
algorithm on the synthesized data, and the result is gen-
erated. An evaluation of the AdaBoostWithCost algorithm
and empirical results and visualizations are presented in
Section 5.

2. Related Works

In recent years, there have been countless applications of
machine learning [19] and reinforcement learning [20] in
the diversified areas such as healthcare predictions [21],
cloud resource management [22], and mobile robot navi-
gation [23]. Moreover, a significant surge is also observed in
cyber frauds, as well as the corresponding model to counter
them, such as credit card fraud detection, telecom churn
prediction [2-5], and detecting rare medical diseases. In the
models mentioned above, classifiers are trained to handle
most costly errors compared to others. Many ensemble-
based classifications have been proposed to introduce the
misclassification cost in cost-sensitive classifiers. In litera-
ture, various algorithms have been proposed over the past
decades for cost-sensitive classification. Various authors
have modified decision trees in different ways that consider
different class-dependent costs. In [24], the cost-sensitive
boosting framework has been proposed by the authors
expected to optimize the loss function by applying cost-
sensitive decision rules optimally. An adaptive cost bagging
method was proposed in [25]. In the doctoral dissertation
[21], a cost-sensitive tree stacking has been proposed where
different decision trees are learned in this proposed method
and then finally merged in such a way so that the cost
function is minimized. In [26], a survey of cost-sensitive
learning applications with base classifier as decision trees is
demonstrated. The survey contains several types of cost-
sensitive ensembles methods. The outline of the literature
survey is described in Section 2.1.

2.1. Comparison and Discussion. This paper surveys various
cost-sensitive boosting classifiers mentioned below. There
are various popular cost-sensitive boosting algorithms [27]
such as Boosting [28], Uboost, Cost-Uboost [29], AdaCost
[30], and CostBoost [31] in addition to recently emerged
algorithms such as CSE,, CSE,, CSE;, CSE,, and CSE; [32].
It is to note that CSE stands for Cost-Sensitive Extension. All
specified ten algorithms are compared and summarized in
Table 1. Boosting is extended by the CostBoost algorithm.
The Cost-Uboost classifier modified the Uboost. The discrete
AdaBoost extended to CSE,, CSE,, and CSE;. In contrast,
CSE, and CSE; are extensions of AdaCost. The goal of all
these stipulated algorithms is to modify the weight in

different ways in each iteration. As regards AdaCost [17]
(AdaBoost with Cost-Sensitive Adaptation), Freund and
Schapire’s AdaBoost is the first attempt towards the study of
the cost-sensitive boosting algorithm. AdaCost is a mis-
classification cost-sensitive boosting classifier, a variant of
AdaBoost. AdaCost applies misclassifications cost in each
round of boosting to update the training distribution. The
central idea of AdaCost is to incorporate the cost and
produce more advanced classifiers which can reduce the
misclassification cost better than AdaBoost. CostBoost [31]
is the extension of Boosting [28]. The modified version of
Uboost is Cost-Uboost [29]. CSE,, CSE,, and CSE; are
extensions of discrete AdaBoost. On the contrary, CSE, and
CSE; are extensions of AdaCost. All of these update the
weight in algorithmic step. The following are the weight
update equations for the cost-sensitive boosting classifiers
[33].

Weight update equation for discrete AdaBoost is as
follows:

Wt (i) (m) = Wt; (m)exp(—ij (xm)ﬁj). (1)
Weight update equation for CSE, is as follows:
Wt (j41) (m) = CsWt; (m). (2)
Weight update equation for CSE, is as follows:
Wt 41y (m) = CsWt; (m)exp(—y H; (xm)). (3)
Weight update equation for CSE; is as follows:
Wt (i41) (m) = CsWt; (m)exp(—ij (xm)ﬁj). (4)

In AdaBoost, there is no misclassification cost included
in the reweighting step. However, the misclassification cost
is incorporated in the weight update equation of some cost-
sensitive classifiers such as AdaCost, CSE,, and CSE;. The
symbols defined in the weight update equations (1)-(3) and
(4) are specified as follows. Cz=cost of classification and
B; = (1/2)In In(1+0;/1-09;) where 9; = (1/N) Y, yWt,
(n)HJ- (x,) and p=\{-1 if actual # predicted 1, if
actual = predicted.

Weight update equation for AdaCost, CSE,, and CSE; is
as follows:

Wt iy () = Wt (miexp(—y H, (.08,). (5)

Here, f3; is identical in CSE,, CSE,, CSE;, and AdaBoost,
whereas for AdaCost and CSE,0; = (1/N) Zi’ YWt
(n)Hj(xn)Tj, where 7+f-=C, for CSE, and
7+ =-0.5C, + 0.5 and 17— =0.5C, + 0.5 for AdaCost and
CSEs. Furthermore, CSE; does not include g, in the cal-
culation of d; [33]. From the above weight update algo-
rithmic equation, it has been noticed that the cost
parameter is directly applied to all kinds of misclassifica-
tion error (false-positive and false-negative) equally in each
boosting round. They all have given equal weight to reduce
cumulative misclassification costs. Table 1 depicts the
summary of the survey for ten cost-sensitive boosting
algorithms.

4 Computational Intelligence and Neuroscience
TaBLE 1: Comparison of cost-sensitive boosting algorithms.
Classifiers Initial weight distribution Is class-dependent cost-sensitive? Reweighting used?**
Boosting 1/N No No
Cost-Boost 1/N No Yes#
Uboost (Unequal)® No No
Cost-Uboost (Unequal)$ No Yes*
AdaBoost 1/N (Equal) No No
AdaCost 1/N (Equal) Yes Yes
CSE, Equal No Yes®
CSE, Equal No Yes*
CSE; Equal No Yes*
CSE, Equal No Yes®
CSE¢ Equal No Yes®

$ = initial weights: w(m) = w =¢ (N/ZICj Ny, ** = reweighting rules: updated new weight = cost of misclassification;

*

old weight (if wrongly classified);

new weight = old weight (if correctly classified); # = algorithm specific weight update equation.

3. Proposed Clairvoyant Method

Different methodologies have been studied, and the most
appropriate one is selected for this paper. In practice, there
have been two schools of thought while dealing with mis-
classification costs. The first addresses the cost sensitizing
with preprocessing the data by implementing various
sampling techniques to increase the influence of the desired
samples. These preprocessing techniques rely on examples in
the training dataset to minimize cost. The second school of
thought i to handle the problem more directly by building
cost-sensitive adjustments into the algorithmic step. In this
approach, the wealth of existing machine learning algo-
rithms is modified to use the cost matrix. This mechanism
gained significant popularity and became more demanding
in practice. In the case of the second methodology, for
example, AdaBoost and AdaCost, the metaclassifiers are
extended to incorporate the cost of misclassification in the
weight update method [34]. AdaBoost is a statistical clas-
sification meta-algorithm known for adaptive boosting, and
it tweaks the learners in favour of instances misclassified by
the previous classifiers. On the contrary, AdaCost is a
misclassification cost-sensitive boosting method, a variant of
AdaBoost. AdaBoostWithCost is an ensemble of AdaBoost
and AdaCost to improve the performance. In this paper, the
proposed algorithm belongs to the second methodology
described above.

3.1. AdaBoostWithCost. Nonetheless, misclassification cost
is not used in AdaBoost’s weight update rule. In many other
methods, the weight-updating rule increases the weights of
wrong classifications more aggressively by applying the
constant misclassification cost directly to the all misclassi-
fication errors (both false-positive and false-negative)
equally in each boosting round. Such a traditional frame-
work assumes that all misclassification errors carry the same
cost. The proposed AdaBoostWithCost method applies the
misclassification cost more specifically to the costly high-risk
errors (false-negative in telecom churn study) instead of
applying a constant cost to all misclassification errors di-
rectly in each iteration of boosting. The algorithm focuses on
class-dependent cost sensitivity. The cumulative

misclassification costs are reduced by assigning higher
weights to costly high-risk errors over low-risk errors. The
proposed new algorithm AdaBoostWithCost is illustrated in
Algorithm 1.

3.2. Definitions of Symbols. All mathematical symbols and
parameters used in equations of the proposed Ada-
BoostWithCost algorithm (described above) and flow-
chart shown in Figure 1 are described in Table 2. The
description of the inventive steps is as follows. The central
idea of the proposed AdaBoostWithCost algorithm is to
increase the weight of the costly misclassified data points
more aggressively than the correctly classified data points.
Hence, the weight-updating rule increases the weights of
the false negatives more than false positives since the false-
negative error is more significant in the telecom churn
prediction. In the above AdaBoostWithCost algorithm,
steps 7 and 12 constitute the invented steps of the pro-
posed AdaBoostWithCost algorithm. The weight update
equation in each boosting round of AdaBoostWithCost is
as follows:

(6)

PDt (xi)<e— o yih (x[)+(_yt)cfﬂyiht (’ﬂ'))
Pp e (%) = 7 :
t

In the above equation, Pp,,;, denotes the new proba-
bility assigned to the i data point x; at (t + 1)™ iteration
and Py, (x;) represents the distribution of it" data point x; at
iteration t. The exponential loss function in the weight
update equation is denoted by e~ %Yift(x)+(=y)Cyih (x)
consisting of two components or subexpressions as follows:

(1) The first subexpression is —a, y;h, (x;)

(2) The second subexpression which involves cost and
false-negative misclassification error is

(=y)Cnyihy (x;)

It is worth mentioning that the value of the expression
y;h, (x;) will be positive if y;h, (x;) is negative because the
negative sign at the beginning changes negative y;h, (x;) to
positive (since a, is always positive). To elaborate more, in
case of any misclassification performed by the model, the
expression y;h, (x;) becomes positive, whereas in case of

Computational Intelligence and Neuroscience 5

Require: A training set S=(x;, ¥;), (%3, ¥5)s - (X5 ¥,)
Ensure: Final Classifier.

1) forie 1,2...,ndo

(2) D, (i)enl/n

(3) end for

4)H=0

(5) for t=1to T do

(6) & =2 By 23 D(x)

() ye =2 by) Pp, (x;)

8) a, = (1/2)1n1nr(”1 - st/et

9) Cpn = CostMatrix [0, 1]

(10) H—H U (e, hy)

(11) end for

(12) forie1,2...,ndo

(13) P (x;) = Pp, (x;)(e""r%h , (x)+ (= y)Cryihy ("))/Z

(14) Ppyppp) (x;) = Py () (e7 /M G i Crdy 7,

(15) (Where Z, = Y7, Pp, (x;) (e” 7l) (e thiCrlyy

(16) end for

ALGORITHM 1: AdaBoostWithCost: the proposed cost-sensitive boosting algorithm.

@ . No Final Classifier
t < >
H(x)= Z:T:IOQ h

Yes

Y

t

Training Set:
IR NCS) Calculate Misclassification Error
V1) (X Vi

Z Py (x)

t(x#}’)

1-¢
ocl:—lnln—t
2

Initial Weight
D,(i)=1/n

A 4

v

Calculate False Negative Error

Y= 2 P, (x)
i 4
(xi==ycrN)

v
Update the Weight

Pryo0) = Py ()

(e +(y)C vy (%)) | Z,

Models (1...n)
H < HU (e, hy)

e

FiGure 1: The flowchart of the AdaBoostWithCost algorithm.

correct classification y;h, (x;) becomes negative. To more hence, expression —a,y;h, (x;) is positive because always
understand the reweighting formula, consider the caseofa «, > 0. Similarly, in case of accurate prediction, y;h, (x;) =
misclassification where y;h, (x;) = -1 (wrong prediction); = +1 (correct prediction); hence, expression y;h,(x;)

6 Computational Intelligence and Neuroscience
TaBLE 2: Definitions of symbols of the equations.

H Final hypothesis/model combining all weak hypotheses

h, The hypothesis/model at " iterations

hy (x;) The prediction of the ™ data point x; by the hypothesis/model h,

Pp, (x;) The probability distribution of the t™ data point x;

Pp41) The new probability of the i data point x; at (¢ + 1™ iteration

o Hypothesis’s weight for gross misclassification error at t™ iteration

Vs Hypothesis’s weight for high-risk (false-negative) error at " iteration

Cn Cost of misclassification for false-negative error specified in the input cost matrix
-1, ifactual # predicted,

Vi 1, ifactual = predicted.

Z, % Pp, (x;) (7) tBCr)) the normalization

becomes negative according to the logic prescribed above.
Therefore, the first subexpression —a,y;h, (x;) is exactly
similar to AdaBoost’s weight update equation and it can be
derived from the above logic that AdaBoost boosts up the
weights of the data points which have been misclassified
consistently by earlier models and brings down the weight
of the data points which have been classified correctly so
that in the algorithm can focus more on the misclassified
samples in its subsequent iterations. Nonetheless, the
second subexpression (-y,)Cy,y;h, (x;) incorporates cost
Cy, derived from the supplied cost matrix (described in
Section 3.1) and the parameter y, which represents false-
negative error at t,, iteration (on the contrary a, is the
total misclassification error used in the first sub-
expression). In the subexpression (-y,)Cy,y;h, (x;), the
cost computation component is (-y,)Cy,. The other
component y;h, (x;) holds the same evaluation method as
described in the explanation of first subexpression. Hence,
the subexpression (-y,)C,y;h, (x;) will be positive if the
y;h, (x;) is negative because the negative sign at the be-
ginning changes negative y;h, (x;) to positive and it is
multiplied by cost Cy, for the false-negative error
(denoted by y,). Here, it is worth mentioning that since
both y, and Cy, are always positive, the sign of entire
expression (-y;)Cy,y;h, (x;) depends on the sign of
y;h, (x;) as described above.

Therefore, in the second subexpression
(=y:)Cs,yihy (x;), the multiplication of cost C, to y;h, (x;)
specifically for false-negative error (denoted by y, is the
nucleus of the inventive step. The central idea of Ada-
BoostWithCost is to incorporate the extra cost specifically for
false-negative error to enhance the boosting of the weight, in
addition to the normal weight update performed by Ada-
Boost. This second subexpression underlines the fact that, to
reduce the misclassification costs, costly and high-risk errors
have been given more higher weights with respect to low-risk
error. In short, in the AdaBoostWithCost algorithm, the
weight-updating rule increases the weights of costly mis-
classified samples more aggressively than the correctly clas-
sified samples. The flowchart for AdaBoostWithCost is
depicted below. In the flowchart, the inventive step of
AdaBoostWithCost is specifically highlighted to demonstrate
how AdaBoostWithCost incorporated the cost into the
reweighting equation. Table 3 demonstrates the key difference
between their weight update equations.

3.3. Empirical Evaluation Parameters. The choice of mea-
surement indices is of paramount importance to evaluate the
classifier’s performance. Different performance metrics are
used to evaluate different classification algorithms. In the
context of the current study, the false-negative classification
error plays a pivotal role in telecom churn prediction. Thus,
the study seriously focuses on the false-negative error counts
for the empirical evaluation. The study also considers
evaluating the other two parameters: misclassification cost
and mean misclassification cost, which too holds great in-
fluence in the context of this study. The performance metrics
are used to evaluate the performance of the proposed cost-
sensitive boosting algorithm AdaBoostWithCost and Ada-
Boost. The cost of each class error is shown in the confusion
matrix in Table 4, which is supplied as an input to measure
the total misclassification cost. The normalized weight
distribution concerning cost is shown in Table 5. More
details about the confusion matrix and weight normalization
method are stipulated in Section 3.1.

4. Empirical Evaluation

4.1. Data Selection. The telecom dataset used in the inves-
tigations has been taken from Kaggle [35]. The dataset
contains over 3335 rows (Call Data Records) and 21 columns
(attributes). Data consist of the various behaviours of cus-
tomers, and the last column states if the customer is still with
the existing telecom company or not. However, the study
requires generating synthetic data (over 100,000 samples) to
carry out the study’s objective.

4.2. Generating Synthesized Data. The objective of the
study’s experiment is to empirically evaluate the perfor-
mance of the proposed classifier AdaBoostWithCost with a
large volume of data. Therefore, it enforces the study to
generate synthesized data to fulfil the requirement for the
investigation. The idea is to generate enough synthesized
data (near about 100,000 samples) points, that is, Call Data
Records (CDR), to compare the robustness of the Ada-
BoostWithCost method against discrete AdaBoost. The
number of features in the Kaggle dataset is 21 features as well
as only 3335 Call Data Records (CDR), which is not suffi-
cient for satisfying the study’s objective. Hence, it is essential
to generate synthetic data from the source data collected

Computational Intelligence and Neuroscience

TaBLE 3: Reweighting step of discrete AdaBoost and proposed AdaBoostWithCost.

Discrete AdaBoost

AdaBoostWithCost

Update weight step:
Pp 1) = Pp (x,) (")/ Z,

Update weight step:
Ppy = Pp(x;)
(where Z, = Y| Py, (x;) (e il (x)))

(e ayihy (xp)+ (= y)Crnyihy (xl))/Zt

~Pp) = pD(xi)(e*y,hf Ged (@47 Cra)
(where Z, = Y7L, Py, (x;) (e " () (@+7Cp0y)

P41 is the new probability assigned to the i'" data point x; at (t + 1) iteration; all other parameters constituting the right side of the equation are described

as follows: a, = hypopaper’s weight for gross misclassification error at

false-negative error specified in the input cost matrix,where, {

TaBLE 4: The confusion matrix.

Actual negative

C(0, 0) TN
C(, 0) FP

Actual positive

C(0, 1) EN
c(, 1) TP

Predicted negative
Predicted positive

TasLE 5: The weight normalization matrix.

Cost of false negatives 5 10 20 40 80 100
Weight distribution 01 02 04 06 038 1

from the Kaggle source. The synthetic data is generated by
oversampling the source data using Weka [33] which
transforms the source examples (data points) from 3335
CDR observations to 100,000 CDR observations that are
adequate to satisfy the objective of the investigations.

4.3. The Input Cost Matrix and Weight Normalizations.
Cost-sensitive machine learning methods explicitly use the
confusion matrix as an input while building cost-sensitive
classifiers. Fundamentally the cost matrix is a matrix that
assigns a cost to each cell in the confusion matrix. The ef-
fectiveness of cost-sensitive learning relies strongly on the
supplied cost matrix. Parameters provided in the confusion
matrix have the utmost importance in both training and
prediction steps [36] in the study of cost-sensitive learning.
In most of the cost-sensitive boosting algorithms, the cost
matrix is supplied in the model-building phase. The cost-
sensitive boosting classifiers modify the weight update
equation to incorporate the misclassification cost derived
from the cost matrix. Defining the confusion matrix might
sometimes be challenging as it is domain-specific. In the
telecom churn prediction modeling study, a model is used to
predict which customers are more likely to abandon a service
provider. In this context of the study, failing to detect an
actual churning customer (false-negative case) has a more
serious impact on economic results than failing to identify
accurately a nonchurning customer (false-positive case).
Hence, in this study, the proposed cost-sensitive boosting
algorithm specifically focuses on reducing cumulative high-
risk misclassification error (false-negative), and, accord-
ingly, the confusion matrix parameters are defined.
Ideally, an accurate cost matrix might be correctly de-
fined by a domain expert or economist. In this study, since

iteration, y, = false-negative error at

1 jteration, C 0= misclassification cost for

-1, if actual # predicted
1, ifactual = predicted”

the incorrect prediction of the churning customer (false-
negative) has bigger influence, the proposed Ada-
BoostWithCost algorithm focuses on reducing specifically
high-risk costly errors. Regarding the allocation of the cost
for each class in the cost, the matrix is shown in Table 6. It
has been observed by most telecom experts from various
literature surveys that false-negative classification error is 5
to 10 times more expensive than false-positive error.
Considering a worst-case scenario in telecom industries, this
study assigns the false-negative cost ten times (extreme case)
more than the false-positive cost. Hence, the cost ratio of
false-positive errors to false-negative errors used in this
study is 1:10, which means that false-negative errors are ten
times costlier than the false-positive classification errors. The
study experiments with running three different sets of it-
erations for empirical evaluation of AdaBoostWithCost and
AdaBoost. It is important to note that Table 4 depicts a
hypothetical cost matrix supplied as an input to the Ada-
BoostWithCost algorithm and used in the weight update
equation to calculate the misclassification cost. In the below
cost matrix, in Table 4, the notation C () indicates the cost. In
C (x, y), the first parameter x is the predicted class, and the
second parameter y represents the actual class. Table 4
represents the confusion matrix; the names of each cell of
the confusion matrix are also listed as acronyms; for ex-
ample, false positive is FP. Table 4 shows the cost-matrix
structure where the cost of a false positive is denoted by C(1,
0) and the cost of a false negative is denoted by C(0, 1).

Table 6 depicts the cost matrix which is supplied as input
to the AdaBoostWithCost algorithm and used in the weight
update equation. The assignment of a cost to each cell in the
confusion matrix is defined below and referred to as the
confusion matrix. It is noteworthy that cell C(0, 1) of the
confusion matrix represents the cost of false-negative error,
whereas false-positive error is designated by cell C (1, 0).
Consequently, cell C (0, 1) is assigned to cost 10, and cell C
(1, 0) is assigned to 1 according to the aforementioned
discussion (the study considers that the false-negative error
is 10 times more costly than the false-positive error). Table 6
shows each cell value of the confusion matrix.

Although the confusion matrix consists with four cells,
nevertheless, the true positive and true negative do not play
an important role in the context of telecom churn predic-
tion. Moreover, false-positive classification has also an in-
significant impact on the context of the study. The only
significant parameter is false-negative classification which

8
TaBLE 6: Cost assignment to confusion matrix.
Actual negative Actual positive
Predicted negative 0 10
Predicted positive 1 0

has a serious impact in telecom churn modeling, hence the
high value of 10 assigned to cell C (0, 1). The calibration of
weight distribution with respect to cost is essential to carry
out the weight update step in AdaBoostWithCost. The
normalization (rescaling) method to transform false-nega-
tive value to weight distribution is mentioned in Table 5. To
use the cost matrix in the proposed classifier, the confusion
matrix cell values must be rescaled within the range of 0 to 1.
This normalization or calibration [37] is an essential step to
perform the weight update operation in the reweighting
equation of the AdaBoostWithCost algorithm. The nor-
malization technique ensures that the weight or probability
distribution of each training data point stands between 0 and
1. The investigation of this study centered around false-
negative cost 10 and corresponding weight distribution 0.2,
highlighted in Table 5.

4.4. Experimental Method. The investigations of the study
estimate the three measure indices for telecom churn pre-
diction which have utmost importance, the false-negative
errors, misclassification cost, and mean misclassification
cost, to assess the performance of the proposed Ada-
BoostWithCost classifier. The empirical evaluation of this
study demonstrates two significant aspects of benchmarking
the performance of the AdaBoostWithCost algorithm
against AdaBoost. First, the study focuses on measuring
performance metrics: the false-negative errors, misclassifi-
cation cost, and mean misclassification cost (average mis-
classification costs across all sets of iterations). Second, it
graphically plots the misclassification error rate (both
training and test error rates) concerning multiple boosting
rounds. To carry out the second measurement criteria
mentioned above, this study computes the training and test
misclassification error rates for each boosting round of the
proposed AdaBoostWithCost classifier and plots them
graphically to demonstrate the performance curve of Ada-
BoostWithCost boosting classifier and basic AdaBoost
classifier. The input cost matrix for each category of errors is
defined in Table 4. Here, it is important to mention that
false-negative error observation is the foremost interest in
this study, since it significantly impacts revenue generation
in telecom churn prediction. The false-positive errors are not
accounted for seriously in the experiment, since they are
insignificant compared to false-negative errors in this
context.

Literature states that false-negative classification error is
generally 5-10 times more costly than the false-positive
classification error in telecom churn modeling. This study
considered the worst-case scenario of the telecom industry,
that is, presumed the most severe impact on the revenue
generation for service providers due to the incorrect false-
negative classification. Given this worst-case scenario, the

Computational Intelligence and Neuroscience

experiment assigns the false-negative cost ten times
(highest possible impact on business) more than the false-
positive cost. It is to be noted that cell C (0, 1) of the
confusion matrix represents the cost of false-negative er-
rors, whereas false-positive error is designated by cell C (1,
0). Consequently, cell C (0, 1) is assigned to cost 10, and cell
C (1, 0) is assigned to 1. While estimating the three critical
performance metrics, the cost matrix must be rescaled or
normalized to a range of 0 to 1. This normalization of
probability calibration [37] is mandatory to execute the
weight update operation in the reweighting equation of the
AdaBoostWithCost algorithm as the weight (probability)
distribution of each data point varies between 0 and 1. The
normalization method for transforming the confusion
matrix’s false-negative value to weight distribution is
mentioned in Table 5.

The first aspect of the empirical evaluation illustrated
above is to determine by using three sets of iterations 10, 20,
and 40 to measure the performance metrics; the false-
negative errors, misclassification cost, and mean misclassi-
fication cost are explained as follows: the misclassification
cost for each set of iterations (10, 20, and 40 used in the
experiment) of the AdaBoostWithCost algorithm is com-
puted from the following formula:

the misclassification cost = CM[C(0, 1) x false negatives
+ C(1,0) x false positives],
(7)

where CM is the confusion matrix and C (row_index,
col_index) is the cost of the cell.

The study uses iteration-wise computation of cumulative
misclassification cost:

(a) Cumulative misclassification cost at the end of the
10t jteration

(b) Cumulative misclassification cost at the end of the
20t jteration

(¢) Cumulative misclassification cost at the end of the
40™ jteration

The misclassification cost is determined by the following
formula: mean misclassification cost = cumulative misclas-
sification cost of all iterations over the number of a set of
iterations.

(a+b+c)

Mean misclassification cost = — (8)

where g, b, and ¢ are the above steps to calculate the
misclassification cost resulting from each set of iterations,
and there are three sets of iterations (10, 20, and 40) that have
been used for the experiment to compute the mean mis-
classification cost. The second aspect of the empirical
evaluation specified above is to visually represent the mis-
classification error rate for both training and test errors by
plotting graphs. One of the salient features of the investi-
gation is to manifest the change in training and test error
rate over each set of boosting rounds.

Computational Intelligence and Neuroscience

TABLE 7: Summarized comparison of measure indices.

. Performance . . .
Iteration rounds . AdaBoost classifier AdaBoostWithCost classifier
metrices
10 False-negative error 649 388
Misclassification cost 8422 7015
20 False-negative error 463 345
Misclassification cost 7036 6802
40 False-negative error 390 70
Misclassification cost 6521 5168
Mean misclassification cost 6676.3 6328.3
Error rate vs Number of Iterations
0.095
0.090
L
£ 0.085
s
5 0.080
0.075
50 100 150 200 250 300 350
Number of Iterations
AdaBoost
—— AdaBoostwithCost
FiGure 2: The total misclassification error rate of AdaBoostWithCost versus AdaBoost.
AdaBoost AdaBoostWithCost
Error rate vs number of iterations Error rate vs number of iterations
0.100 A - - 5 . - -
0.095 4
0.095 -
0.090 A 0.090 -
L 0.085 - s
g S 0.085 -
8 0.080 - 2
bl -
= =
0.075 4 0.080 +
0.070 0.075 1
0.065 A
T T T T T T T 0.070 T T T T T T T
50 100 150 200 250 300 350 50 100 150 200 250 300 350
Number of iterations Number of iterations
Training Training
—— Test —— Test

FiGure 3: Training and test error rates of AdaBoost versus AdaBoostWithCost.

5. Results and Discussion

5.1. The Evaluation of AdaBoostWithCost and AdaBoost.
The error summary of the experimental results focuses on
the three important performance metrics: the total mis-
classification error, false-negative error count, and training
and testing error rates. Upon careful inspection of the below
synopsis, it is obvious that the values of three performance
metrics consistently decrease over each set of boosting
rounds 10, 20, and 40, respectively. Specifically, the false-
negative error, which is a parameter of utmost importance in

this study, gets reduced significantly over each interval of
boosting rounds.

5.2. Interpretation of Empirical Results and Visualizations.
The empirical evaluation of the proposed Ada-
BoostWithCost algorithm and AdaBoost classifier has been
carried out in three crucial performance metrics considered
in the study context. The summarized error summary is
shown in Table 7. Table 7 manifests the significant difference
in experimental results between AdaBoostWithCost and

10

AdaBoost. The study observed that AdaBoostWithCost
significantly reduced the false-negative error counts com-
pared to the traditional boosting classifier AdaBoost. Hence,
the summarized results unfold the fact that Ada-
BoostWithCost prevails over AdaBoost in terms of false-
negative error reduction, which is the foremost influential
parameter in the context of the study.

Figure 2 demonstrates how misclassification error rates
of both classifiers monotonically decrease with the in-
creasing number of iterations. Nevertheless, the span of the
sharp falling edge shown as the dark blue line (indicating
AdaBoostWithCost) unveils the fact that the pace of error
rate reduction by AdaBoostWithCost is more expeditious
than that by traditional AdaBoost. Figure 2 also reveals
eventually that AdaBoostWithCost beats AdaBoost in the
race of error rate reduction. The below side-by-side graph
shows the decreasing pattern of training and test rates with
each set of iterations for both AdaBoost and Ada-
BoostWithCost classifiers. The above plots show how both
training and test error rates gradually get scaled down over
each iteration round. Moreover, the line graphs portray how
the training and test error rates monotonically decrease
when the number of iterations is increased. By careful in-
spection, the study discovers that the intermediate gap
between the two lines (training and test error rates) dem-
onstrates that training and test error rates reduction is much
expedited by AdaBoostWithCost compared to the tradi-
tional AdaBoost classifier. The study also concludes from
Figure 3 that the AdaBoostWithCost model does not tend to
overfit. However, there is a chance of slight overfitting in the
case of AdaBoost classier.

6. Conclusion

Cost-sensitive learning is not new in today’s machine
learning community. In recent years, it has gained tre-
mendous popularity because of the rising demand for critical
real-world cost-sensitive applications. Today, state-of-the-
art machine learning algorithms are not well designed with
financial goals, in the sense that the models miss including
the real financial costs during the training and evaluation
phases. In the context of telecom churn prediction, a model
evaluation based on a traditional measure such as accuracy
does not yield the best results when measured by the actual
financial cost. Failing to detect true churners severely im-
pacts telecom operators’ revenue rather than incorrectly
predicting a nonchurning customer as a churner. This paper
intended to deal with the challenges of class-dependent cost-
sensitive classification and mitigate the business-specific cost
sensitivity. This paper surveyed various cost-sensitive
boosting algorithms in today’s machine learning community
and summarized their comparison in Table 1. The study also
discussed the weight update equation of those cost-sensitive
classifiers while dealing with variable cost errors. Never-
theless, the study significantly contributed to class-depen-
dent cost-sensitive boosting classification in two distinct
aspects: First, the study devised a novel class-dependent
cost-sensitive boosting algorithm, AdaBoostWithCost,
which incorporates the cost function into the weight update

Computational Intelligence and Neuroscience

equation in a novel way. The inventive step of Ada-
BoostWithCost is in the weight update equation, which
incorporates the unique cost function. The Ada-
BoostWithCost classifier applied the misclassification cost in
the reweighting equation more specifically to the high-risk
errors (false-negative error in the telecom churn case) in-
stead of applying to all misclassification errors directly in
each iteration of boosting. Second, the study carried out an
in-depth inspection of experimental results summarized in
Table 7 and the interpretation of graph visualizations
(Figures 2 and 3). Finally, the study has drawn a significant
conclusion that the AdaBoostWithCost algorithm consis-
tently outperforms AdaBoost in all aspects of the study’s
objective.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] S. Mohanty and S. K. Routray, “CE-driven trends in global
communications: strategic sectors for economic growth and
development,” IEEE Consumer Electronics Magazine, vol. 6,
no. 1, pp. 61-65, 2016.

[2] A. Shukla, “Application of machine learning and statistics in
banking customer churn prediction,” in Proceedings of the
2021 8th International Conference on Smart Computing and
Communications (ICSCC), pp. 37-41, 1IEEE, Kochi, Kerala,
India, July 2021.

[3] N.N.Y.Vo,S. Liu, X. Li, and G. Xu, “Leveraging unstructured
call log data for customer churn prediction,” Knowledge-
Based Systems, vol. 212, Article ID 106586, 2021.

[4] 1. V. Pustokhina, D. A. Pustokhin, A. Rh et al., “Dynamic
customer churn prediction strategy for business intelligence
using text analytics with evolutionary optimization algo-
rithms,” Information Processing & Management, vol. 58, no. 6,
Article ID 102706, 2021.

[5] T. W. Cenggoro, R. A. Wirastari, E. Rudianto, M. I. Mohadi,
D. Ratj, and B. Pardamean, “Deep learning as a vector em-
bedding model for customer churn,” Procedia Computer
Science, vol. 179, pp. 624-631, 2021.

[6] H. K. Thakkar, P. K. Sahoo, and P. Mohanty, “DOFM: domain
feature miner for robust extractive summarization,” Infor-
mation Processing ¢ Management, vol. 58, no. 3, Article ID
102474, 2021.

[7] T. J. Gerpott, W. Rams, and A. Schindler, “Customer re-
tention, loyalty, and satisfaction in the German mobile cel-
lular telecommunications market,” Telecommunications
Policy, vol. 25, no. 4, pp. 249-269, 2001.

[8] X. Chen, E. Song, and G. Ma, “An adaptive cost-sensitive
classifier,” in Proceedings of the 2010 The 2nd International
Conference on Computer and Automation Engineering
(ICCAE), pp. 699-701, Singapore, February 2010.

[9] M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and
C. Brunk, “Reducing misclassification costs,” Machine
Learning Proceedings, , pp. 217-225, Morgan Kaufmann, 1994.

Computational Intelligence and Neuroscience

[10] P. Viola and M. Jones, “Fast and robust classification using
asymmetric adaboost and a detector cascade,” in Proceedings
of the Advances in Neural Information Processing Systems,
pp- 1311-1318, Vancouver, Canada, January 2002.

A. Vlahou, J. O. Schorge, B. W. Gregory, and R. L. Coleman,

“Diagnosis of ovarian cancer using decision tree classification

of mass spectral data,” Journal of Biomedicine and Biotech-

nology, vol. 2003, no. 5, pp. 308-314, 2003.

P. Chan and S. Stolfo, “Toward scalable learning with non-

uniform distributions: effects and a multi-classifier approach,”

in Proceedings of the Fourth International Conference on

Knowledge Discovery and Data Mining, Xi'an, China, July

1998.

S. Viaene, R. Derrig, and G. Dedene, “Cost-sensitive learning

and decision making for Massachusetts pip claim fraud data,”

International Journal of Intelligent Systems, vol. 19, no. 12,

pp. 1997-1215, 2004.

Geoconnexion, Industry Customer Churn Rate Increases by

15 Percent. https://www.geoconnexion.com/news/industry-

customer-churn-rate-increases-15-percent/.

[15] Y. Wu, “Cost sensitive active learning based on self-training,”

in Proceedings of the 2014 IEEE International Conference on

Progress in Informatics and Computing, pp. 42-45, Shanghai,

China, May 2014.

T. Nesbitt, Cost-sensitive Tree-Stacking: Learning with Vari-

able Prediction Error Costs, University of California, Los

Angeles, 2010.

[17] J. Nam, E. L. Mencia, H. J. Kim, and J. Furnkranz, “Maxi-
mizing subset accuracy with recurrent neural networks in
multi-label classification,” in Proceedings of the 3Ist Inter-
national Conference on Neural Information Processing Sys-
tems, pp. 5419-5429, Long Beach, CA, USA, July 2017.

[18] K. Coussement, “Improving customer retention management
through cost-sensitive learning,” European Journal of Mar-
keting, vol. 48, no. 3-4, pp. 477-495, 2014.

[19] S. Mishra, H. K. Thakkar, P. K. Mallick, P. Tiwari, and
A. Alamri, “A sustainable IoHT based computationally in-
telligent healthcare monitoring system for lung cancer risk
detection,” Sustainable Cities and Society, vol. 72, Article ID
103079, 2021.

[20] H. K. Thakkar, C. K. Dehury, and P. K. Sahoo, “Muvine:
multi-stage virtual network embedding in cloud data centers
using reinforcement learning-based predictions,” IEEE
Journal on Selected Areas in Communications, vol. 38, no. 6,
pp. 1058-1074, 2020.

[21] H. K. Thakkar, W. W. Liao, C. Y. Wu, Y. W. Hsieh, and
T. H. Lee, “Predicting clinically significant motor function
improvement after contemporary task-oriented interventions
using machine learning approaches,” Journal of Neuro En-
gineering and Rehabilitation, vol. 17, no. 1, pp. 131-210, 2020.

[22] H. K. Thakkar, P. K. Sahoo, and B. Veeravalli, “Renda: re-

source and network aware data placement algorithm for

periodic workloads in cloud,” IEEE Transactions on Parallel

and Distributed Systems, vol. 32, no. 12, pp. 2906-2920, 2021.

H. K. Tripathy, S. Mishra, H. K. Thakkar, and D. Rai, “Care: a

collision-aware mobile robot navigation in grid environment

using improved breadth first search,” Computers & Electrical

Engineering, vol. 94, Article ID 107327, 2021.

[24] H. Masnadi-Shirazi and N. Vasconcelos, “Cost-sensitive

boosting,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 33, no. 2, pp. 294-309, 2010.

Y. Yi Zhang and W. N. Street, “Bagging with adaptive costs,”

IEEE Transactions on Knowledge and Data Engineering,

vol. 20, no. 5, pp. 577-588, 2008.

(11

(12

(13

[14

[16

(23

(25

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

11

S. Lomax and S. Vadera, “A survey of cost-sensitive decision
tree induction algorithms,” ACM Computing Surveys, vol. 45,
no. 2, pp. 1-35, 2013.

A. Desai, K. Jadav, and S. Chaudhary, “An empirical evalu-
ation of costboost extensions for cost-sensitive classification,”
in Proceedings of the 8th Annual ACM India Conference,
pp- 73-77, Ghaziabad, India, October 2015.

R. E. Schapire, “The strength of weak learnability,” Machine
Learning, vol. 5, no. 2, pp. 197-227, 1990.

K. M. Ting and Z. Zheng, “Boosting cost-sensitive trees. In: S.
Arikawa, H. Motoda, eds, Discovey Science DS 1998,” Lecture
Notes in Computer Science, vol. 1532, Springer, Berlin, Hei-
delberg, 1998.

W. Fan, S. Stolfo, J. Zhang, and P. Chan, “Adacost: mis-
classification cost-sensitive boosting,” International Confer-
ence on Machine Learning, vol. 99pp. 97-105, New York, NY,
USA, July 1999.

K. Ting and Z. Zheng, Boosting Trees for Cost-Sensitive
Classifications, Springer, Germany, Berlin, 2003.

A. Desai and P. M. Jadav, “An empirical evaluation of ad boost
extensions for cost-sensitive classification,” International
Journal of Computer Application, vol. 44, no. 13, pp. 34-41,
2012.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The WEKA data mining software,” ACM
SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10-18,
2009.

P. Domingos, “Metacost: a general method for making
classifiers cost-sensitive,” in Proceedings of the Fifth ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 155-164, San Diego, CA, USA, August
1999.

Kaggle, “The telecom churn dataset,” available: https://www.
kaggle.com/anish9167473766/churndata.

L. Zhang and D. Zhang, “Evolutionary cost-sensitive extreme
learning machine,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 28, no. 12, pp. 3045-3060, 2016.
M. Kull, T. S. Filho, and P. Flach, “Beyond sigmoids: how to
obtain well-calibrated probabilities from binary classifiers
with beta calibration,” Electronic Journal of Statistics, vol. 11,
no. 2, pp. 5052-5080, 2017.

https://www.geoconnexion.com/news/industry-customer-churn-rate-increases-15-percent/
https://www.geoconnexion.com/news/industry-customer-churn-rate-increases-15-percent/
https://www.kaggle.com/anish9167473766/churndata
https://www.kaggle.com/anish9167473766/churndata

