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Olive trees grow all over the world in reasonably moderate and dry climates, making them fortunate and medicinal. Pesticides are
required to improve crop quality and productivity. Olive trees have had important cultural and economic signi�cance since the
early pre-Roman era. In 2019, Al-Jouf region in a Kingdom of Saudi Arabia’s north achieved global prominence by breaking a
Guinness World Record for having more number of olive trees in a world. Unmanned aerial systems (UAS) were increasingly
being used in aerial sensing activities. However, sensing data must be processed further before it can be used. �is processing
necessitates a huge amount of computational power as well as the time until transmission. Accurately measuring the biovolume of
trees is an initial step in monitoring their e�ectiveness in olive output and health. To overcome these issues, we initially formed a
large scale of olive database for deep learning technology and applications. �e collection comprises 250 RGB photos captured
throughout Al-Jouf, KSA. �is paper employs among the greatest e�cient deep learning occurrence segmentation techniques
(Mask Regional-CNN) with photos from unmanned aerial vehicles (UAVs) to calculate the biovolume of single olive trees. �en,
using satellite imagery, we present an actual deep learning method (SwinTU-net) for identifying and counting of olive trees.
SwinTU-net is a U-net-like network that includes encoding, decoding, and skipping links. SwinTU-net’s essential unit for learning
locally and globally semantic features is the Swin Transformer blocks. �en, we tested the method on photos with several
wavelength channels (red, greenish, blues, and infrared region) and vegetation indexes (NDVI and GNDVI). �e e�ectiveness of
RGB images is evaluated at the two spatial rulings: 3 cm/pixel and 13 cm/pixel, whereas NDVI and GNDV images have only been
evaluated at 13 cm/pixel. As a result of integrating all datasets of GNDVI and NDVI, all generated mask regional-CNN-based
systems performed well in segmenting tree crowns (F1-measure from 95.0 to 98.0 percent). Based on ground truth readings in a
group of trees, a calculated biovolume was 82 percent accurate. �ese �ndings support all usage of NDVI and GNDVI spectrum
indices in UAV pictures to accurately estimate the biovolume of distributed trees including olive trees.

1. Introduction

Unmanned aerial systems (UAS) were currently used in a
number of agricultural improvement projects due to their
adaptability and low-cost [1]. Typically, the unmanned aerial
vehicles (UAV) will ¥y over the area of interest, gathering
aerial photos. Flight time could variety from few minutes to
many hours, regardless of the model of the UAV and also the
region to be explored, amongst many other things [2].
Numerous take-o�s and recoveries could well be required
when employing a short-endurance UAV. �e UAV oper-
ator canmanually assess the sensing accuracy by transferring

several low-resolution photos to a bottom either during a
technological stoppage. �e maximum resolution photo-
graphs are saved on the camera’s storage device. When the
aerial job is completed, it is transported to a desktop for
postprocessing [3]. �e Pix4Dmapper, Agi-soft Photo Scan
correlator3D, have been used to create a mosaic in which
most of the images were patched together with a substantial
overlapping (60–80 percent). Despite being present, auto-
pilot information is rarely used through this postprocessing.

�e sophistication of image processing methods [4], as
well as the vast number of photographs captured in solitary
aerial work (thousands), necessitates the use of sophisticated
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computational resources. As a result, this postprocessing
should be performed on the facilities of UAV operators,
employing computers having substantial quantities of storage,
strong coprocessors, or computing clusters. (e entire pro-
cedure could easily require 2-3 days to complete, also with
annoyance that this lost time implies for the end-user. In a
survey report on thermal remotely sensed related to accuracy
agriculture [5], the travel time is estimated to be much longer
(between 1 and 3 weeks). A geographic mosaic built using two
giga-bytes of the data, for example, required 25 hours of CPU
period if there is no parallel used. Furthermore, the scientists
reported a lengthy (about 20 h) processing time for a series of
multispectral photos (around 100) obtained using a UAV [6].
(e authors created orthomosaics with ultrahigh quality using
a software package running on the powerful system (a
12−core Intel i7 computer and 64 GB of RAM) (14.8 cm per
pixel) [7]. Figure 1 summarizes the technology process of the
unique tree picture segmentation and recovery approach
used. First, we used aUAV image (develop at different image),
a DSM, and a gradient model to separate each tree crown.
Next, we created a visual representation of the ground’s truth
map. Finally, we labeled every tree image with such a re-
gression coefficients label [8].

(e utilization of unmanned aerial vehicle (UAV) images
using near-infrared (NIR), greenish, red, and blue multi-
spectral images is effectively implemented in personalized
agriculture for evaluating plant growth and condition [9].
Spectral indicators like the normalization differential vege-
tative indices (NDVI) or greenish normalization differential
vegetative indices (GNDVI) could be used to evaluate crop
kind, productivity, and maturing phase [10]. (e GNDVI
indicator is added responsive to the fluctuations in a crop
chlorophyll concentration which that of the NDVI indicators,
but it also has a comparatively higher criterion, so it could be
used in crops too closely packed canopies even in a more
sophisticated growth phase, as well as to assess moisture levels
and nitrogen ability to concentrate levels in plant leaf. On
either hand, the NDVI value is especially useful for evaluating
crop vigor during the early phases of growth [11].

Object counting has been a good computer vision issue
that seeks to determine the number of things in a stationary
image or a video. Object counting is indeed an established
research field with numerous applications in a variety of
fields, including ecological studies, population counts,
microcell tallying, and vehicle counts [12]. Handcrafted
characteristics (such as SIFTand HOG) were retrieved from
such a stationary image to identify and measure olive trees
using traditional approaches. Nevertheless, several variables
including scale fluctuations, climate changes, perception
abnormalities, and orientation modifications have an impact
on the effectiveness of these old methods [13, 14]. Deep
learning identification techniques including single shot
multibox detectors (SSD) and regional-convolutional neural
networks (R–CNN) have newly reached great effectiveness
and proposed a possible answer to these difficulties [15]. In
spite of the popularity of deep learning technologies, a
standardized collection of olive trees is not accessible for
deep learning purposes. As a result, we began by building a
large-scale of olive database with both deep learning

technology and implementations. (e database is made up
of 250 RGB satellite images acquired in Al-Jouf, Saudi
Arabia. Satellites Pro, which offers satellite photos and
mapping with most nations and towns across the world,
provided the images. (e olive trees were tagged with a
center fact to decrease the workload and speed up the an-
notating process. Several olive tree deep learning applica-
tions, including identification, count, and classification, can
benefit from the suggested dataset [16].

Deep learning (DL) approaches in overall, and CNNs
specifically, have outperformed conventional techniques in
identifying spatial characteristics from realistic RGB images.
In addition, CNNs are at the cutting edge of all core
computer vision applications, including classification tasks,
object identification, and sample segmentation. Utilizing
semantic segmentation techniques including mask regional-
CNN, among the most effective CNN-based segmentation
techniques, is a useful way to reliably predict olive tree
crowns [17]. DL-CNNs’ fundamental weakness is the sys-
tems demand a huge training of database to provide decent
results. Many optimizations, such as transfer training,
precise tuning, data enhancement, and possibly data fusion,
were employed to solve this constraint in real systems.

(e goal of this paper is to show how deep CNNs may be
used to estimate the activities connected to olive-tree fields
based on treetops and shadows found in ultrahigh precision
photos (less than 30 cm) [18]. First, we educated CNNs to
recognize olive tree crowns and shadow sections. (e tree
biovolumes were then estimated using the tree’s crown areas,
and the tree heights were calculated using the shadow
distances. Earlier research on the shrubs and trees con-
centrated on detecting species of plants or damaging phases
in photos captured by unmanned aerial vehicles (UAVs)
[19]. As far as understood, it was the first study of the se-
mantic segmentation job for plant species identification to
determine tree biovolume. (e following are the primary
achievements of this paper.

(en, motivated by the Swin Transformer’s perfor-
mance, we present an actual deep learning network
(SwinTU-net) for identifying and counting of olive trees.
SwinTU-net is a system similar to U-net that features
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Figure 1: Image segmentation.
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encoding, decoding, and skip connectors. Swin Transformer
is employed instead of the convolution technique to develop
good locally and globally semantic features. According to the
findings of an experimental investigation on the offered
database, the offered SwinTU-net approach beats the
comparable research in terms of total identification, using a
0.94 percent prediction error. OTCS-dataset is a novel
documented multispectral of orthoimages database for the
olive tree crown identification. At two-dimensional fre-
quencies (3 cm/pixel and 13 cm/pixel), the OTCS-dataset is
divided by the semantic segmentation of mask regional-
CNN model was assessed for the objectives of olive tree
crown identification and shadow identification in UAV
pictures. (is paper presents a model that enhances iden-
tification over algorithms involving picture fusion by fusing
RGB images using vegetation indices. (e biovolume for
olive trees was calculated using the region of the crowns and
the heights deduced after their length of shadow’s. (e
outcome reveal using NDVI and GNDVI spectrum index
data with such a resolution of 13 cm/pixel is sufficient for
effectively measuring the biovolume of olive plants into four
subgroups of distinct spectral channels and vegetative index
(RGB, NDVI, and GNDVI).

Section 2 explains previous research related to this re-
search, and Section 3 describes the methodology of our
work. Section 4 reports on computational studies of the
proposed approach, and Section 5 concludes with findings
and work to be done in the future.

2. Related Work

An important field of research is the identifying and
modeling of trees using remote sensing data for use in forest
ecosystems. Earlier proposed approaches that use airborne
and multispectral sensors to detect tree species with very
great precision are expensive and thus inappropriate for
small-scale of forest management. In this paper, we built a
machine visualization scheme for the tree recognition and
planning utilizing RGB images captured by the unmanned
aerial vehicle (UAV) and then convolutional neural network
(CNN). In this scheme, we initially determined the curve
from UAV’s three-dimensional framework, then instantly
sectioned the UAV-RGB images such forest into a many of
tree crown particles utilizing color and the three-dimen-
sional details and the slope design, and finally applied the
object-based CNN categorization to each of crown image.
(is scheme classified seven tree classifications, containing
multiple tree species, with significantly greater than 90% of
accuracy. (e directed gradient-weighted category authen-
tication modeling (guided the Grad-CAM) demonstrated
that a CNN categorized trees based on their forms and leaf
differences, enhancing the system’s possibilities for cate-
gorizing specific trees to comparable shades in the cost-real
way and significant point for forest ecosystems [20].

Coconut is one of India’s most profitable crops. We
establish an instinctive approach for detecting a number of
the coconut trees using an UAV photo in this study. (e
accessibility of high spatial resolution satellite pictures en-
ables users to create vast volumes of accurate digital imagery

of vegetation regions. Today, the projected number of co-
conut trees may be determined in a short period using high-
definition drone pictures at a minimal cost and manpower.
(e purpose is to develop new ways for determining coconut
trees by remotely sensed. To identify coconut trees, deep
learning approaches utilizing convolutional neural network
(CNN) techniques are applied [21].

Cotton plant populations assessment is critical for
making replanted selections within reduced plant densities
locations prone to production consequences. Because
measuring population of plant in a ground is a labor ex-
pensive and prone to the inaccuracy, this research proposes a
fresh strategy of image-dependence on vegetation counts
based on information from unmanned aircraft systems.
Initially proposed image-based algorithms needed a priori
knowledge of geometrical or spectral features underlying
plant canopy structures, restricting the methods’ adaptability
in changeable field settings. In this context, a deep learning-
based vegetation counting method is accessible to minimize
the amount of data collected and eliminate the need for
geometrical or statistics data integration. To distinguish, find,
and measure cotton plants there at the seedling phase, the
object recognition system You Only Look Once on version 3
(YOLOv3) and remote sensing data were used.(e suggested
method was evaluated using 4 distinct UAS datasets that
differed in plant size, overall light, and the background lu-
minance. (e optimum crop count was found to have RMSE
and R2 values of 0.50 to 0.60 plants per linear meter
(numbers of plants across 1m away along with the planted
row orientation) and 0.96 to 0.97, respectively. Unless there
was a visible difference between cotton growing seasons, the
object recognition system trained using varying plant den-
sity, ground moisture, and illumination conditions led to a
decreased identification error. While cotton plants are
usually separated at the germination stage, the preliminary
design counting method performed strong with 0–14 indi-
viduals per linear meters of the row. (is project is expected
to give a computerized system for assessing plants emerging
in situ utilizing UAS information [22].

Deep learning-dependence on superresolution (SR) is
used in this study using Sentinel-2 photos of the Greek island
of Zakynthos to determine stress levels in the super-
centenarian on olive trees severe water shortages.(e goal of
this research to track stress levels in the supercentennial of
olive trees across period and seasons. (e Carotenoid Re-
flectance Indicator 2 (CRI 2) is derived especially using
Sentinel−2 frequencies B2 and B5. CRI2 mapping with
different magnifications of 10m and 2.5m was produced.
Indeed, pictures of band B2 having an original pixel size of
10m have been superdetermined to 2.5m. In terms of
spectrum B5 pictures, they are SR reduced between 20m and
10m and then to 2.5m. Deep-learning-based SR approaches,
especially DSen2 and RakSRGAN, have been used to in-
crease pixel density to 10m and 2.5m, respectively. Autumn
2019, spring 2019, spring 2020, summer 2019, and summer
2020 are the five seasons evaluated. In the approach, cor-
relations using measurement data may be used to better
examine the suggested methodology’s efficiency in detecting
anxiety levels in extremely old olive trees [23].
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(e extension and development of olive farming have
been related to the enormous development of Verticillium-
wilt, a greatest serious fungal issue afflicting olive trees.
Current research demonstrates that measures such as using
new natural materials (Zeoshell ZF1) and useful microbes
can reestablish vitality to afflicted trees. Nevertheless, to be
effective, the above procedures necessitate the labeling of
trees there in the initial stages of infestation—a work which
is not only unreasonable using traditional methods (physical
work), and also extremely difficult, because initial phases
were impossible to detect with a human eye. (e outcomes
of My-Olive Grove Coach (MyOGC) scheme are discussed
in this work, utilizing multispectral imagery from un-
manned aerial vehicles to advance an olive meadows de-
tection method based here on independent and automatic
sorting of spectral information utilizing computer vision
and the machine learning methods. A program aims to
manage and evaluate the condition of olive trees, aid in
forecast of Verticillium wilting development, and create
decision support mechanism to assist farmers and agron-
omists [24].

(is presents a novel deep learning system for automatic
enumeration and localization of the palm trees using aerial
photographs utilizing CNN throughout this research. (is
used two DJI UAVs to capture aerial photographs from two
distinct places in Saudi Arabia for such a purpose and
created a dataset of approximately 11,000 palm tree ex-
amples. (en, we used various contemporary convolutional
neural network architectures to recognize palms or other
forests (YOLOv3, Faster Regional-CNN, EfficientDet, and
YOLOv4), and performed a comprehensive direct com-
parison in terms of overall correctness and inference per-
formance [25]. YOLOv4 and EfficientDet-D5 provided the
best balance of speed and accuracy (upto 99 percent mean
regular precision and a 7.4 FPS). Additionally, photo-
grammetry principles and range adjustments were employed
to dynamically infer the geographical position of observed
palm palms utilizing geotagged metadata from aerial pic-
tures. (is localization approach was evaluated on two
distinct kinds of the drones (DJI of Mavic-Pro and Phantom
of 4-Pro) and found to have a median positioning precision
of 1.6m. (is GPS tracking enables us to authenticate palm
trees and estimate the number from a sequence of the drone
photographs while handling image overlaps accurately.
Furthermore, this novel combination of deep learning object
recognition and geolocation could be used for some another
entities in UAV images [26].

3. Methodology

3.1.UAV-RGBandMultispectral Images. (e research area is
positioned in Jouf, Saudi Arabia. (e climate is the Medi-
terranean, with harsh summer temperatures and mild-wet
winters. (e median annual temperature is 400mm, and the
median yearly temperature is 15°C. Rainfed cereal agricul-
ture and olive groves dominate the flatlands, including small
areas of natural plants in the hills. To reduce interference
with water supply, olive trees were spaced roughly 6 meters

apart. (e testing site is located within a 50-hectare olive
orchard with 11,000 trees established in 2006. In this re-
search study, we utilized a 560m× 280m flat rectangle
comprising around 4000 trees. For the first time, remotely
sensed was utilized to automatically detect trees in forestry
operations. In recent times, the scientific community has
prioritized tree identification and counting in crop fields.
(ere are several approaches available for effectively rec-
ognizing and measuring olive trees. Olive tree recognition
and identification from UAS photos can be divided based on
image analysis approaches.

3.2. Proposed Model. (e suggested SwinTU-net design,
seen in Figure 2, contains encoding, decoding, and skip
connectors. SwinTU-net’s fundamental basis is just the Swin
Transformer blocks. (e encoding creates a sequence of
embeddings from the inputs. (e olive aerial photos have
been separated into four nonoverlapping sections. Each
patch already has a feature size of 4 × 4 × 3 � 48 as a result
of this partitioning method. (e predicted feature size is
also turned into an unstructured length utilizing a linear-
embedding layers (shown as C). Tokens (modified patched)
are passed via numerous layers of Swin Converter and
levels of patch combining to produce hierarchical visual
features.

(e patch combining layer handles downsampling and
expanding size, while the Swin Transformer blocks handle
feature sentence representations.(is designs a synchronous
transformer-based decoder influenced by the U-net. (e
decoding is built from Swin Transformer partitions and
opposing patch widening layers [27]. (e resulting per-
spective characteristics are combined using multiresolution
characteristics output from an encoder via fully connected
layers to compensate for general image loss due to down-
sampling. A patched increasing element, as opposed to a
patched merger layer, is used particularly to promote the
growth of features. (e patch increasing layer resizes ad-
jacent-dimension relevant features into large feature ma-
trices by upsampling the frequency by two. Lastly, the last
patches expansion layer is placed to the extracted features to
execute four frequencies up samplings (W and H). (e
densities map is then created by superimposing a linear
projection overlay on the front of these upsampled
characteristics.

3.3. Swin Transformer Blocks. (e Swin Transformer blocks,
unlike typical multihead self-attention (MSA) modules, are
focused on the utilization of moved panels. Every Swin
Transformer block is depicted in Figure 3, which has a layer
norm (LN) level, an MSA module, a residual connector, and
a two of MLP levels [28]. (e window-dependence on MSA
(W-MSA) and shifting window-dependence on MSA (SW-
MSA) components were utilized in the 2 consecutive
transformers sections. Sequential Swin Transformer units
could be formed utilizing a window segmentation approach
as follows:
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where 􏽢ak and al are its lth block’s outputs characteristics,
(WMSA and the MLP components, correspondingly) (e
MSA remains determined into the similar manner as in prior
studies.

MSA(E, S, V) � softmax
ES

T

��
d

√ + Bias􏼠 􏼡V, (2)

where E, S, V ∈ RN2×d are the inquiry, secret, and value
matrix, respectively. In a window, d and N2 represent the
inquiry or core size and the patching amount, corre-
spondingly. (e bias parameters are extracted from biases
matrices 􏽢B∈ R(2N− 1)×(2N+1).

3.4. Encoding. During an encoding, two successive Swin
Transformer units with such a frequency of (H/4) × (W/4),
and 48 variables are performed on the incoming symbols to
provide a learning algorithm.(edisplay frequency and features
dimensions remained constant. By patch combining levels, the
amount of the tokens is lowered as the network grows to
generate a hierarchical depiction [29].(e initial patch merging
layer combines the characteristics of each set of two neighboring
patches. Following that, a linear layering in 4C dimensions is
added to the merging features. (e outputs dimensions are set
to 2C, and the token count is decreased by 2 × 2 � 4. Swin
Transformer elements were being used to modify the charac-
teristics while retaining the quality at H/8 W/8.

(e first phase of patching combining and features mod-
ification is referred to as period 2. Because the generator is too
profound to be contegrated, the operation is continued twice
extra, to various output decisions of (H/16) × (W/16) and
(H/32) × (W/32), in both, as “period 3” and “period 4.” (e
four phases would be enough to discover a deep functionality
visualization because a transistor is too heavy to be cointegrated.
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Figure 2: SwinTU-net model structure includes encoding, decoding, and skip connections. (e Swin converter serves as the model’s
foundation.

Computational Intelligence and Neuroscience 5



3.5.Decoding. (e Swin Transformer component serves as
the foundation both for encoding and decoding. In
decoding, unlike encoding, the patching expanding level
is employed rather than the patched combining layers to
upsample the built characteristics. (e patched
expanding layer raises the precision of the characteristic
map by rearranging nearby dimensions feature mappings
and reduces the size of a characteristic by two of its input
parameters. Considering the initial patches expansion
layering, before upsampling, a quadratic surface is used to
double the dimensions of the characteristic from
((H/32) × (W/32) × 8C) to ((H/32) × (W/32) × 16C). Use
the reorganize procedure to double frequency and reduce
the concept’s size to a fraction of its initial
dimension’s((H/32) × (W/32) × 16C⟶ (H/32)×

(H/32) × 4C).
(e skip links, such as the U-net, were utilized to feed its

encoder’s upsampled characteristics via the encoder’s
multiscale characteristics [30]. (is combines the deep and
shallow characteristics just to mitigate the spatial and
spectral damages produced by downsampling. After such a
generative model, the size of the concatenation character-
istics is kept the same as the amount of the extract feature
characteristics.

3.6.Multispectral Images andUAVRGB. (is conducted two
of UAV missions at 120m altitude to collect an RGB of
image with ultrahigh longitudinal precision and the mul-
tispectral imaging with an actual-high of resolution to ex-
amine the impact of deep learning methods on various
spectral and spatial recommendations:

(i) A sequoia hyperspectral sensor mounted on a Parrot
DiscoPro AG UAV (Al-Jouf, Saudi Arabia) that ac-
quired four spectral features (near-infrared (NIR),
red, green, and red-edge). Amultispectral image had a

pixel density of 13 cm/pixel [31]. (e vegetative in-
dicators described in the introduction were then
calculated: the normalization differential vegetative
indices (NDVI) equation (3) and the greenish nor-
malization differences vegetative indices (GNDVI):

NDVI �
NIR − red
NIR + red

, (3)

GNDVI �
NIR − green
NIR + green

. (4)

(ii) (is used the DJI-Phantom 4 UAV’s native RGB
Hasselblad 20-megapixel sensor to get higher spatial
precision. (e RGB image had a spatial precision of
3 cm/pixels. (ese RGB pictures are then trans-
formed to the 13 cm/pixel resolution by geographical
pooling to be evaluated. Granada Drone S.L. sup-
plied the images used in both missions.

Weather parameters (sunshine and bright day) and the
shooting period before nightfall are the specific criteria for
current data gathering.

3.7. Construction of the Dataset. To create four subgroups of
data to create a dataset to segment olive tree tops and tree
darkness, which would allow us to examine the impact of
reducing spatial resolution and acquiring spectral infor-
mation. (i) RGB−3, (ii) RGB−13, (iii) NDVI−13, and (d)
GNDVI−13, where 3 and 13 represent the picture pixel
density in cm/pixel [32]. (is produced 150 picture patches
including 2400 trees for every batch of data, with 120 images
(80% of a database) utilized for testing its system and 30
photos (20% of the dataset) utilized for validating the system
here on olive tree crown category (Table 1) as well as olive
tree shadows category (Table 2). Every image of patch
comprised one to the eight of olive trees, complete using
treetops and tree shadows.

Figure 4 depicts the overall process of creating a large
dataset. Utilizing Pix4D 4.0, the initial UAV photos were in-
tegrated into an orthophoto.QGIS 2.14.21 is utilized to reduce a
pixel density of an RGB−3 cm/pixel to an RGB−13 cm/pixel, as
well as to calculate the NDVI and GNDI indexes. (e patching
was created in ENVI Classic and converted from tiff to .jpg
formats (greatest appropriate arrangement for the training of
deep learning techniques). (e number of pixels is artificially
raised to 13 cm/pixel throughout the. Tiff to .jpg transformation
is done by the QGIS 2.14.21 application. VGG Image Annotator
1.0.6, standalone program for the manual feature extraction,
was used to create and annotate tree crown and the tree shadow
sections within every image patching. (is semantic segmen-
tation task’s annotating procedure was entirelymanual. In other
words, the observer drew a polygon around every olive tree
crown and a second-round tree shadow example. (e known
values developed using the VGG autocomplete feature was
again saved in JSON style.

3.8. Mask Regional-CNN. Instance segmentation is the
process of finding and separating all the pixels which
make up a unique olive tree crown in UAV photos. (is is
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Figure 3: Two sequential blocks of swin transformer.
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among the most difficult challenges in computer vision.
(is employed the contemporary mask regional-CNN
system (regions using convolutional neural networks) in
this work that is an extension of the quicker Regional-
CNN classification models [33]. Mask regional-CNN
examines the contribution image and generates a three-
outputs for every item class: (i) a category label indicating
the object-class description, (ii) a boundary box delim-
iting every object class, and (iii) a mask delimiting the
pixels which comprise every object class. Mask regional-
CNN creates a binary mask (using values 0 and 1) for
every olive tree in this study, whereas a value of 1 denotes
a pixel of olive tree and value 0 denotes a pixel of nonolive
tree.

To extract features, mask regional-CNN is dependent
on the classification algorithm. ResNet50 CNN was used
in this research to recover gradually higher-level char-
acteristics from the weakest to deeper layer levels [34]. To
enhance the categorization model’s generalization per-
formance, we evaluated the influence of data pre-
processing, which contains growing the dimension of the
data by implementing simple alterations including
cropping (reducing columns/rows of pixel value just at
edges of images), scalability, inversion, transcription,
horizontal, and vertical compressive. (is utilized
transfer learning rather than building mask regional-
CNN (inspired on ResNet50) at the start of using the
database. Transfer learning involves first implementing
the model’s parameters using pretrained weights on the
COCO-database and reskilling its system on their data
source. Fine relates to retraining the last decade using a
limited dataset [35].

3.9. Performance Evaluation of CNN. (e F1-score measure
was used to assess the effectiveness of its trained of mask
regional-CNN upon this OCTS-database within the ob-
jective of an olive tree crown and shadow example of
segmentation. It is calculated as the harmonics average of
recall and precision. Mask regional-CNN generates three
output results: a boundary area, masks, and probability in
the projected class. (e interaction overlap unions (IoU)
or Jaccard ratio has been used to judge whether a forecast
was right [36]. It is determined by the intersection of the
expected and actual boundary boxes reduced by the unity.
A projection is a true positive (Tpositive) if the IoU is
greater than 50%, and a false-positive (Fpositive) if the IoU
is minimum than 50%. (e following is how IoU is
measured:

IoU �
overlap area
union area

. (5)

A threshold quantity of 0.5 is commonly employed since
it produces high indications of the score. Accuracy (equation
(6)) and recall (equation (7)) are determined as follows:

Table 1: Patches of images and sections in four subgroups of a crown olive tree.

A subset of tree crown Train images Train segments Test images Test images Overall images Overall segments
RGB−3 150 500 40 130 145 650
RGB−13 150 500 40 130 145 650
NDVI−13 150 500 40 130 145 650
GNDVI−13 150 500 40 130 145 650
Overall 600 2000 160 520 580 2600

Table 2: Patches of images and sections in the four subgroups of an olive tree shadows.

A subset of tree crown Train images Train segments Test images Test images Overall images Overall segments
RGB−3 150 500 40 130 145 650
RGB−13 150 500 40 130 145 650
NDVI−13 150 500 40 130 145 650
GNDVI−13 150 500 40 130 145 650
Overall 600 2000 160 520 580 2600

Flying UAV

Ortho-images

Vis Calculation
i) NDVI

ii) GNDVI

Spectral bands
and indices

Creating pathes
with each class

(150 pathes)

Data
Annotation

Figure 4: Preparing process of images.
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accuracy �
Tpositive

Tpositive + Fpositive

�
Tpositive

#ground_truths′
,

(6)

recall �
Tpositive

Tpositive + Fnegative

�
Tpositive

#Predictions′
.

(7)

Accuracy is the proportion of properly identified labels,
and recall is a component of effective label retrieval.(e F1 −

measure is designed as the weighting factor of recall and
precision (equation (8)). It considers includes Fnegative and
Fnegative to determine a model’s overall accuracy:

F1 �
2 × recall × precision
recall + precision

. (8)

3.10. Execution Details. In the development, a well-known
PyTorch library was employed [37]. (e suggested method
then is developed and validated using an
NVIDIAGeForceRTX2060, GPU. Arbitrary data modifica-
tions including rotation, scale, and turning are employed before
training to increase data variation.(e input image is enlarged to
224 × 224, which allowed the GPU to run out ofmemory during
training. (e scores pretrained model on the ImageNet-1K is
utilized to set the set of parameters [38]. During the training
phase, the model is tuned for training algorithm utilizing a well
SGD algorithm, using the velocity of 0.9 and weight loss of 1e− 4.

4. Results and Discussion

(is section outlines the planned olive tree datasets that will
be used to test the algorithm. It also discusses the measures
that were utilized to evaluate the effectiveness of the sug-
gested model. Image segmentation findings were based on
RGB and vegetative indexes. (e findings of the tree bio-
volume computations are shown.

4.1. Data Collection. According to 2019 figures from the
Department of Atmosphere and Waters Department in Al-
Jouf, the Al-Jouf area is home to 30 million trees, the ma-
jority of that is olive trees (18 million of trees) that provide
10 thousand tons of the oil each year. As a result, collection
contains 250 photos collected around Al-Jouf, KSA region,
utilizing the Satellites Pro. Satellite imagery and maps are
available as with most nations and towns across the world
with Satellites Pro. (e particular section was photographed
in RGB pictures with a resolution of 512 × 512 and a bit
depth of 32. To save strain and speed up annotations, the
olive trees were marked using centroids. (e initial step is to

mark the olive photos with bounding boxes that enclose the
olive trees [39]. (ai, bi), i � 1, 2, 3, 4􏼈 􏼉 were the four vertices
of bounding boxes. In the next stage, use the given equation
(9) to get the center of every box also as the center location:

(a, b) �
1
4

􏽘

4

i�1
ai,

1
4

􏽘

4

i�1
bi

⎛⎝ ⎞⎠. (9)

4.2. PerformanceMetrics. (e effectiveness of their model is
determined by utilizing some performance criteria to
compare different strategies on various datasets:

(i) Total accuracy (TA)
TA is the proportion of successfully predicted olive
trees out of an overall amount of the olive trees.
Between the designated trees, it represents the
number of trees that were accurately recognized
within the ground-truth dataset [40]. (e respective
equation is used to calculate total accuracy:

TA �
number of estimated olive trees
number of actual olive trees

× 100. (10)

(ii) Omission failure rate (OFR)
OFR is the proportion of a positive assessment
individuals that were mistaken for negative test
individuals. In other terms, OFR represents the
proportion of times suggested algorithm flops to an
identify olive trees as being. OFR is computed
quantitatively utilizing the formula

OFR �
number of omitted olive trees
number of actual olive trees

× 100. (11)

(iii) Commission failure rate (CFR)
CFR is described by an occurrence of the negative
specimens which were mislabeled as positive. It
occurs when the output contains nonolive trees.
CFR is determined mathematically utilizing the
formula

CFR �
number of false olive trees identified

number of actual olive trees
× 100.

(12)

(iv) Estimation failure (EF)
It corresponds to a discrepancy among the number
of things detected and also a number of objects yet
to be recognized. It is the ratio between the actual
and predicted amount of olive trees within samples
split by an actual amount of olive trees within a
suggested model. (e following formula is used to
compute the EE mathematical model:

EF �
number of estimated olive trees − number of actual olive trees

number of actual olive trees
× 100. (13)
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4.3. Tree Shadow and Tree Crown Segmentation Using RGB
andVegetative Index Images. Table 3 shows the effectiveness
among all mask regional-CNN systems here on relevant test
subgroups of its information in terms of accuracy, recall, and
F1-measure for the tree crowns, and Table 4 shows the
effectiveness of tree shadows.

As demonstrated in Table 3, several training and testing
mask regional-CNN networks with tree crown segmentation
had high F1 scores, exceeding 94 percent throughout all
dataset groups. (e F1 score was unaffected by data aug-
mentation. (e RGB subset produced the best results
(F1� 100 percent) at a spatial and temporal precision of
3 cm/pixel. In a RGB data group, increasing the display
resolution from 3 to 13 cm/pixel reduced F1 by 0.42 percent
without a data augmentation (plan A) and 0.86 percent with
a data preprocessing (plan B). At the 13 − cm/pixel quality,
the 3-band RGB images consistently outperformed the
single-band NDVI or GNDVI views in terms of F1.

Nevertheless, the model was trained using data synthesis
(type C, which is trained using RGB, NDVI, and GNDVI
visuals simultaneously) and demonstrated similar or higher
F1 than that of the trained models without data fusion (plans
A and B, either with or without data preprocessing). Data
aggregation boosted the F1 score by 1.76 percent for the
NDVI-13 database, whereas data augmentation reduced by
it 2.68 percent, as associated with training only using a
NDVI-13 input data and without data preprocessing. (e
F1measure obtained a GNDVI database which is comparable
to or higher than that obtained on the NDVI database.

As demonstrated in Table 4, all designed and evaluated
mask regional-CNN models for the tree shadow

identification have a high F1measure—more than 96 per-
cent. (e classifier (type D) with the greatest F1measure was
designed and evaluated on the RGB visuals at 3 cm/pixel.
Nevertheless, the information fusion algorithm (type E,
which was generated on RGB, NDVI, and GNDVI images
simultaneously) also demonstrated a really strong
F1measure on RGB-13 cm/pixel imagery (99.58 percent).
For tree shadow identification, the information fusion ap-
proach (type E) showed improvement here on
RGB−13(99.58 percent) and GNDVI−13 (98.73 percent)
datasets than with a NDVI−13 (96.10 percent) database.

Table 5 illustrates six olive trees that could be surveyed in
the environment for open canopy area estimation com-
bining tree circumference and tree heights fragmentation
using the mask regional-CNN training set. Total precision is
94.51 percent for RGB-3, 75.61 percent for RGB-13, 82.58
percent for NDVI-13, and 77.38 percent for GNDVI-13. (e
system gave training and testing on the RGB images around
3 cm/pixel and had a highest total reliability for the esti-
mating biovolume. (e information fusion algorithm
functioned well and achieved greater accuracy here on
NDVI subgroups than with the GNDVI or RGB subgroups
at 13 cm/pixel level.

4.4. Total Evaluation. (e total prediction error for testing is
0.94 percent after implementing the proposed model.
According to Table 6, for a 100% mixture of olive and
nonolive trees among other items, around 0.97 percent of
nonolive data is misinterpreted as an olive and 1.2 percent of
the olive data were misdiagnosed as nonolive. (e suggested

Table 3: Mask regional-CNN segmentation effectiveness model for olive tree crown.

Testing subgroups Tpositive Fpositive Fnegative Accuracy F1 measure Recall

(a) Models were trained on every subgroup without the use of additional data
Red green blue−3 130 1 0 1 1 1
Red green blue−13 120 2 3 1 0.9915 0.9959
Normalization differential vegetative indices−13 115 0 5 0.9835 0.9501 0.9661
Greenish normalization differential vegetative indices−13 120 1 12 1.00 0.9167 0.9656
(b) Models were trained on every subgroup with the use of additional data
Red green blue−3 130 0 0 1 1 1
Red green blue−13 114 0 5 1 0.9835 0.9917
Normalization differential vegetative indices−13 113 15 5 0.9009 0.9835 0.9403
Greenish normalization differential vegetative indices−13 114 13 5 0.9077 0.9835 0.9538
(c) Models were trained upon that merging of all 13 cm/pixel picture subgroups and with training data
Red green blue−3 120 0 0 1 0.9915 0.9957
Normalization differential vegetative indices−13 115 0 5 1 0.9667 0.9831
Greenish normalization differential vegetative indices−13 110 0 10 1 0.9084 0.9521

Table 4: Mask regional-CNN segmentation effectiveness model for olive tree shadow.

Testing subgroups Tpositive Fpositive Fnegative Accuracy F1 measure Recall

(d) Models were trained on every subgroup with the use of additional data
Red green blue−3 130 0 0 1.0000 1.0000 1.00
(e) Models were trained upon that merging of overall13 cm/pixel picture subgroups and with training data
Red green blue−3 120 0 0 1 0.9915 0.9957
Normalization differential vegetative indices−13 115 0 8 1 0.9261 0.9811
Greenish normalization differential vegetative indices−13 110 0 4 1 0.9752 0.9572
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dataset was tested, and the results indicated an overall
recognition with a 0.94 percent prediction error.

An olive image, as well as ground truth and recognition
findings, illustrates a combination of olive tree patterns with
significant spacing among them and that those were densely
established. (e suggested technique appropriately defined
nearly all of an olive tree, although it underestimated the
number of immature and densely implanted trees.

4.5. Comparative Evaluation. A suggested model’s findings
were evaluated with those of established olive identification
and enumeration algorithms. (e specifications of the da-
tabase, the quantity of images generated, a spectra reflecting
the dimension of manufactured information, and the
assessed effectiveness were all utilized in the comparisons.
(e outcomes of an evaluation of a proposed system to
existing methodologies are shown in Table 7.

(e suggested approach was validated on a large data-
base and yielded good accuracy, as seen in Figure 4, sug-
gesting that the methodology is efficient and robust. By
reliably detecting and estimating olive trees, the suggested
approach resolved weaknesses in existing approaches. (is
innovative algorithm for identifying and identifying olive
trees was verified using RGB photos with an effective level of
98.4 percent, outperforming previous work.

(e suggested framework exhibited the lowest total
prediction error of 0.95 percent among the available strat-
egies when tested on a huge database of olive trees as well as
other surface items. It is worth mentioning that the sug-
gested dataset contains 250 photos of olive trees as well as
other things as shown in Figure 5.

(ere seems to be currently a plethora of low-cost RGB
and the multispectral sensors which could be installed on the
multirotor and secure-wing UAVs, but these images could

be mechanically managed using CNN techniques for such a
reason. On only side, the RGB security sensors on such a
multirotor UAV may seizure considerably higher determi-
nation satellite data, which improves CNN prediction
performance, but covers fewer regions (because of power
limits) resulting in less costly visuals for each acre. Multi-
spectral sensor arrays on fixed-wing drone attacks, on either
side, could indeed encapsulate relatively coarse resolution
satellite visuals over large regions, lowering the cost per acre
while also integrating plant radiance in the near-infrared and
red-edge, that also either someone to photosynthesis rate
than only RGB. Merging both data sets could combine the
benefits of both systems, such as increasing CNN precision,
lowering cost per hectare, and including photosynthesis
activities data.

(e findings reveal whether CNN systems trained and
tested at rather greater resolution (namely, RGB with 3 cm/
pixel) achieved significantly higher accuracy (approximately
0.42 percent higher) than CNN algorithms were trained and

Table 6: Total evaluation.

Number of images 250
Number of trees 73285
Identifies trees 72596
EF (percent) 0.95
CFG (percent) 708
OFG (percent) 913

Table 7: Proposed techniques comparison.

Reticular matching Multilevel thresholding Detection utilizing
red-bands

Enhanced K-means
techniques Proposed techniques

Database QuickBird SIGPAC viewer SIGPAC viewer SIGPAC viewer UAV and satellites
images pro

Spectrum Grey-scale Grey-scale Red-band RGB RGB
Number of
images Not available 96 60 110 250

Evaluation metrics
TA 98.0% 96.0% Not available 98.5% 98.4%
CFR (percent) 5 5 1.3 5 0.98
OFR (percent) 7 3 5 1 1.3
EF (percent) 1.25 1.2 1.28 0.98 0.95

0 1 2 3 4 5 6 7 8

Reticular Matching

Multilevel thresholding

Detecting utilizing Red-Bands

Enhanced K-means techniques

Proposed techniques

EF
OFR
CFR

Figure 5: Performance evaluation.
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tested at coarse grain quality (namely, RGB at 13cm/pixel).
Extraspecifically, findings show which training CNN con-
cepts on a merging among all a RGB, NDVI, and GNDVI
subsamples of the images at coarse-grained pixel density
(namely, 13 cm/pixel precision) outcomes in the common
model with very rising accuracies (also larger than 95.0
percent and 96.0 percent for the tree crown and the tree
shadow, combined) regardless of the type of image selected
in the diagnostics (RGB, NDVI, or GNDVI). (is extension
opens the door to utilizing secure-wing multispectral or
RGB images finished large regions for tree volume man-
agement at a cheaper cost per hectare, with broad conse-
quences in accuracy agriculture, accuracy forestry, and
accuracy restoration.

It is worth noting that feature extraction when applied to
the mask regional-CNN model had no effect on the out-
comes and even appeared to slightly lower the F1 score.
Simulations training on the RGB image database produced a
better effect across databases with such a frequency of 13 cm/
pixel, indicating that the approach performs better on three-
band images rather than single-band images like using both
NDVI and GNDVI vegetative indexes. It can be attributed to
the reality that now the supplementation data provided us
with some items that resembled the plants that grow beneath
and amid an olive tree, resulting in a false-positive and a fall
in the total F1. Considering this, this concept design
demonstrates how a technique of a pixel segmentation
utilizing deep-CNNs may be employed efficiently in forest
and agricultural situations on UAV images.

5. Conclusion

Finally, an effective deep learning approach (SwinTU-net)
for identifying and counting the olive trees using the satellite
data and UAV was developed. SwinTU-net is a system
similar to U-net that features encoding, decoding, and skip
links. (e SwinTU-net extended a Swin Transformer block
to acquire locally and globally semantic features rather than
utilizing the convolution function. Furthermore, we began
by generating a large-scale of olive database for a deep
learning experiments and development. (e fact that the
CNN segmentation findings of the tree crown and the tree
shadowmay be utilized to estimated biovolume in numerous
trees encourages additional research in this area to enhance
the organization. (e collection is made up of 250 RGB
photos gathered in Al-Jouf, Saudi Arabia. Experimental
research on the program found that the SwinTU-net model
beats similar studies in terms of total identification, having a
0.95 percent prediction failure. (e estimated values match
the ground measures of the sample trees with a margin of
error of 5.4 percent. However, there are certain disadvan-
tages, including the difficulties in distinguishing olive trees
that are near other trees. More field observations, estimates,
and tests are required to have a better grasp of the possi-
bilities of this method, which will be the subject of future
research. As a result, plans include expanding the suggested
dataset with more photos from diverse sources and im-
proving the developed framework. It is proposed to evaluate
trained CNN utilizing medium quality satellite data, which is

of particular importance for utilizing possible outcomes over
wide positions and also estimating yields and earnings for
olive trees.
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[3] Q. Vu, M. Raković, V. Delic, and A. Ronzhin, “Trends in
Development of UAV-UGV Cooperation Approaches in
Precision Agriculture,” Interactive Collaborative Robotics,
vol. 11097, pp. 213–221, 2018.

[4] H. Song, C. Yang, J. Zhang, W. C. Hoffmann, D. He, and
J. A. (omasson, “Comparison of mosaicking techniques for
airborne images from consumer-grade cameras,” Journal of
Applied Remote Sensing, vol. 10, p. 016030, Mar. 2016.

[5] S. Khanal, J. Fulton, and S. Shearer, “An overview of current
and potential applications of thermal remote sensing in
precision agriculture,” Computers and Electronics in Agri-
culture, vol. 139, pp. 22–32, Jun. 2017.

[6] J. Fernández-Guisuraga, E. Sanz-Ablanedo, S. Suárez-Seoane,
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