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Feature selection is an important way to optimize the e�ciency and accuracy of classi�ers. However, traditional feature selection
methods cannot work with many kinds of data in the real world, such as multi-label data. To overcome this challenge, multi-label
feature selection is developed. Multi-label feature selection plays an irreplaceable role in pattern recognition and data mining. is
process can improve the e�ciency and accuracy of multi-label classi�cation. However, traditional multi-label feature selection
based on mutual information does not fully consider the e�ect of redundancy among labels.  e de�ciency may lead to repeated
computing of mutual information and leave room to enhance the accuracy of multi-label feature selection. To deal with this
challenge, this paper proposed a multi-label feature selection based on conditional mutual information among labels (CRMIL).
Firstly, we analyze how to reduce the redundancy among features based on existing papers. Secondly, we propose a new approach
to diminish the redundancy among labels.  is method takes label sets as conditions to calculate the relevance between features
and labels.  is approach can weaken the impact of the redundancy among labels on feature selection results. Finally, we analyze
this algorithm and balance the e�ects of relevance and redundancy on the evaluation function. For testing CRMIL, we compare it
with the other eight multi-label feature selection algorithms on ten datasets and use four evaluation criteria to examine the results.
Experimental results illustrate that CRMIL performs better than other existing algorithms.

1. Introduction

In the era of big data, data in all �elds are increasing ex-
plosively [1–3].  erefore, feature selection has rapidly
become a hot topic. Proper feature selection can improve the
e�ciency and accuracy of classi�ers. Compared with the
traditional single-label feature selection, multi-label feature
selection is more suitable for solving problems in the real
world [4].  erefore, multi-label feature selection applies to
various �elds, such as image processing [5, 6], text cate-
gorization [7, 8], and bioinformatics [9].

Multi-label feature selection algorithms usually consider
how to reduce the in¤uence of redundancy among infor-
mation. e commonly used processingmethods include the
swarm intelligence algorithm [10], which regards features as
individuals and a group of features as populations for re-
production, evolution, and mutation to reduce the

redundancy of information and improve the algorithm’s
accuracy. Another idea is manifold learning [11].  is ap-
proach can diminish useless features for classi�ers from the
perspective of dimension reduction. Considering the rele-
vance between features and labels by calculating mutual
information between features and labels is another approach
[12].  is method can help judge which features need to be
kept. Much prior work has proved that mutual information
is an e�cient method to extract features [13, 14]. Because
mutual information is more concise and e�ective [15], this
paper will explore multi-label feature selection based on
mutual information.

Many multi-label feature selection algorithms have been
based on mutual information [16–18]. Once the mutual
information of two di�erent features or two labels is greater
than zero, redundancy appears. Although these algorithms
have considered the relevance between features and labels,
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and the redundancy among features, they do not adequately
process the redundancy among labels, eventually leading to
an unsatisfactory result.,is paper proposes a new approach
to deal with the redundancy among labels and a multi-label
feature selection based on this approach.

,e rest of the paper reads as follows: In Section 2, the
related work is summarized. We then propose a new multi-
label feature selection algorithm in Section 3. In Section 4,
relevant experiments prove the efficiency of the proposed
algorithm. In Section 5, we summarize this paper and ex-
plain the directions of future work.

In summary, the study offers the following contributions:

(i) We propose a new method to avoid repeating
calculations on redundant label information.

(ii) We propose a novel algorithm of multi-label feature
selection and get good results. It performs better on
most datasets, which have redundancy among labels.

(iii) We set many experiments from different perspec-
tives to test the proposed algorithms; some of them
are innovative.

2. Related Work

In the early stage of multi-label feature selection, most
proposed algorithms transform multi-label datasets into
multiple single-label datasets and process all single-label
datasets with traditional single-label feature selection al-
gorithms. For example, literature [19] divides a dataset D
into q independent 01 datasets by Binary Relevance (BR) and
transforms each possible label combination into unique
classes by Label Powerset (LP). ,en this paper deals with
new datasets by Relief and traditional single-label feature
selection algorithm based on mutual information. However,
this kind of algorithm cannot work on large datasets. To
overcome this challenge, the literature [20] pruned the labels
that infrequently appeared in datasets. ,is approach can
reduce the size of final datasets. However, this algorithm
only transforms multi-label datasets into many single-label
datasets. which may ignore the effects between features and
features, labels and labels in the original datasets.

In recent years, many algorithm adaptation methods
have been applied to high-dimension feature selection. For
example, the literature [21] details two stages to implement
feature selection of gene datasets. A greedy approach is used
to assign the maximum number of samples to different gene
classes in the first step. In the second step, clustering and
lasso methods are selected to extract the remaining features.
Additionally, Deep Neural Network is embedded into a
high-dimension feature selectionmethod [22]. To reduce the
effects of outliers and noise in datasets, the literature [23]
proposes Unsupervised Feature Selection with Robust Data
Reconstruction (UFS-RDR) by minimizing the graph reg-
ularized weighted data reconstruction error function. ,e
relevant estimation tools are also developed. To evaluate the
stability of high-dimension feature selection approaches, the
literature [24] proposes a novel estimator considering inter-
intrastability of subsets. ,ese high-dimension feature se-
lection algorithms provide ideas for multi-label feature

selection. Particularly, multi-label feature selection based on
mutual information attracts extensive attention. ,e liter-
ature [25] has considered the interaction between selected
features and unselected features and proposed MDMR as
follows:

J fk( 􏼁 � 􏽘
fi∈S

􏽘
li∈L

I fk, li( 􏼁 − I fk, li, fj􏼐 􏼑􏽨 􏽩,
(1)

where S is the selected feature set and L is the label set. ,e
literature [26] considers redundancy when computing the
relevance between features and labels. ,is paper regards
redundancy existing among information as part of the
relevance, which means that

Redundancy � Relevance ∗C. (2)

,e coefficient C should become greater when the se-
lected features are strongly dependent on other features, and
conversely, C should become smaller. ,erefore, I(fk, fi)

can be a part of C. Additionally, because C ∈ (0, 1), H(fk) is
used to normalize I(fk, fi). As a result, the selected feature
can be described as

max
fk∈ F−Si−1{ }

􏽘
li∈L

I fk, li( 􏼁 − 􏽘
fi∈Si−1

I fk, fi( 􏼁

H fk( 􏼁
∗ 􏽘

li∈L
I fk, li( 􏼁⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(3)

However, the algorithm directly computes the relevance
and redundancy without further processing. ,is method
might lead to the effects of relevance and redundancy being
unbalanced. To solve this problem, the literature [27] pro-
poses granular feature selection, which transforms features
into granular feature groups. After computing the relevance
and redundancy, the results divide by the size of related sets.
,is idea can be detailed by the following formula:

J fk( 􏼁 �
1

|G|
􏽘
li∈G

I fk, li( 􏼁 −
1

|S|
􏽘
fi∈S

I fk, fi( 􏼁, (4)

where |G| is the granularity. However, these algorithms do
not consider the redundancy among labels. Literature
[15, 28] achieves better results after considering the re-
dundancy among labels. ,e algorithm can be described as
formula (5), respectively.
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I fk, lj|li􏼐 􏼑 −
1

|S|
􏽘
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I fk; fj􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (5)

Although the redundancy among labels has been con-
sidered, the redundant information may be accumulated
more than once. ,is problem is detailed in Section 3, and
we propose a solution in that section.

3. Multi-Label Feature Selection considering
Redundancy on Mutual Information of
Labels (CRMIL)

Firstly, a problem in traditional multi-label feature selection
is introduced. Manymulti-label feature selection algorithms,
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which are proposed for solving this problem, have shortages.
To improve the accuracy, we propose a new method to
compute the redundancy among labels. ,is method can
reduce the redundancy among labels and calculate the
relevance between features and labels. ,en, the redundancy
among features is computed. Finally, we propose the new
multi-label feature selection algorithm and detail the
pseudocode.

3.1. A Problem. Traditional multi-label feature selection,
which does not consider redundancy among labels, might
encounter the following problem:

In Figure 1 and 2 show that Feature A and Feature B
contain 16% and 20% of useful information, respectively.
Feature B should be selected. If the redundancy among labels
is ignored, the valuable information provided by Feature A
and Feature B is 24% and 20%, respectively. As a result,
Feature A will be selected due to the redundancy among
labels. After considering the redundancy among labels, the
mutual information between features and labels is 16% and
20%, respectively. Feature B will be selected. ,erefore, the
redundancy among labels is worth considering. ,e fol-
lowing parts will focus on how we design the multi-label
feature selection algorithm considering the redundancy.

3.2. Multi-Label Conditional Mutual Information.

Existing multi-label feature selection algorithms usually use
conditional mutual information to calculate the redundancy
among labels. In the literature [15, 28], I(f, li|lj) is essential
to compute the redundancy among labels. However, these
algorithms enumerate every label as a condition and sum up
all conditional mutual information. ,e sum can be
regarded as the relevance between features and labels with
diminishing redundancy among labels, such as formula (6).
Once more than two labels contain the same information,
the overlapping information will be counted more than
once. ,is situation may reduce the accuracy of the result.

􏽘
li∈L

􏽘
lj∈L,lj ≠ li

I f, li|lj􏼐 􏼑,
(6)

where f is the pending feature, li and lj are the label ele-
ments that are different at any time. Formula (6) has been
proved and detailed in the literature [22].

We propose that regarding part of the label set as
conditions on mutual information can overcome this
challenge. In the proposed multi-label feature selection al-
gorithm, the relevant part which computes the redundancy
among labels, can be detailed in the following formulafd7:

􏽘
li∈L

I f, li|Y( 􏼁,
(7)

where Y � lj|lj ∈ L, lj ≠ li􏽮 􏽯. ,is can reduce the effects of
the redundancy among labels.

Proof

􏽘
li∈L

I f, li|Y( 􏼁 � 􏽘
li∈L

H li|Y( 􏼁 − H li|f, Y( 􏼁

� 􏽘
li∈L

􏽘
y∈L

􏽘
x∈li

(p(x, y)∗ logp(x|y) + 􏽘
z∈f

p(x, y, z)∗ logp(x|y, z)).
(8)
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Figure 1: Venn diagram detailing Feature A Label A and Label B.

25%

25% 25%

10% 10%

5%
Label A Label B

Feature B

Figure 2: Venn diagram detailing Feature B Label A and Label B.
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,is shows that, compared to the traditional formula (6),
formula (7) does not sum every element of every label in
label sets. ,erefore, this method calculates the better result
in Section 3.1. Formula (7) thus can avoid the repeated
calculation on information that many labels contain. □

3.3. Alleviate the Redundancy among Features. After con-
sidering the redundancy among labels, the proposed algo-
rithm calculates the redundancy among features. Mutual
information can reflect the total information shared by two
random variables. In feature selection, features can be seen
as random variables. ,erefore, we regard the mutual in-
formation of all pairs of features as the redundancy among
features. ,en, when a new feature is selected, the redun-
dancy of features is computed by the following formulafd9:

Red(f, S) � 􏽘
fi∈S

I f, fi( 􏼁,
(9)

where f is a pending feature.

3.4. Proposed Algorithms. Based on above proofs, features
with larger value on formula (8) and less value on formula
(9) should be selected. After analyzing the relevance and
redundancy of information, we use the size of the label
(α/|L|) and the selected feature set (β/|S|) to balance the effect
of relevance and redundancy on the results. α and β are used
to affect the importance of the label set and the selected
feature set, respectively. We choose α � β � 1 (this will be
proved in Section 4.3). Finally, we proposed a new multi-
label feature selection algorithm (CRMIL). ,e evaluation
function can be defined as follows:
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1

|L|
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1
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􏽘
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1

|S|
􏽘
fi∈S

I fk,fi( 􏼁,

(10)

where Y � lj|lj ∈ L, lj ≠ li􏽮 􏽯 and fk is a pending feature.

Property 1. J(fk) ∈ (−1, 1).

Proof.
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1
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􏽘
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1
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∴J fk( 􏼁 �
1

|L|
􏽘
li∈L

I fk, li|Y( 􏼁 −
1

|S|
􏽘
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(11)

□

Property 2. J(fk) ∈ (−1, 0), when most of the relevance
between features and labels satisfies 0< I(fk, li|Y)

< α (α⟶ 0) and most of the redundancy among features
satisfies 1 − α< I(fk, fi)< 1.

Proof
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1
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(12)

However, this is hardly the case in normal datasets. □

Property 3. Because the size of datasets is considered, in
normal datasets, J(fk) ∈ (0, 1).

Proof

∵
1

|S|
􏽘
fi∈S

I fk,fi( 􏼁<
1

|L|
􏽘
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∴J fk( 􏼁 �
1

|L|
􏽘
li∈L

I fk, li|Y( 􏼁 −
1
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I fk,fi( 􏼁 ∈ (0,1).

(13)

In the beginning, S is empty. To choose k features, we need
k steps. In every step, we choose the feature with the largest
J(fk). ,en we put the selected feature into S and delete the
feature from the label set. Finally, the output is a k-dimension
vector containing the index of selected features. □

3.5. Pseudocode. ,e proposed algorithm requires a feature
set F, a label set L, and the number of features K and returns
the number set of selected features. Lines 1–2: initializing the
number set of selected features and the number of selected
features k. Lines 3–7: preprocessing the relevance between
features and labels in formula (7). Lines 8–22: selecting k
features by iterating. Among these lines, lines 9–10 select the
first feature. ,e feature with the greatest relevance is se-
lected because there is no element in the selected feature set.
Lines 12–17: the redundancy among features is calculated by
using formula (8). Lines 18–20: after selecting a feature, the
feature needs to be added to the selected feature set and
deleted from the original feature set. Finally, the number set
of selected features is returned.

3.6. TimeComplexity Analysis. In the following explanation,
N is the number of samples, |F| is the number of features,
and |L| is the number of labels. ,e time complexity of the
proposed algorithm is up to three main parts. Firstly,
processing the mutual information among features needs to
enumerate two different features. ,is step consumes
O(|F|2). Calculating information entropy needs O(N).
,erefore, this part consumes O(N|F|2). Secondly, the
proposed algorithm preprocesses the relevance between
features and labels, which is the main part of the algorithm.
Enumerating every feature and label consumes O(|F‖L|),
and computing the conditional mutual information
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consumes O(N|L|). ,erefore, the time complexity of this
part is O(N|L|2|F|). ,irdly, the algorithm needs to select K
features. In every selection, pending features and selected
features need to be enumerated simultaneously, which
consumes O(|F|2) at most. ,erefore, the upper-bound time
complexity limit on this part is O(K|F|2). As a result, the
algorithm’s time complexity should be max(O(N|F|2),

O(N|L|2|F|)), which depends on the kinds of data in the
datasets.

As the time complexity test of a prior work [29], we use
Intel(R) Core(TM) i9-9880H CPU @ 2.30GHz to test the
time cost on different datasets. All results are the average
level after five times calculations. For example, when a
dataset consists of 850 instances, 1000 features, and 50 labels,
it takes on average 9.2 s. ,e number of instances in the
dataset then is doubled and the dataset costs around 17.3 s.
Furthermore, if the number of features is compressed by
half, the time needed is around 2.1 s. ,ese prove that, in
reality, the analysis of time complexity is right with great
possibility.

4. Experimental Results

In this section, we illustrate the adaptability of CRMIL on
various datasets and list the experimental results. Firstly,
four evaluation criteria are explained. ,en we use ten
different datasets (Corel5k, Delicious, Flags, Medical, Scene,
Enron, GenBase, Social, Yeast, and Emotions) to test CRMIL
and compare CRMIL with eight traditional multi-label
feature selection algorithms, which are SCLS [26], D2F [30],

FIMF [31], PMU [3], AMI [32], NMDG [33], FSSL [34], and
MFS-MCDM [35].

4.1. Evaluation Criteria. ,is paper uses four evaluation
criteria to examine the results of multi-label feature selec-
tion: Hamming Loss, Average Precision, One Error, and
Ranking Loss. ,ese criteria are usually used by multi-label
feature selection papers [36, 37]. Hamming Loss can be
defined as follows:

Hamming.Loss �
1

|D|
􏽘

|D|

i�1

Li
′⊕Li

|L|
, (14)

where Li
′ is the predicted label for every sample, Li is the real

label for every sample, and⊕ is the XOR operation. Hamming
Loss reflects the misclassification of every single-label. ,e
lower Hamming Loss is, the better classification performance
is. Average Precision can be defined by the following:

Average Precision�

1
|D|

􏽘

|D|

i�1

1
Li

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
􏽘

​

lkϵLi

lj|rank fi, lj􏼐 􏼑 ≤ rank fi, lk( 􏼁, ljϵLi􏽮 􏽯

rank fi, lk( 􏼁
,

(15)

where |Li| is the size of every label in the label set, and
rank(f , l) records the rank of l after all labels are sorted in
descending order. Average Precision reflects the average
fraction of labels ranked higher than a specific label. Greater
Average Precision indicates better classification perfor-
mance. One Error can be defined as follows:

Input: a feature set F, a label set L, and the number of selected features K.
Output: selected feature subset S.

(1) S←ϕ
(2) k←0
(3) for i� 1 to n do
(4) for j� 1 to m do
(5) calculate the relevance between fi and lj
(6) end for
(7) end for
(8) while k<K do
(9) if k �� 0 then
(10) select the feature fi with the greatest relevance
(11) else
(12) for every elements fi in F do
(13) for every elements fj in F except fi do
(14) sum the rebundancy between fi and fj

(15)end for
(16) according to formula (16) and calculate the J (fi)
(17) end for
(18) k←k + 1
(19) S←S∪fi

(20) F←F − f

(21) end if
(22) end while
(23) return S.

ALGORITHM 1: MCMI.
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One.Error �
1

|D|
􏽘

|D|

i�1
argmax

lϵL
f fi, l( 􏼁􏼈 􏼉 ∉ Li􏼚 􏼛. (16)

One Error records the percentage of labels with the
highest predicted value that are not contained by the relevant
label set. ,e lower One Error is, the better classification
performance is. Ranking Loss can be defined by the
following:

Ranking Loss�

1
|D|

􏽘

|D|

i�1

lj, lk􏼐 􏼑|f fi, li( 􏼁≤ f fi, lk( 􏼁, lj, lk􏼐 􏼑ϵLi × Li􏽮 􏽯

Li‖Li

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

, (17)

where f(f , l) is the likelihood that l is the proper label of f,
and Li is the complementary set of Li. Ranking Loss reflects
the average rank of these likelihoods. ,e lower Ranking
Loss is, the better the classification performance is.

4.2. Datasets. ,e ten datasets are from Mulan Library [38],
and Table 1 lists the detailed information of them. ,e
domains of Corel5k, Flags, and Scene are images. Delicious,
Medical, and Enron are text. GenBase is biology. ,e ten
datasets contain various orders of magnitude, the number of
features, and the number of labels. Additionally, datasets
include different types of features, such as binary and pol-
ybasic. For experiments, every dataset has been divided into
the training set and the test set by referring to the recom-
mended size of the Mulan Library.

4.3. Analyze on Experiments

4.3.1. Experiment 1. To prove the correctness of the chosen
α and β in Section 3.4, we assign different values to α and β
in CRMIL and test these values in all datasets. ,e
Hamming Loss of results are then grouped by coefficients.
,e mean value of Hamming Loss in the same group is the
standard value of the group. We choose the minimum
value of the standard values as the normalizing number.
Next, all standard values are divided by the normalizing
number. Finally, we acquire the normalized results of all
groups.

,e visualized results are represented in Figure 3.We can
know that the corresponding bars are the lowest when α is
equal to β. Moreover, if the ratio of α to β is larger, the results

roughly become worse.,is indicates CRMIL selects the best
feature subset when α is equal to β.,erefore, the constant of
formula (15) is suitable.

4.3.2. Experiment 2. To explore the comparative perfor-
mance of CRMIL on different datasets, we test CRMIL and
the other eight multi-label feature selection algorithms on
mentioned datasets. ,e results are evaluated by Hamming
Loss, Average Precision, One Error, and Ranking Loss.
Tables 2–5 demonstrate all experimental results in detail.
,ese experimental results are obtained by averaging the
results as they tend to stabilize after five simulations.

According to Hamming Loss, CRMIL performs better
than the best-performing algorithms among the other eight
algorithms on ten datasets. For example, CRMIL is 25.8%,
23.5%, and 12.8% better than AMI on Enron, Corel5k and
Delicious, respectively. Compared with FSSL, CRMIL opti-
mizes the target by 9% in Flags, 15.9% inMedical, and 9.9% in
Scene. ,e average improvement on ten datasets is about
17.7%. In terms of the Average Precision, CRMIL improves
the target by 0.0232 and 0.0204 on Flags and Scene, re-
spectively. On Medical, GenBase, and Social, compared with
the best-performance algorithm of the other eight algorithms
(PMU, FSSL, and FSSL), CRMIL improves the results by
46.5%, 6.3%, and 4.3%, respectively. Although CRMIL slightly
lower the result on Enron, the average result on ten datasets
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Figure 3: ,e standard results on different α and β.

Table 1: Detailed information about datasets.

Dataset Domain #Instances #Features #Labels #Training #Test
Corel5k Images 5000 499 374 4500 500
Delicious Text 1075 500 983 862 213
Flags Images 194 19 7 129 65
Medical Text 978 1449 45 645 333
Scene Images 2407 294 6 1211 1196
Enron Text 851 1001 53 568 283
GenBase Biology 662 1186 27 441 221
Social Text 500 1047 39 333 167
Yeast Biology 2417 103 14 1612 805
Emotions Music 593 72 6 396 197
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Table 2: Hamming Loss of results after applying multi-label feature selection algorithms on ten datasets.

Algorithms CRMIL SCLS D2F FIMF PMU AMI NMDG FSSL MFS-MCDM
Corel5k 0.0104 0.0144 0.0235 0.0226 0.0227 0.0136 0.0141 0.0138 0.0194
Delicious 0.0170 0.0229 0.0336 0.0398 0.0374 0.0195 0.0217 0.0203 0.0231
Flags 0.3165 0.4022 0.3605 0.4132 0.3561 0.3496 0.3855 0.3520 0.3935
Medical 0.0211 0.0279 0.0386 0.0238 0.0319 0.0274 0.0253 0.0251 0.0283
Scene 0.2413 0.3009 0.3016 0.3363 0.3083 0.3126 0.2783 0.2679 0.2804
Enron 0.0723 0.0973 0.1027 0.0989 0.1031 0.0974 0.0847 0.0811 0.0873
GenBase 0.0052 0.0079 0.0062 0.0103 0.0091 0.0098 0.0074 0.0077 0.0101
Social 0.0424 0.0512 0.0563 0.0534 0.0712 0.0491 0.0472 0.0469 0.0507
Yeast 0.2319 0.2512 0.2579 0.2603 0.2591 0.2487 0.2449 0.2433 0.2496
Emotions 0.2613 0.2817 0.2833 0.3074 0.3096 0.2913 0.2804 0.2716 0.2775
Average 0.1219 0.1458 0.1464 0.1566 0.1651 0.1419 0.1390 0.1330 0.1420

Table 3: Average Precision of results after applying multi-label feature selection algorithms on ten datasets.

Algorithms CRMIL SCLS D2F FIMF PMU AMI NMDG FSSL MFS-MCDM
Corel5k 0.0161 0.0139 0.0139 0.0138 0.0139 0.0139 0.0139 0.0140 0.0138
Delicious 0.0317 0.0238 0.0195 0.0203 0.0205 0.0292 0.0245 0.0258 0.0241
Flags 0.7852 0.6405 0.6947 0.7620 0.6986 0.7060 0.7122 0.7291 0.6972
Medical 0.1130 0.0553 0.0770 0.0553 0.0771 0.0589 0.0649 0.0692 0.0625
Scene 0.7487 0.7222 0.7085 0.6408 0.7048 0.6441 0.7256 0.7283 0.7204
Enron 0.5467 0.5138 0.5109 0.5017 0.5083 0.4892 0.5591 0.5337 0.5273
GenBase 0.8628 0.7549 0.7428 0.7025 0.7136 0.7813 0.8072 0.8114 0.7739
Social 0.5832 0.5479 0.5212 0.5153 0.5159 0.5427 0.5576 0.5593 0.5491
Yeast 0.7832 0.7582 0.7419 0.7404 0.7327 0.7493 0.7701 0.7679 0.7620
Emotions 0.7933 0.7701 0.7628 0.7634 0.7593 0.7631 0.7729 0.7814 0.7796
Average 0.5264 0.4801 0.4793 0.4716 0.4745 0.4778 0.5008 0.5020 0.4910

Table 4: One Error of results after applying multi-label feature selection algorithms on ten datasets.

Algorithms CRMIL SCLS D2F FIMF PMU AMI NMDG FSSL MFS-MCDM
Corel5k 0.7021 0.7756 0.8884 0.8986 0.9083 0.7449 0.8325 0.7659 0.7835
Delicious 0.5821 0.5869 0.5869 0.6104 0.6104 0.6573 0.5819 0.5813 0.5839
Flags 0.2461 0.3847 0.4462 0.5231 0.4770 0.4924 0.4048 0.3195 0.4184
Medical 0.5057 1 0.5646 0.7058 0.5436 0.6288 0.5578 0.5351 0.5831
Scene 0.3837 0.4089 0.4340 0.5410 0.4432 0.5335 0.4176 0.4283 0.4478
Enron 0.3126 0.3892 0.3927 0.3914 0.4207 0.4126 0.3548 0.3420 0.4037
GenBase 0.2861 0.3318 0.3495 0.3512 0.3572 0.3436 0.3201 0.3158 0.4236
Social 0.2913 0.3147 0.3151 0.3261 0.3753 0.3428 0.3195 0.3017 0.3759
Yeast 0.3246 0.3401 0.3473 0.3572 0.3599 0.3487 0.3370 0.3318 0.3321
Emotions 0.3471 0.3722 0.3875 0.3812 0.3903 0.3689 0.3604 0.3557 0.3591
Average 0.3981 0.4904 0.4712 0.5086 0.4886 0.4874 0.4486 0.4277 0.4711

Table 5: Ranking Loss of results after applying multi-label feature selection algorithms on ten datasets.

Algorithms CRMIL SCLS D2F FIMF PMU AMI NMDG FSSL MFS-MCDM
Corel5k 0.0001 0.0011 0.0082 0.0080 0.0079 0.0007 0.0008 0.0006 0.0010
Delicious 0 0.0026 0.0138 0.0155 0.0127 0.0049 0.0021 0.0019 0.0027
Flags 0.2156 0.2439 0.2477 0.3575 0.3682 0.3575 0.2176 0.2691 0.2483
Medical 0 0.0167 0.0140 0.0169 0.0139 0.3212 0.0148 0.0132 0.0162
Scene 0.1484 0.1781 0.1843 0.2625 0.1869 0.2603 0.1792 0.1561 0.1907
Enron 0.0812 0.1012 0.1218 0.1164 0.1359 0.1527 0.1194 0.0924 0.1274
GenBase 0.0327 0.0629 0.0726 0.0913 0.0897 0.0792 0.0613 0.0592 0.0623
Social 0.1329 0.1583 0.1672 0.1597 0.1591 0.1547 0.1517 0.1428 0.1581
Yeast 0.1923 0.2174 0.2278 0.2264 0.2401 0.2239 0.2104 0.2077 0.2065
Emotions 0.2383 0.2536 0.2752 0.2793 0.2811 0.2674 0.2548 0.2479 0.2507
Average 0.0764 0.0956 0.1037 0.12850 0.1218 0.1664 0.0934 0.0919 0.1008
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has been increased by around 10.2%. Taking One Error as the
evaluation criterion, CRMIL reduces the percentage of errors
by 32.6% and 6.2% on Flags and Scene, respectively. ,e
average One Error on ten datasets has been increased by
approximately 17.9%. For Ranking Loss, CRMIL performs
well in all ten datasets, reducing the target by 83.3%, 44.8%,
12.1%, 9.8%, 7.4%, 6.9%, 5.0%, and 3.9% on Corel5k, Enron,

GenBase, Flags, Yeast, Scene, Social, and Emotions, respec-
tively, and the target becomes 0 on Delicious and Medical.

4.3.3. Experiment 3. To study how many features should be
selected when CRMIL can achieve stable experimental re-
sults, on Flags and Scene, we record the results with the
increasing numbers of the selected features.
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Figure 4: Hamming loss on flags.
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Figure 5: Average precision on flags.

1 2 3 4 5 6 7 8 9 10
Number of Features

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

O
ne

 E
rr

or

Flags

CRMIL
SCLS
D2F
FIMF
PMU

AMI
NMDG
FSSL
MFS-MCDM

Figure 6: One Error on Flags.
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Figure 7: Ranking Loss on Flags.
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In Figures 4–7 shows the experimental results of all the
mentioned multi-label selection algorithms on Flags when
different numbers of features are selected. Because there are
19 features in Flags, we choose the step of x-axis is 1 in
Figures 4–7. ,e ranges of Hamming Loss, Average Preci-
sion, One Error, and Ranking Loss on Flags are (0.26, 0.44),
(0.6, 0.85), (0.2, 0.6), and (0.05, 0.45), respectively. Similarly,
Figures 8–11 details the experimental results on Scene. We
select 20 is as the step of x-axis on Scene, because the
maximum k is around 110 on this dataset. ,e ranges of

Hamming Loss, Average Precision, One Error, and Ranking
Loss on Scene are (0.15, 0.4), (0.45, 0.8), (0.2, 0.8), and (0.01,
0.45), respectively. On Flags and Scene, CRMIL has achieved
good experimental results when the number of the selected
features is 4 and 35, respectively. However, on Flags, SCLS,
AMI, and FIMF cannot reach stable results when all features
are selected, and the results of the other algorithms converge
when the number of selected features is about 7. Further-
more, on Scene, most of the compared algorithms can get
stable results if the number of selected features is around 60.
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Figure 8: Hamming Loss on Scene.
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Figure 9: Average Precision on Scene.
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Figure 10: One Error on Scene.
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Figure 11: Ranking loss on scene.
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,is experiment indicates that CRMIL has a faster con-
vergence. Compared with other algorithms, CRMIL can
achieve better results and tend to be stable when the number
of selected features is small.

4.3.4. Experiment 4. To further explore the performance of
CRMIL and investigate the improvement if algorithms
consider the redundancy among labels, we make a com-
parative experiment regarding SCLS as the baseline. SCLS
innovates multi-label feature selection by using mutual
information without considering the redundancy among
labels. If we can figure out the redundancy among labels and
results improvement on every dataset, we can know the
relation between label redundancy and results improvement

by using CRMIL. To some extent, we can verify the efficiency
of CRMIL on label-redundant datasets.

We set the mean of the optimization percentage of the
experimental results of SCLS by CRMIL on Hamming Loss,
Average Precision, One Error, and Ranking Loss as the
results of improvement. Table 6 details the mean value.
Additionally, to understand the relation directly, we show
both the redundancy between every two labels and the total
label redundancy of every dataset. To illustrate the redun-
dancy between every two labels, we use heatmaps
(Figures 12–16) of five datasets. Both x and y axis represent
labels in datasets and heat represents the redundancy be-
tween every two labels. ,e brighter color means the more
redundancy among labels. From Figure 12–16, we can see
that the heatmaps become brighter, which means the

Table 6: Results improvement based on SCLS.

Datasets Corel5k Delicious Medical Scene Flags
Results improvement 0.053631321 0.121886728 0.133971278 0.197776749 0.213114755

Label Redundancy of Corel5k

1.2

1

0.8

0.6

0.4

0.2

0

50

50

100

100

150

150

200

200

250

250

300

300

350

350

Figure 12: Label redundancy of Corel5k.
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redundancy between every two labels of the five datasets
increases in order of Corel5k, Delicious, Medical, Scene, and
Flags. According to Table 6 and Figures 12–16, the proposed
algorithm can get better results if more redundancy exists
among labels. To describe the total label redundancy of
datasets, we use formula (18) to represent the redundant
value among labels. Table 7 records the results.

1
|L|

2 􏽘
li∈L

􏽘
lj∈L,lj ≠ li

I li, lj􏼐 􏼑. (18)

According to Table 6 and 7, the larger the redundancy
among labels is, the better CRMIL will perform. As shown in
Figure 17, the improvement of the results is roughly pro-
portional to the redundancy among labels.

5. Conclusion and Future Work

In recent years, multi-label feature selection has become a
hot topic. However, the existing multi-label feature selection
algorithms have not fully considered the redundancy among
labels. ,is paper proposes a new multi-label feature se-
lection algorithm (CRMIL) that has considered the label set
as the condition when computing the mutual information
between features and labels.

To test the performance of this algorithm, we compare
CRMIL with eight existing multi-label feature selection al-
gorithms (SCLS, D2F, FIMF, PMU, AMI, NMDG, FSSL, and
MFS-MCDM) on ten commonly used datasets (Corel5k,
Delicious, Flags, Medical, Scene, Enron, GenBase, Social,
Yeast, and Emotions) and use four evaluation criteria
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Table 7: ,e results of label redundancy.

Datasets Corel5k Delicious Medical Scene Flags
Label redundancy 0.112776503 0.216737498 0.279667978 1.19332472 1.553913238
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(Hamming Loss, Average Precision, One Error, and Ranking
Loss) to evaluate results. Experimental results show that
CRMIL performs better on various datasets, and the algo-
rithm has a fast convergence speed. Furthermore, the greater
the redundancy among labels is, the better the experimental
results are.

However, according to the proposed multi-label feature
selection algorithm, when the redundancy among labels is
too dense, part of mutual information may not be counted in
the final result, which can reduce the accuracy of the results.
Wemay implement more high-dimensionmethods to partly
overcome these challenges. In the future, we will take more
special cases into account, study how to deal with the re-
dundancy among labels more reasonably, and make the
relevance between features and labels closer to the real value.
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