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Novel coronavirus 2019 has created a pandemic and was �rst reported in December 2019. It has had very adverse
consequences on people’s daily life, healthcare, and the world’s economy as well. According to the World Health Or-
ganization’s most recent statistics, COVID-19 has become a worldwide pandemic, and the number of infected persons and
fatalities growing at an alarming rate. It is highly required to have an e�ective system to early detect the COVID-19 patients
to curb the further spreading of the virus from the a�ected person. �erefore, to early identify positive cases in patients and
to support radiologists in the automatic diagnosis of COVID-19 from X-ray images, a novel method PCA-IELM is
proposed based on principal component analysis (PCA) and incremental extreme learning machine. �e suggested
method’s key addition is that it considers the bene�ts of PCA and the incremental extreme learning machine. Further, our
strategy PCA-IELM reduces the input dimension by extracting the most important information from an image. Con-
sequently, the technique can e�ectively increase the COVID-19 patient prediction performance. In addition to these, PCA-
IELM has a faster training speed than a multi-layer neural network. �e proposed approach was tested on a COVID-19
patient’s chest X-ray image dataset. �e experimental results indicate that the proposed approach PCA-IELM outperforms
PCA-SVM and PCA-ELM in terms of accuracy (98.11%), precision (96.11%), recall (97.50%), F1-score (98.50%), etc., and
training speed.

1. Introduction

�eWorld Health Organization (WHO) identi�ed COVID-
19 (virus known as SARS-CoV-2) as a worldwide pandemic
in February 2020. �is triggered never expected counter-
measures, such as the closure of cities, districts, and foreign
travel. Coronaviruses (CoV) are death-defying viruses that
may cause severe acute respiratory syndrome (SARS-CoV).
Various researchers and institutions have attempted an
e�ective solution from di�erent possible diminutions in
encountering the COVID-19 pandemic. Multimedia dataset
(audio, picture, video, etc.) is booming in a massive amount

of text information as civilization enters the information era.
Image classi�cation has become more essential as the need
for real-world vision systems grows [1] and has recently
attained a lot of attention from many researchers. It has
evolved into one of the most essential operations, serving as
a requirement for all other image processing operations.
Image classi�cation using learning algorithms is a special
open issue in image processing that has sparked a lot of
interest due to its promising applications. In general, an
image categorization system has two primary processes. �e
�rst stage is to create an e�ective image representation that
has enough information about the image to allow for
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classification further. 'e second step is to use a good
classifier to classify the new image.'us, there are two major
challenges to consider when improving picture classification
performance: dimensionality reduction and classifier. Apart
from computer vision and image operation, one of the most
important stages in image classification is feature extraction
which determines the invariant characteristic of images
when using computer devices to assess and deal with image
data.

In a practical scenario, feature extraction has been ap-
plied in many fields like historic structures, medical image
processing, remote image sensing, etc. 'e image’s essential
lower-level qualities include color, texture, and shape. 'e
color feature has globality, which may be retrieved using
tools such as the color histogram, color set, and color
moment. It might simply explain the proportions of different
colors across the image. 'e useful characteristic is color for
identifying photos that are difficult to distinguish auto-
matically, and the spatial variation should be ignored.
However, it is unable to explain the image’s local distri-
bution as well as the description of the distinct colors’ spatial
positions. Image classification with feature extraction using
incremental extreme learning machines is proposed in this
paper. Firstly, on the COVID-19 dataset of chest X-ray
images, features were extracted from an image using PCA.
Eventually, the SVM, ELM, and IELM are applied to image
classification [2] once the dimension is reduced by PCA
method. Different metrics were employed to achieve the
robust evaluation: classification accuracy, recall, precision,
F-score, true-negative rate (TNR), true-positive rate (TPR),
AUC, G-mean, precision-recall curve, and receiver oper-
ating characteristics (ROC) curve.

'e paper is arranged in the following sequence:
several related approaches have been discussed in Section
2. 'e suggested technique is described and critiqued in
Section 3. Section 4 contains a description of PCA and
feature extraction techniques. Subsections 4.1–4.6 con-
tain different algorithmic approaches that are compared
with the proposed method. In Section 5, the proposed
method and algorithm have been discussed. Section 6
describes the different evaluation criteria that are used.
Section 7 discusses the experimental setup that has been
used. Section 8 describes the dataset. Finally, Section 9
discusses the experimental results, and the research is
concluded.

2. Related Works

'e content of image features comprises color, texture, and
other visual elements. 'e extracted content from visual
features is the main component for analyzing the image. In
this segment, some of the earlier work based on PCA and
other feature extraction techniques along with different
classification techniques has been discussed.

Sun et al. [3] suggested an image classification system
based on multi-view depth characteristics and principal
component analysis. In this method, depth features are
extracted from the image, and from RGB depth, characters
are independently extracted and PCA is applied to reduce

dimension. 'e Scene15 dataset, Caltech256 dataset, and
MIT Indoor datasets are used in the evaluation process.
Eventually, the SVM [4] is used to classify images. 'e
method’s performance is demonstrated by the experimental
results.

Mustaqeem and Saqib [5] suggested a hybrid method
that is based on PCA and SVM. PROMISE (KC1: 2109
observations, CM1: 344 observations) data from NASA’s
directory have been used for the experiment. 'e dataset
was divided into two parts: training (KC1: 1476
observations, CM1: 240 observations) and testing (KC1:
633 observations, CM1: 104 observations). Principal
components of the features are extracted by PCA, and it
helps in dimensionality reduction and minimizing time
complexity.

In addition to this, SVM is used for further classification,
and for hyperparameter tuning, GridSearchCV is used.
From this, precision, recall, F-measure, and accuracy for
KC1 dataset analysis are 86.8%, 99.6%, 92.8%, and 86.6%,
respectively, and for CM1 dataset analysis, precision, recall,
F-measure, and accuracy are 96.1%, 99.0%, 97.5%, and
95.2%, respectively. Similarly, Castaño et al. [6] provide a
deterministic approach for starting ELM training based on
hidden node parameters with activation function. 'e
hidden node parameters are calculated with the help of
Moore–Penrose generalized inverse, whereas the output
node parameters are recovered through principal compo-
nent analysis. Experimental validation with fifteen well-
known datasets was used to validate the algorithm. 'e
Bonferroni–Dunn, Nemenyi, and Friedman tests were used
to compare the results obtained. In comparison with later
ELM advancements, this technique significantly reduces
computing costs and outperforms them.

Mateen et al. [7] suggested VGG-19 DNN-based DR
model with better performance than AlexNet and the spatial
invariant feature transform (SIFT) in terms of classification
accuracy and processing time. For FC7-SVD, FC7-PCA,
FC8-SVD, and FC8-PCA, respectively, classification accu-
racies are 98.34%, 92.2%, 98.13%, and 97.96% by using SVD
and PCA feature selection with fully connected layers.

Zhao et al. [8] suggested extreme learning machines with
no iteration along with supervised samples are used for
model building as a class incremental extreme learning
machine.'e algorithm is shown to be stable and has almost
equivalent accuracy of batch learning. Similarly, Huang and
Chen [9] proposed an algorithm that analytically calculates
hidden nodes’ output after randomly producing and adding
computational nodes to the hidden layer as a convex in-
cremental extreme learning machine. Using a convex op-
timization, the existing hidden node output is calculated
again. 'is can converge faster while maintaining efficiency
and simplicity.

Zhu et al. [10] proposed a principal component analysis
(PCA)-based categorization system with kernel-based ex-
treme learning machine (KELM). Based on the resultant
output, this model achieves better accuracy than SVM and
other traditional classification methods. For the classifica-
tion of HSIs, Kang et al. [11] developed the PCA-EPF ex-
traction approach. In this research work, they have proposed
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the combination of PCA and standard edge preserving fil-
tering (EPF)-based feature extraction. 'e proposed method
achieves better classification accuracy with limited training
samples. Similarly, Perales-González et al. [12] introduced a
new ELM architecture based on the negative correlation
learning framework dubbed negative correlation hidden
layer ELM (NCHL-ELM). 'is model shows better accuracy
when compared with other classifications by integrating a
parameter into each node in the original ELM hidden layer.

Based on fractal dimension technology, Li et al. [13]
suggested an enhanced ELM algorithm (F-ELM). By re-
ducing the dimension of the hidden layer, the model im-
proves in training speed. From the experimental results, it
can be concluded that as compared to the standard ELM
technique, the suggested algorithm significantly reduces
computing time while also improving inversion accuracy
and algorithm stability.

Because of the complexity of the data models, deep
learning is incredibly pricey to train. Furthermore, deep
learning necessitates the use of high-priced GPUs and
hundreds of computer machines. 'ere is no simple rule
that can help you choose the best deep learning tools since
it necessitates the understanding of topology, training
technique, and other characteristics, whereas the simple
ELM is a one-shot computation with a rapid learning pace.
But the biggest advantage in IELM is the ability to ran-
domly increase hidden nodes incrementally and analyti-
cally fix the output weights. 'e output error of the IELM
rapidly diminishes as the number of hidden neurons
increases.

In our method, SVM, ELM, and IELM based on the PCA
technique are employed for image classification [14] for
COVID-19 patient detection using the COVID-19 chest
X-ray dataset. A summary of the most recent and related
research works is described in Table 1 [3, 5–13].

3. Proposed Methodology

'e back propagation (BP) approach is commonly used to
train multi-layer perceptron (MLP). Various algorithms
can be used to train this typical architecture. Gradients
and heuristics are two types of algorithms that are
commonly used. 'ese algorithms have a few things in
common: they have a hard time dealing with enormous
amounts of data, and they have a slow convergence rate in
these situations. Huang et al. (Huang et al.) [15] intro-
duced the extreme learning machine as a solution to this
problem.

'e typical computing time required to train an SLFN
using gradient-based techniques is reduced by this algo-
rithm. 'e ELM, on the other hand, has several flaws. 'e
randomly generated input weights and bias for ELM [16]
result in some network instability. In case if there are
outliners in the training data, then the hidden layer’s output
matrix will have ill-conditioned problems and it results in
low generalization performance and lower forecasting ac-
curacy. 'ere are two types of ELM called fixed ELM and

IELM [17]. In comparison with the ELM, the output error of
the IELM rapidly diminishes and it tends toward zero with
the growth in number of hidden neurons (Huang et al.) [15].
In online continuous learning regression and classification
problem, this approach is very prominent (Xu and Wang;
Zhang et al.) [18, 19].

A trained classifier can be obtained after training the
classifiers with a sufficient amount of image data and then
fed into the trained classifier for observation and analysis.

4. Feature Extraction

A single feature cannot describe the image feature and
quality properly. 'e image classification will not yield
acceptable results unless distinguishing features are de-
scribed. 'ree images corresponding to three viewpoints are
placed on each RGB color image. Our method uses PCA to
extract the image’s important information and minimize the
input dimension [20–23].

4.1. Classification of Images and PCA Feature Extraction.
Extracting useful features from an image is a prominent
task in image classification, and principal component
analysis (PCA) is used for this purpose. PCA uses or-
thogonal transformation and converts variables to fewer
independent components than the original variables. 'e
output data with this approach will not lose important data
features, and PCA loadings can be used for the identifi-
cation of important data. A multivariate statistical analysis
approach is used by PCA, which can perform linear
transformation of numerous variables to pick a few key
variables. PCA transforms data using eigenvectors from
N-dimension to M-dimension where M <N. 'e new
features are a linear mixture of the old ones, allowing them
to capture the data’s intrinsic unpredictability with little
information loss. Figure 1 reveals the steps of the proposed
model.

Suppose that the research object has p indexes, these
indexes are regarded as p random variables and represented
as X1, X2, , Xp. With this, new indexes are created by
combining p random variable F1, F2, ..., Fp, which can mirror
the data from the original indexes [24]. 'e independent
replacement indexes reflect the original indexes’ essential
information.

F1 � a11X1 + a12X2 + · · · + a1pXp,

F2 � a21X1 + a22X2 + · · · + a2pXp,

. . . . . . . . . ,

Fp � ap1X1 + ap2X2 + · · · + appXp.

(1)

'e following are the PCA stages in detail:

(1) Data standardization: 'e following calculation
formula is used to standardize the matrix X:
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yij �
xij − xj�������
Var xj( )
√ , (2)

where X� {xij}, Y� {yij}, where i� 1, 2, ..., n and j� 1,
2, ..., p,

x �
1
n
∑
n

i�1
xij,

var(xj) �
1

n − 1
∑
n

i�1
x€ij − xj( )

2
.

(3)

(2) �e following formula is used to solve the correlation
coe§cient matrix R:

R �
YTY

n − 1
. (4)

(3) �e following formula is used to calculate the ei-
genvalue and eigenvector of the coe§cient matrix:

R − λIP
∣∣∣∣

∣∣∣∣ � 0. (5)

�ecalculated eigenvector is ai� (ai1, ai2, ... , aip), where
i� 1, 2, 3, 4, . . .. . .. . .. . .., p, and the eigenvalue is λ i
(i� 1, 2, ..., p). To get a collection of main components
Fi, the eigenvalues are sorted in descending order:

Fi � ai1Y1 + ai2Y2 + · · · + aipYp. (6)

(4) �e following are the main factors to consider kth
primary component contribution rate and expressed as

λk ∑
P

j�1
λj 

−1

. (7)

Table 1: Similar work summarization.

SN References Applied method Problem approached Resulted outcome Impediments

1 Sun et al. [3] PCA of multi-view deep
representation Image classi�cation Comparison result from

di�erent databases
Limited classi�ers are

compared

2 Mustaqeem and
Saqib [5]

Principal component-based
support vector machine Software defect detection Better accuracy than other

methods

No probabilistic
explanation for SVM

classi�cation

3 Castaño et al. [6]
Pruned ELM approach based
on principal component

analysis
Classi�cation ELM model based on PCA Limited classi�ers are

compared

4 Mateen et al. [7] VGG-19 architecture with
SVD and PCA

Fundus image
classi�cation

Better accuracy than other
methods

Limited to nonimbalance
data

5 Zhao et al. [8] IELM Activity recognition
Stable and similar accuracy

to the batch learning
method

Limited to batch learning

6 Huang et al. [9] Convex incremental extreme
learning machine

Convergence rate of
IELM Faster convergence rate Limited classi�ers are

compared

7 Zhu et al. [10] PCA and kernel-based ELM Side-scan sonar image
classi�cation

Better classi�cation
accuracy with stable model

Classify underwater targets
only

8 Kang et al. [11] PCA-based edge-preserving
features (EPF)

Hyperspectral image
classi�cation Better accuracy than SVM Parameters of EPFs are

given manually

9
Perales-

González et al.
[12]

Negative correlation hidden
layer for the ELM

Regression and
classi�cation Better accuracy Variety in the transformed

feature space

10 Li et al. [13] Improved ELM
Transient

electromagnetic
nonlinear inversion

Improves the inversion
accuracy and stability

Less implementation in
other industrial domains

Chest X-Ray Image Dataset

Pre-processing and scaling

PCA-based Features Extraction

Dimensionality Reduction

Training Classification Model (PCA-IELM)

Final
Dataset

Classification results

Yes

No
Is Criteria Satisfied?

Classification results

Figure 1: Flowchart of the proposed model (PCA-IELM).
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'e rate of the first k primary components’ cumulative
contribution is expressed as



k

j�1
λj 

P

j�1
λj

⎛⎝ ⎞⎠

−1

. (8)

'e first principal component, F1, is the one with the
highest variance out of all the combinations of Y1, Y2, ..., Yp;
the second principal component F2 is one with the highest
variance among all the combinations of Y1, Y2, ..., Yp, and
they have no relation with F1.

4.2. SVM. Several algorithms have been implemented and
suggested in machine learning to solve the classification
problem. Among the different classification problems, support
vector machine (SVM) is one of the supervised algorithms in
machine learning with [5, 25] the advantages as follows:

(i) It employs L2 regularization to overcome overfitting
problems.

(ii) Even with minimal data, provide suitable findings.
(iii) Different kernel functions to match the features’

complicated functions and interactions.
(iv) Manages the data nonlinearity.
(v) 'e model is stable thanks to the hyper-plane

splitting rule.
(vi) Analyzes the data with a high degree of

dimensionality.

Instead of focusing on decreasing prediction error, SVM
focuses more on optimizing classification decision bound-
aries, which is why the hyper-plane is used to separate
classes. If the data dimension is n and the hyper-plane is a
(n− 1) vector function, then it can be represented mathe-
matically as follows:

y � w0x0 + w1x1 + · · · + wn−1xn−1 + b. (9)

It also signifies, in a broader sense,

y � w
T
x + b, (10)

where x denotes the input feature vector,w is the weight vector,
and b is the bias. By adjustingw and b, several hyper-planes can
be created, but the hyper-plane with the best margin will be
chosen. 'e largest feasible perpendicular distance between
each class and the hyper-plane is defined as ideal margin. 'e
cost function or objective function is minimized to get the best
margin. 'e cost function may be written as follows:

J(w) �
1
2

‖w‖
2

+
1
n



n

i�0
max 0, 1 − yi ∗ w

T
x + b   , (11)

Even if the predictions are right and the data are cor-
rectly categorized by hypothesis, SMV utilized to penalize
any yi that are close to the borders (0 < yi < 1).'emain goal
is to figure out optimal w value to minimize J(w), so dif-
ferentiating Eq. 11 concerning w, we get the gradient of a
cost function as follows:

∇wJ(w) �
zJ(w)

zw
,

�
1
n



n

i�0

w, if max(0, 1 − yi ∗ w
T
x + b  ,

w − yixi , otherwise.

⎧⎪⎨

⎪⎩

(12)

As far as we have calculated ∇wJ(w), weights of w can be
updated as

Wnew � Wold − α[J(w)]. (13)

We go through the procedure again and again until
smallest J(w) discovered. Because data are rarely linearly
separable, we must sketch a decision boundary between the
classes rather than using a hyper-plane to separate them. We
will need to convert (13) into a decision boundary to deal
with the dataset’s nonlinearity:

y � w · ϕ(x) + b. (14)

ϕ(x) is the kernel function in (14).'ere are various types of
kernel functions that may be used to create SVM, such as
linear, polynomial, and exponential, but we will use the
radial basis function in this model (RBF). Distance pa-
rameter that is used is Euclidean distance, and the
smoothness of the borders is defined by the parameter σ.

ϕ(x) � exp −
x − x

2

2σ2
 , (15)

where x − x2 is the square of Euclidean distance between any
single observation x and mean of the training sample x.

4.3. PCA-SVM. 'e motive of the support vector machine
(SVM) [3] is to find the best possible hyper-plane that will
separate two planes on the training set. 'e coefficient of the
hyper-plane is w that we have to project. It uses structural
risk minimization theory to build the best hyper-plane
segmentation in the feature space and a learning editor to
achieve global optimization.

Assume the training data, (x1, y1),
(x2, y2), . . . , (xn, yn) ∈ Rn, y ∈ −1, 1{ }.

'is could be projected into a hyper-plane:

(ω · x) + b � 0,ω ∈ R
n
b ∈ R. (16)

For the normalization,

yi ω · xi(  + b≥ 1, i � 1, 2, . . . , l. (17)

'e classification of the interval is equal to 2/ω, when the
maximum interval is equal to the minimum ω2.

Before classifying the data through SVM, the necessary
features from the image data need to be extracted. 'e high-
dimensional data can be converted to the low-dimensional
data with this approach. For this, the PCA method as a
feature extraction through convergence matrix and eigen-
value proportion calculation is used. PCA-based SVM is the
method that is used for classification and regression. After
that, SVM is used to classify low-dimensional data. Figure 2

Computational Intelligence and Neuroscience 5



depicts the working ¯ow of PCA-SVM. Once the parameter
optimization is done, the model is ready to predict
categorization.

4.4. Extreme LearningMachine (ELM). An extreme learning
machine is a single hidden layer feedforward network that
can be used for both classi�cation and regression. In ELM
[26], weights between the input layer, hidden layer, and
biases are randomly generated. �e output weights are
calculated using the generalized Moore–Penrose pseudo-
inverse. ELM performs faster than other feedforward net-
works [27] and outperforms other iterative methods. Fig-
ure 3 shows the basic network architecture of ELM.

Suppose [xi, ti] denotes N training samples, wherein
training instances i ϵ 1, 2, 3, . . .. . .. . .. . ., N and xi� [xi1,
xi2,. . ., xim]T ϵ Rm denotes ith training instance and its
desired output ti� [ti1, ti2,. . ., tiC ]T ϵ RC.

Let the number of input features and number of neurons
be equal and represented bym; similarly, let L be the number
of hidden neurons. �e number of output neurons and
number of classes are equal and denoted by c. Figure 4 [24]
shows the ¯owchart of the principal component analysis [28].
�e input weight matrix is represented by U� [u1, u2,. . .,
uj,. . .uL]T ∈ RL×m, and the hidden neuron bias is represented
by b� [b1, b2,. . ., bj,. . .bL]T ∈ RL. uj� [uj1, uj2,. . .ujm] are the
connecting weights between the jth hidden neuron with the
input neurons. Bias of the jth hidden neuron is bj, and jth
hidden layer output for ith instance is represented by

hij � g ujxi + bj( ). (18)

Here, activation function is represented by g. For all the
training instances hidden layer output is represented by H
and can be represented by

H �

h11 h12 h1L

. . . . . . . . .

hj1 hj2 hjL

. . . . . . . . .

hN1 hN2 hNL





. (19)

Between the hidden layer and the output layer, the
output weight β can be computed using Eq. (20). Linear
activation function is used by the output layer in this
computation.

β � H†T. (20)

Here,

Input: Given N observations along with the class labels (xi, ti), xi ∈ Rm, ti ∈ RC.
Output: SVM classi�cation model.

(1) Procedure SVM.
(2) Initialize weights W and bias b with any arbitrary number.
(3) Feature optimization.
(4) TrainDataSet, TestingDataSets�Data.Split(Ratio).
(5) De�ne y.
(6) De�ne f(y).
(7) De�ne J(W).
(8) Calculate ∇wJ(w).
(9) Repeat for minimum J (W):

Update W.
Call steps 6–8.
End.

(10) Calculate accuracy.
(11) Return accuracy.
(12) End procedure.

Input: Given N observations along with the class labels (xi, ti), xi ∈ Rm, ti ∈ RC.
Output: SVM classi�cation model.

ALGORITHM 1: SVM algorithm.

PCA

SVM

Training data

EVP based attributes
selection

Hyperparameter
tuning Training SVM

No

Yes

Finished
model?

Claculate Accuracy

Eigen value proportion
(EVP) calculation

Eign value
calculation

High
dimensionality Covariance matrix

Figure 2: Flowchart of PCA-SVM.
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β � βT1 , . . . , β
T
j , . . . , β

T
L[ ]
T

L×C. (21)

�e vector βj� [βj1,. . ., βjk,. . ., βjC]T, where j� (1, 2, 3,
. . .... . ., L) represents the connecting weights between the jth
hidden neuron and the kth output neuron. �e predicted
outcome of all the output neurons for all training instances is
represented as

f(x) � Hβ. (22)

Here, the output function is f(x)� [fk(x),. . ., fC(x)]. From
Eq. 23, label for class x can be predicted.

label(x) � argmaxfk(x), k � 1, . . . , C. (23)

4.5. PCA-ELM : Classi�cation Method Based on PCA-ELM.
In the PCA technique [6], variables are �rst scaled. �e
di�erent steps of PCA that has been applied in PCA-ELM are

(1) Scaling of trained data.
(2) Covariance matrix evaluation.
(3) Eigenvalues for the covariance matrix along with

eigenvectors are de�ned.
(4) Evaluating the principal components.

�e output from PCA is given as an input to ELM [29].
�e process of PCA-ELM [30] is shown in Figure 5.

Input: Given N observations along with the class labels (xi, ti), xi ∈ Rm, ∈ RC.
Output: PCA-SVM model for classi�cation.

(1) Procedure PCA-SVM
(2) Identify the relationship among features through a covariance matrix.
(3) �rough the linear transformation or eigendecomposition of the covariance matrix, we get eigenvectors and eigenvalues.
(4) Transform our data using eigenvectors into principal components.
(5) Quantify the importance of these relationships using eigenvalues and keep the important principal components.
(6) Data extracted from PCA and will be given as input.
(7) Initialize weights W and bias b with any arbitrary number.
(8) Feature optimization.
(9) TrainDataSet, TestingDataSets�Data.Split(Ratio).
(10) De�ne y.
(11) De�ne f(y).
(12) De�ne J(W).
(13) Calculate ∇wJ(w).
(14) Repeat for minimum J(W):

Update W.
Call steps 10–13.
End.

(15) Calculate accuracy.
(16) Return accuracy.
(17) End procedure.

ALGORITHM 2: PCA-SVM algorithm.

1
Xi1

Xim

Input Neurons Hidden Output

U11

b1

β11

Y1

YC

βc

βc

β1
bL

UL

UL
m

U1

1
1

L
C

Figure 3: Network architecture of ELM.

Original Data A (M×N)

Data preprocessing

Data Correlation Coefficient
matrix

Calculate eigen value of the matrix and
characteristics equations

Transform dataset into principal
components A' (M×N)

Data Normalization

Figure 4: Flowchart of the principal component analysis [24].

Computational Intelligence and Neuroscience 7



4.6. ELM. Compared to the other neural networks, the
ELM learns faster as there is no need to adjust hidden
nodes and provides better generalization capability. But
there are various ¯aws with the ELM. Randomly generated
bias and input weights in ELM network [31] are results in
some network instability. Training data outliers from the
hidden layer’s output matrix result in poor network
generalization performance. In comparison to the ELM,
the output error of the IELM rapidly diminishes and
resolves the issue of very small weights of output and
validity of hidden layer neurons. In online continuous
learning, it is appropriate for regression and classi�cation
tasks.

�e IELM [32] network model structure is shown in
Figure 6. Suppose the size of input, hidden nodes, and
outputs are m, l, and n, respectively, and ωi is the input
weight matrix with l ×m dimension of the current hidden
layer neuron and uniformly distributed between random
numbers [−1, 1]. �e bias of the ith hidden node bi is a
random number between [−1, 1] uniformly distributed, the

activation function for the hidden layer neuron is sigmoid
function given by (24), and output weight matrix β is with
l × n dimension.

�e hidden node activation function (sigmoid) is given by

g(x) �
1

1 + e−x
, (24)

where x is the input matrix.

Input: Given N observations along with the class labels (xi, ti), xi ∈ Rm, ∈ RC.
Output: ELM classi�cation model.

(1) ELM procedure.
(2) Hidden biases b and input weights U randomly selected.
(3) From (19), H as hidden layer output is de�ned.
(4) From (20), β is de�ned as the weights between the hidden layer and the output layer.
(5) Return β.

ALGORITHM 3: ELM algorithm.

Normal Covid PCA ELM

Figure 5: Process of PCA-ELM.

Input: Given N observations along with the class labels (xi, ti), xi ∈ Rm, ∈ RC.
Output: PCA-ELM model for classi�cation.

(1) Procedure PCA-ELM.
(2) Identify the relationship among features through a covariance matrix.
(3) �rough the linear transformation or eigendecomposition of the covariance matrix, we get eigenvectors and eigenvalues.
(4) Transform our data using eigenvectors into principal components.
(5) Quantify the importance of these relationships using eigenvalues and keep the important principal components.
(6) Extracted principal components given as the input data.
(7) Hidden biases b and input weights U randomly selected.
(8) From (19), hidden layer output H can be computed.
(9) From (20), weights between the hidden and the output layer computed as β.
(10) Return β.
(11) End procedure.

ALGORITHM 4: PCA-ELM algorithm.

X1

y1

yn

O1

Oi

Ol

βi
(ωi, bi)

Xm

Figure 6: �e structure of IELM.
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A matrix X is of m × N dimension, and it represents N
dataset input. Y is a n×N matrix that represents the output
where N datasets for a training set {(X, Y)}. Training steps of
IELM algorithm are described as follows:

Step 1. In the initialization phase, suppose l � 0 and L is the
maximum number of the hidden nodes. Output Y is defined
in terms of the initial value of the residuals E (difference
between target and actual error) is set to be the and ε is the
expected training accuracy.

Step 2. Training phase, while l< L and E > ε

(1) Hidden nodes l will be increased by 1, i.e.,

l � l + 1. (25)

(2) Hidden layer neuron Ol is evaluated randomly from
input weights ωl and bias bl.

(3) Output of the activation function g (x′) is calculated
for the node Ol (bl needs to be extended into a l × N

vector bl).

x′ � ωlx + bl. (26)

(4) Hidden layer neuron output vector H can be cal-
culated from

H � g x′( . (27)

(5) Output weight for Ol can be evaluated from

β �
E · (H)

T

H · (H)
T

. (28)

(6) After increasing the new hidden node, residual error
is calculated:

E′ � E − βH. (29)

'e network error rate can be reduced by the output
weight Ol. All these steps will iteratively work till the re-
sidual error becomes smaller than ε. 'e training process
restarts through the determination of the random input
weight ωl and the bias bl. Whether the trained network has
fulfilled the desirable result or not can be determined from
(X′, Y′)  set.

5. Proposed PCA-Based Incremental
ELM (PCA-IELM)

An orthogonal transformation is used to extract meaningful
characteristics from data in PCA [33]. PCAmay also be used
to minimize the dimensions of a large data collection.
Principal components from COVID-19 X-ray images are
extracted using PCA and given as input to IELM which
gradually adds concealed nodes produced at random. A
conventional SLFNs function with n hidden nodes can be
expressed as

fn(x) � 
n

i�1
βigi(x), x ∈ R

d
, βi ∈ R. (30)

where gi(x) � g(ai, bi, x) denotes the output of the ith
hidden node:gi(x) � g(ai.x + bi) (for additive nodes) or
gi(x) � g(bix − ai).

'e ith hidden layer and the output node are linked with
output weights βi. Hidden nodes are randomly added to the
existing networks in IELM. 'e randomly generated hidden
node parameters ai and bi and fixed output weight are βi.

Suppose the residual error function for the current
network fn is defined as en � f − fn . where n is the number
of hidden nodes and f ∈ L2(x) is the target function. IELM
is mathematically represented as

fn(x) � fn−1(x) + βngn(x). (31)

6. Evaluation Criteria for Effective
Measure of Model

For evaluation of the different models, generally, the con-
fusion matrix is prepared. Table 2 defines a simple repre-
sentation of the confusion matrix [34, 35], and it can classify
between predicted and actual values. From the confusion
matrix, we can derive different performance metrics, e.g.,
accuracy, precision, recall, sensitivity, and F-score. To assess
the model, nine different metrics are calculated by formula
as given in Table 3 [36].

7. Experimental Setup

'e whole experiment was performed on a system having a
configuration of 10th Generation Intel (R) Core (TM) i7-
10750H CPU @ 2.60GHz processor, 8 GB RAM, and
NVIDIA GTX graphics 1650TI. 'e code is written in
Python 3.10.0 and uses Jupyter Notebook as a debugger,
which can be installed from the link: https://jupyter.org/
install.

8. Dataset Description

'eCOVID-19 chest X-ray images [37] dataset encompasses
a total of 13808 images in which 3616 COVID-19 positive
cases (26.2%) along with 10,192 (73.8%) normal cases are
downloaded from Kaggle. COVID-19 and normal patient
chest X-ray images are kept in separate files. Dataset was
divided into training and testing images which had been
done randomly with a condition that testing images will not
be repeated in training images. During the experiment, 80%
of the total images were used for training and 20% for
testing. All images have the same dimension (299× 299)
pixels in the PNG file format. Figure 7 demonstrates the
X-ray images of normal and COVID-19 cases.

'e histogram of an image gives a global description of
the image’s appearance. It represents the relative frequency
of occurrences of various intensity values in an image. In the
histogram of the COVID-19 image, the intensity value is
highest between bins 14–15, whereas in the normal image
the histogram has the highest intensity value at bins 16–17.
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'is difference in the color intensity value assists in making
the distinction between COVID-19 and normal images.
Figure 8 demonstrates the histogram plot of normal and
COVID-19 images. Figure 9 shows the training images for
X-ray images of COVID-19 and normal.

Because PCA uses orthogonal transformation to convert
all features into a few independent features, all features are
considered during the feature selection process. 'e data to
be processed are reduced to a set of features called a “reduced
representation set.”

Input: Given N observations along with the class labels (xi, ti), xi ∈ Rm, ti ∈ RC.
Output: IELM model for classification.

(1) Procedure IELM.
(2) Initialize: hidden nodes l � 0 and maximum L.
(3) For the newly increased hidden layer neuron Ol, input weights ωl and bias bl randomly evaluated.
(4) Output of the activation function g (x′) calculated for the node Ol.
(5) Hidden layer output H calculated from Eq. (27).
(6) Weights between the hidden and the output layer β can be evaluated from Eq. (28).
(7) Return β.
(8) End procedure.

ALGORITHM 5: IELM algorithm.

(i) Input: Given N observations along with the class labels (xi, ti), xi ∈ Rm, ∈ RC.
(ii) Output: PCA_IELM model for classification.
(1) Procedure PCA_IELM.
(2) Identify the relationship among features through a covariance matrix.
(3) 'rough the linear transformation or eigendecomposition of the covariance matrix, we get eigenvectors and eigenvalues.
(4) Transform our data using eigenvectors into principal components.
(5) Quantify the importance of these relationships using eigenvalues and keep the important principal components.
(6) Input for the model is given in terms of extracted principal components.
(7) Initialize: hidden nodes l � 0 and maximum L.
(8) For the newly increased hidden layer neuron Ol, input weights ωl and bias bl randomly evaluated.
(9) g (x′) calculated as the output function for the node Ol.
(10) Hidden layer output H calculated from Eq. (27).
(11) Weights between the hidden and the output layer β can be evaluated from Eq. (28).
(12) Return β.
(13) End procedure.

ALGORITHM 6: PCA-IELM algorithm.

Table 2: Confusion matrix.

Predicted Total

Actual TP (true positive) FP (false positive) TP + FP
FN (false negative) TN (true negative) FN+TN

Total TP + FN TN+FP ALL

Table 3: Performance evaluation measures [36].

SL Measures Formula
1. Accuracy TP + TN/TP + FP + TN + FN
2. Specificity (TNrate) TN/TN + FP
3. FNrate FN/TP + FN
4. Sensitivity (TPrate)/recall TP/TP + FN
5. FPrate FP/TN + FP
6. Precision TP/TP + FP
7. G-mean

�������������
TPrate × TNrate



8. AUC 1 + TPrate − FPrate/2
9. F1-score 2∗TP/2∗TP + FP + FN
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9. Results and Discussion

In this segment, we present the outcomes and analysis of
the experiments performed in the COVID-19 patient
prediction using the chest X-ray dataset. From the ex-
perimental results, the proposed method shows better
performance in terms of accuracy, precision, recall, F1-
score, AUC, G-mean, and other parameters. For each
model, PCA-SVM, PCA-ELM, and PCA-IELM, a separate

confusion matrix is formed. All the performance metrics
values are derived from the confusion matrix (Tables 4–6).
Classi�cation accuracy gained by the proposed method
PCA-IELM is 98.11% over the chest X-ray dataset, which
suggests better results than the other two models, PCA-
based SVM (91.8%) and PCA-based ELM (93.80%) in terms
of accuracy. Sometimes, performance metrics’ accuracy
may be misleading and can misclassify instances. So, other
metrics are also taken into consideration to con�rm the
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Figure 7: Chest X-ray images of COVID-19 and normal.
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claim made by the classi�er. PCA-IELM has the highest
precision value of 96.11%. �at means PCA-IELM is
96.11% reliable in making decisions, whereas models PCA-
SVM and PCA-ELM record less precision, 84.3% and
88.3%, respectively. Similarly, for the proposed method
PCA-IELM, other metrics (refer to Figure 10) recall, F1-
score, TPR, TNR, and G-mean are considerably higher than
the other two methods, PCA-SVM and PCA-ELM.

�e geometric mean (G-mean) is a statistic that analyzes
categorization performance across majority and minority
classes. Even if negative examples are correctly labelled as
such, a poor G-mean suggests weak performance in iden-
tifying positive occurrences. �is statistic is essential for
preventing over�tting the negative class while under�tting
the positive class, since the COVID-19 dataset understudy is
also class imbalanced (IR� 2.81). Even then, the PCA-ELM
model indicates good performance by attaining the highest

G-mean value of 98%. Similarly, PCA-SVM and PCA-ELM
have 88% and 90.5% success rates, respectively.

Table 7 demonstrates the performance variation (sen-
sitivity, speci�city, precision, F1-score, accuracy) based on
di�erent counts of hidden nodes in the range of 10–150 with
an interval of 10 hidden nodes. Training and testing accu-
racies of PCA-IELMdemonstrated almost the same behavior
on the COVID-19 dataset (refer to Figure 11). �ere is
moderate variation in the accuracy of PCA-IELM with re-
spect to di�erent numbers of hidden nodes. �e accuracy at
10 numbers of hidden nodes was found to be 97.73%, and
98.11% was achieved at 140 numbers of hidden nodes in the
PCA-IELM model and beyond (refer to Table 7).

When there is a moderate to large class imbalance,
precision-recall curves should be drawn. Here, the COVID-
19 dataset is imbalanced with an imbalance ratio (IR) of 2.81.
It is worth noticing that precision is also called the positive

Table 4: Confusion matrix for PCA-SVM.

Predicted Total

Actual 819 152 971
187 2985 3172

Total 1006 3137 4143

Table 5: Confusion matrix for PCA-ELM.

Predicted Total

Actual 828 110 938
147 3058 3205

Total 975 3168 4143

Table 6: Confusion matrix for PCA-IELM.

Predicted Total

Actual 1192 48 1240
30 2873 2903

Total 1222 2921 4143
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Figure 10: Performance comparison of di�erent classi�ers.
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Table 7: Performance variation based on di�erent hidden nodes.

Number of hidden nodes
Performance metrics (%)

Sensitivity Speci�city Precision F1-score Accuracy
10 94.13 96.23 93.74 95.19 97.73
20 94.16 96.19 93.36 95.19 97.73
30 94.24 96.35 94.48 95.24 97.74
40 93.98 96.07 93.01 94.98 97.70
50 94.11 96.16 93.09 95.11 97.71
60 94.18 96.28 93.45 95.18 97.73
70 94.73 96.82 94.69 95.64 97.75
80 94.84 96.79 94.86 95.29 97.75
90 94.25 96.77 94.92 95.36 97.75
100 94.03 96.11 93.11 95.02 97.71
110 94.17 96.24 93.22 95.16 97.73
120 94.48 96.46 94.59 95.71 97.75
130 94.10 96.15 93.19 95.11 97.71
140 97.62 98.12 96.33 96.50 98.11
150 97.54 98.35 96.12 96.83 98.11
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Figure 11: Accuracy variation with number of hidden nodes for PCA-IELM.

False Positive Rate

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.6

0.4

0.2

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

1.0

No Skill

PCA-SVM

(a)

Recall

0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.8

0.7

0.6

0.9

Pr
ec

isi
on

1.0

No Skill

PCA-SVM

(b)
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Figure 13: (a) Analysis of ROC curve and (b) analysis of precision-recall for PCA-ELM.
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Figure 14: (a) Analysis of ROC curve and (b) analysis of precision-recall for PCA-incremental ELM.

Table 8: Proposed method and other related models’ comparative analysis [38].

S.No. Study Method used Number of cases Type of
images

Accuracy
(%)

1 Ioannis et al. [39] VGG-19 700 pneumonia, 504 healthy, 224 COVID-19
(positive) Chest X-ray 93.48

2 Gunraj, Wang, and
Wong [40] COVID-Net 5526 COVID-19 (negative), 8066 healthy, 53

COVID-19 (positive) Chest X-ray 92.4

3 Sethy et al. [41] ResNet50þ SVM 25 COVID-19 (negative), 25 COVID-19 (positive) Chest X-ray 95.38
4 Hemdan et al. [42] COVIDX-Net 25 normal, 25 COVID-19 (positive) Chest X-ray 90.0
5 Narin et al. [43] Deep CNN ResNet-50 50 COVID-19 (negative), 50 COVID-19 (positive) Chest X-ray 98
6 Ying et al. [44] DRE-Net 708 healthy, 777 COVID-19 (positive) Chest CT 86

7 Wang et al. [45] M-Inception 258 COVID-19 (negative), 195 COVID-19
(positive) Chest CT 82.9

8 Zheng et al. [46] UNetþ3D deep
network

229 COVID-19 (negative), 313 COVID-19
(positive) Chest CT 90.8

9 Xu et al. [47] ResNetþ location
attention

175 healthy, 224 viral pneumonia, 219 COVID-19
(positive) Chest CT 86.7

10 Tulin et al. [38] DarkCovidNet 500 Pneumonia, 500 no-�ndings, 125 COVID-19
(positive Chest X-ray 98.08

11 Proposed model PCA-IELM 10,192 normal, 3616 COVID-19 (positive) Chest X-ray 98.11
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predictive value (PPV). Moreover, recall is also known as
sensitivity, hit rate, or true-positive rate (TPR). It means they
talk about positive cases and not negative ones. Most ma-
chine learning algorithms often involve a trade-off between
recall and precision. A good PR curve has a greater AUC
(area under curve). Figures 12(b), 13(b), and 14(b) depict PR
curves. Figure 13(b) shows the greater AUC, which is an
indication of the better performance of PCA-IELM than the
other two models. In addition to these, ROC of Figure 14(a)
also grabs more AUC than two other Figures 12(a) and
13(a).'erefore, PCA-IELM claims better performance than
PCA-SVM and PCA-IELM. 'e proposed PCA-IELM
model outperforms other previously developed models for
identification of COVID-19 patients from chest X-ray image
(refer Table 8 [38–47]). As far as the training and testing time
taken by the proposed model PCA-IELM is concerned, it
was higher (refer to Table 9) because the execution of the
model happened in an incremental way and not in one go.

10. Conclusions

In this paper, an effective classification model is proposed on
the COVID-19 chest X-ray image dataset using principal
component analysis (PCA) and incremental extreme
learning machine (IELM). 'is study established the valu-
able application of the ELM model to classify COVID-19
patients from X-ray images by developing the PCA-IELM
model. 'e proposed PCA-based IELM algorithm is an
efficient IELM-based algorithm. 'e hidden node parame-
ters are measured by the information returned to the PCA in
the training dataset, and using the Moore–Penrose gener-
alized inverse output, the node parameters are determined.
PCA-IELM utilizes the best feature of IELM, which is to
increase hidden nodes incrementally and wisely determine
the output weights, whereas ELM requires you to set the
appropriate number of hidden nodes manually, and this is
similar to the hit and trial method. In comparison with the
ELM, the output error of the IELM rapidly reduces and is
near to zero as the number of hidden neurons increases. It
was observed that as the number of hidden nodes increased,
the performance of the PCA-IELM increased and it became
stable at 150 hidden nodes. PCA-IELM outperforms PCA-
SVM and PCA-ELM in terms of accuracy (98.11%), preci-
sion (96.11%), recall (97.50%), F1-score (98.50%), G-mean
(98%), etc. 'e suggested research contributes to the
prospect of a low-cost, quick, and automated diagnosis of the
COVID-19 patient, and it may be used in clinical scenarios.
'is effective system can provide early detection of COVID-
19 patients. As a result, it is helpful in controlling the further
spread of the virus from an affected person. 'is is an in-
telligent assistance for radiologists to accurately diagnose
COVID-19 in X-ray images.
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