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In the competitive electricity market, electricity price reflects the relationship between power supply and demand and plays an
important role in the strategic behavior of market players. With the development of energy storage systems after watt-hour meter,
accurate price prediction becomes more and more crucial in the energy management and control of energy storage systems. Due
to the great uncertainty of electricity price, the performance of the general electricity price forecasting models is not satisfactory to
be adopted in practice.-erefore, in this paper, we propose a novel electricity price forecasting strategy applied in optimization for
the scheduling of battery energy storage systems. At first, multiple nonstationary decompositions are presented to extract the most
significant components in price series, which express remarkably discriminative features in price fluctuation for regression
prediction. In addition, all extracted components are delivered to a devised deep convolution neural network with multiscale
dilated kernels for multistep price forecasting. At last, more advanced price fluctuation detection serves the optimized operation of
the battery energy storage system within Ontario grid-connected microgrids. Sufficient ablation studies showed that our proposed
price forecasting strategy provides predominant performances compared with the state-of-the-art methods and implies a
promising prospect in economic benefits of battery energy storage systems.

1. Introduction

Over the last decades, the power grid operations are pro-
vided more and more pressure when electricity consump-
tion increases sharply. In addition, the use of fossil fuels for
electricity generation brings more environmental concerns,
especially in peak hours when the grid is running incon-
sistent with its operation limits and becoming more delicate.
-e behind-the-meter (BTM) energy storage system is able
to unify communicating, automatic control, and sensor
technologies to reshape the electricity consumption activity
efficiently and has been widely applied for both the grid-
connected and islanded operation of microgrids [1]. Because
of irregularities within generation sections, important
modules of BTM are decided on the orchestration of loads
through efficient optimization. Moreover, BTM systems aim

to offer better electricity consumption services for users
based on their response demand by connecting to household
terminals [2]. Consequently, tasks of BTM operating systems
explore more effective approaches to reduce operation costs,
improve energy efficiency, and balance requirements of
demand and supply [3]. In the attractive electricity market,
the price of electricity always fluctuates with changes in the
supply and demand of the market. At this time, the BTM
system can be employed to control the peak price for large
customers [4], who expect to purchase electricity at a rel-
atively lower price and deliver it to end users at a higher
price. -erefore, in this paper, we give most attention to a
multistep electricity price forecasting method that benefits
optimization of scheduling in BESS for economic objectives.

Approaches of electricity price forecasting give more
significance in practice since they will produce profits in
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areas of energy management, demand response (DR), grid
operations, etc. [5]. In a comparison of load forecasting in
the short term, the uncertainty of electricity price is more
complicated, which shows great nonlinear relationships
within electricity profiles. Electricity sellers and buyers ex-
press their requirements with bids in the electricity trading
market, and prices of these bids are resolved by all market
players forming a uniform market clearing price (MCP) [6].
BTM Battery Energy Storage Systems (BESS) is supposed to
serve a large group of customers generally and operate in the
local grid considering more comprehensive factors. For
example, in Ontario, BESS could not only offer electricity for
local consumers satisfying their real-time needs but also
deliver redundant powers to upper-level grid buyers for
profitable sales.

In general, most of the research on price forecasting
focuses on the short term, which has close relationships with
energy management and real-time scheduling of BESS.
Research is grouped into three classes: single point, prob-
ability, and multithreshold forecasting [7]. Point prediction
offers only one simple value [8], and in contrast, probability
prediction provides quantile intervals to quantify uncer-
tainties for short-term price fluctuation [9, 10]. In practice,
the target of electricity price forecasting has no exact re-
quirement to point predication, but prespecified price
thresholds served in the process of decision instead, such as
DR, which gives more crucial significance to commercial
decisions in the electricity market [11–13].

Specifically, electricity price forecasting cannot fulfill all
requirements of optimization in BESS completely. If more
advanced price spike detection was given, the economic
savings of BESS should be given more power using advanced
statistical or machine learning models. -ese popular
models rely on the historical dataset of price changes and
additional factors such as holidays, temperature trends,
periodical characters, and DR pLans and extract excellent
hand-crafted features for deep analysis. -e Autoregressive
(AR) model has been widely introduced in time sequence
analysis using a statistical algorithm, which shows excellent
capability in tracking price fluctuations. A recursive dy-
namic factor analysis (RDFA) is proposed by Wu et al. [14],
unifying a Kalman Filter model to demonstrate an advanced
strategy that outperformed the state-of-the-art research for
price spike forecasting. Amjady and Keynia [15] presented a
new electricity price peak occurrence and peak prediction
strategy, which is based on information theory and includes
a new closed-loop prediction mechanism. Christensen et al.
[16] set up a nonlinear variant of the AR conditional hazard
model to simulate the electricity price trading process for
spike detection in the Australian electricity market. Zhao
et al. [17] devised an innovative feature selector to dis-
criminate specific attributes relative to emergences of spike
based on a data mining approach. Fragkioudaki et al. [18]
and Lu et al. [19] similarly trained a classifier via hand-
crafted features derived from electricity price occurrences.
Although the aforementioned methods based on statistical
or machine learning achieved certain accuracy and appli-
cation values, they generally relied on low-resolution time
series hourly dataset that contains relatively little

information and cannot benefit spike prediction. Moreover,
statistical or machine learning models serve comparatively
limited ability to learn nonlinear relationships within time
series especially strong electricity price fluctuations. In
contrast, forecasting skills using deep convolution neural
networks (DCNN) [20–23] have been justified successfully
in load forecasting for the short term and proved their
predominant ability to learn discriminative features in
nonlinear sequence analysis, which could be drawn spirits.
Lago et al. [24] offered four different deep learning models to
forecast electricity prices and demonstrated skills with deep
neural networks achieving predominant accuracy rather
than traditional statistical or machine learning ones. Deng
et al. [25] devised a complicated structure of a deep neural
network using dilated convolutional kernels and periodic
coding to detect price spikes and capture severe price var-
iations in market profiles, obtaining great improvements.
Jahangir et al. [26] allocated proper bidirectional long short-
term memory forecasting units to different shape clusters of
electricity price series with K-means and Gaussian support
vector machine. Hafeez et al. [27] designed a novel feature
extraction process considering both entropy and mutual
information, where candidate inputs are explored in order to
cancel out the influences of unnecessary inputs based on the
evaluation of their potential values. With elimination to
fluctuation in electricity price, they used an LSTMmodel fed
on extracted features to improve the forecasting accuracy.
-ese recent works have proved the great potential of deep
neural networks in electricity price forecasting and especially
dealt with large fluctuation of prices appropriately. On the
other hand, compared with single-step ahead electricity
price forecasting, multistep prediction is more valuable in
practice, like trading in the electricity market or scheduling
BESS operations, which deep learning is skilled in.

However, the independent model cannot be effective for
all cases, and each of them has its own advantages and
disadvantages, especially for great variations in electricity
price. For deep learning skills, their shortcomings mainly
include local optimal solutions and hyperparameters setting,
which bring unsatisfactory predictive performance. Great
variances in electricity consumption and other exogenous
factors lead to volatility and complexity within signal
manifestation. Consequently, an independent forecasting
model fed on an original single sequence of prices cannot
superiorly express exact relationships. To address this issue,
a combination of models with different mechanisms may
have chances of price forecasting improvement depending
on respective advantages [28]. Signal decomposition ap-
proaches like empirical mode decomposition (EMD),
complementary ensemble empirical mode decomposition
(CEEMD), variational mode decomposition (VMD), and
singular spectrum analysis (SSA) have been utilized to ex-
plore more significant potential features located in the
fluctuation of electricity price.

In general, researchers decomposed price series into
several components, which are then delivered to respective
forecasting units. -e Sum of each component’s prediction
results is contributed to the final prediction. For California
electricity and Brent crude oil short-term price prediction,
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Lahmiri [29] presented a VMD-based GRNN ensemble
forecasting model. -ey used particle swarm optimization
(PSO) to acquire GRNN hyperparameters. -is hybrid
model outperformed traditional algorithms based on ma-
chine learning and could be a promising methodology for
price prediction. Qiu et al. [30] adopted EMD to decompose
original electricity prices into several components called
intrinsic mode functions (IMF). -en, advanced forecasting
models are provided to extract tendencies for each IMF. At
last, they gave a SVR model to incorporate all IMFs’ pre-
diction results and acquire an aggregated forecasting of
electricity price. However, EMD has a disadvantage of end
effect, which will cause negative impacts on decomposition
accuracy. To improve this case, variants of EMD emerge
continuously like ensemble empirical mode decomposition
(EEMD) [31], fast ensemble empirical mode decomposition
(FEEMD) [32], improved empirical mode decomposition
(IEMD) [33], and improved complete ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN)
[34]. A novel hybrid neural model based on EEMD and
stochastic recurrent wavelet (SRW) was proposed [31],
which enhances the precision and robustness of energy
indexes price forecasting. Especially in their work, EEMD
has proved a preferred means to deal with similar prices for
decomposition. A hybrid evolutionary and adaptive models
are developed by Jiang and Xuejiao [32] for electrical power
system forecasting using the FEEMD approach, borrowing
more strengths from a deep neural network. Zhang et al. [33]
offered more complex mixture models including IEMD,
ARIMA, and wavelet neural network (WNN), hyper-
parameters of which are also selected by fruit fly optimi-
zation algorithm. -eir experiments showed that the
decomposition strategy could benefit excellent feature ex-
traction associated with load profiles. Another hybrid model
relying on dual decomposition gained more attention [34],
which overcomes the potential drawback of single-step
decomposition in practice and brings more inspiration for
electricity forecasting.

Although these popular hybrid models extracted sig-
nificant features using EMD or extended EMD approaches,
which gives forecasting models more strength, irregular
nonstationary IMFs with high frequency as strong inter-
ference will affect the performance of the forecasting unit.
Consequently, it is significant to handle nonstationary IMFs
properly. In order to address this problem, we present a
novel strategy of multiple nonstationary decomposition to
decompose original electricity price signal into stable and
significant components, which provides additional dis-
criminative features to the deep neural network rather than
EMD or extended EMD methods. Moreover, we devise a
deep convolution neural network as a forecasting unit.
Compared with the recurrent neural network, like LSTM
and gate recurrent unit (GRU), it offers more powerful
capability of learning nonlinear relationships in electricity
price fluctuation and detection spikes instantaneously.
Contributions of this paper are summarized as follows:

(i) We propose multiple nonstationary decompositions
to extract the most significant components in price
series, which express remarkably discriminative
features in price fluctuation for regression
prediction.

(ii) Extracted components are fed into a devised deep
convolution neural network with multiscale dilated
kernels for multistep price forecasting. -is struc-
ture could strengthen the ability to learn nonlinear
relationships within electricity price fluctuation.

(iii) More advanced price spike detection serves the
optimized operation of battery energy storage sys-
tem within Ontario grid connected microgrid.
Sufficient experiments demonstrated that our pro-
posed electricity price forecasting model provides
excellent performances compared with the state-of-
the-art approaches manifesting a promising pros-
pect in economic benefits of operation in BESS.

-erefore, the main contribution of this paper is to
propose a multiple nonstationary decomposition model for
electricity price forecasting, which is used to optimize the
operation scheduling of the battery energy storage system
at the back of the meter. -is paper focuses on two aspects,
one focuses on the improvement of the price forecasting
model, and the other tries to enhance economic savings of
operation in BESS relying on deep recognition to the
electricity price trends. -is paper will be structured as
follows: Section 2 introduces the key technologies and
describes the details of our proposed method. Section 3
introduces the experiment setups and discusses the per-
formances of comparison experiments. Conclusions are
given in Section 4.

2. Methodology

In this section, the operation of a BESS is described in detail
considering an hour-ahead forecasting strategy. -e com-
ponents of our proposed electricity price forecasting model
are then described.

2.1. Operation of BESS. When a BESS is being operated
behind the meter, and MCPs are relatively lower, the
power could be stored during this time to decrease local
grid running costs. If the pressure of the grid grows during
peak periods, the stored energy then could be delivered
back to the local grid, reducing the necessary total elec-
tricity which will be bid from the wholesale electricity
trading market at higher prices, which is able to improve
profits of BESS owner. Besides, we do not consider some
exogenous factors of BESS that would affect economic
targets in our studies, such as cost of maintenance and
investment loan interests. Our study tries to maximize the
BESS operational economic profits with reasonable
scheduling plans as follows:
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max
lt

E � 
T

t�1
ltp
∧

t subject to ϕ, (1)

where the objective equation (1) intends to enlarge the net
savings with sophisticated operation approach, indicated by
E. T expresses a fixed span of BESS scheduling unit, in our
study T� 24 for one-day-ahead planing. -e unit of l is
million watt (MW) and tells the charging/discharging be-
havior of BESS. In details, l is the total electricity to be
discharged (lt > 0) at time t for sales in local microgrid by
charing (lt < 0) from the electricity trading market. p

∧
t

($/MWperhour) gives the electricity price prediction at
time t. -e target of equation (1) is to acquire the maximum
under a set of constraints ϕ during operations of BESS,
involving battery remaining capacity, rates of charging/
discharging, emergency power for safety, etc. [35–37]. Our
task mainly decides the charing or discharging amount of l at
time t, and therefore in each step, the forecasting result of p

∧
t

plays a crucial role in BESS scheduling optimization problem
with an aspect of economic savings.

In tradition, electricity market adopts day-ahead BESS
operation strategy. According to historical price trends,
utilities give the next day forecasting result and plan of
scheduling horizon without any changes. Because of great
variations in real-time electricity price, a day-ahead
scheduling plan will result in large errors for electricity price
forecasting, causing an economic loss of BESS business
management. To alleviate great fluctuation on price fore-
casting, one feasible approach is called the rolling horizon
model for BESS scheduling depending on updating price
prediction one-hour-ahead, effectively in the microgrid
system for economic management [38].-is model forecasts
the next hour electricity price of each hour and tells if the
price of the next hour is the spike during the current day. In
fact, this procedure includes one-step and multistep pre-
dictions for spike detection.We suppose our scheduling plan
applied in one day, T � 24 in practice, and the scheduling
horizon may be continuously changed over time. At 2:00
PM, operational scheduling plans are regularized dynami-
cally in accordance with price predictions for the next
10 hours. Rolling horizon model predicts 3:00 PM and the
remaining 9 hours electricity prices and judges whether 3:00
PM is a peak for the decision of BESS scheduling. Ac-
cordingly, when at 3:00 PM, the scheduling horizon contains
the next 9 hours.

In recent years, high resolution dataset with 5 minutes
MCPs has been applied in electricity price forecasting and
optimization of BESS operation scheduling [11], which
provides more information and benefits improvement of
forecasting accuracy. With high resolution, great uncer-
tainties of price fluctuation could be captured effectively and
Chitsaz et al. [11] gave another approach of interhours
rolling horizon (IRH). c expresses the fraction of one hour
for joining in current hour MCP forecasting. -is hyper-
parameter can be customized according to user’s require-
ment. For example, when h � 10 and c � 5, IRH model uses
first 5 MCPs to predict 10:00 AM MCP and five MCPs and
its last 24 hours MCPs to predict 11:00 AM–24:00 PMMCP.

On the union of a single step and multistep forecasting, IRH
tries to detect whether 10:00 AM is located in the price spike
in order to adjust operational scheduling of BESS in time for
the economic target.

However, c is a threshold designated by experience with
higher sensitivity. -e fixed constant c will influence the
performances of forecasting models in different areas or
datasets. Besides, if c is too large, new instructions of
scheduling in BESS may not be carried out completely in the
rest span of the current hour. In our previous work [25], an
innovative operational scheduling approach of BESS is
presented, allowing 5-minute MCPs forecasting no longer
restricted to a complete hour but a span of 60 minutes
between hours, as illustrated in Figure 1. Hyperparameter c

has been deprecated and the rolling window with 5-minute
step is able to slide forward till the end of the day. In the
study, we adopt our proposed strategy with devised fore-
casting model to optimize the operational scheduling of
BESS.

2.2. EEMD. Nonstationarity is the most remarkable feature
in electricity price series, generally manifesting great fluc-
tuation and sharp peak, which gives serious difficulties to
regression models. Researchers are attempting to disag-
gregate the original price sequence into significant and
stationary components, setting up discriminative features to
machine learning models or deep neural networks. Huang
et al. published EMD for the first time, which tries to acquire
an aggregation of IMFs and a residue signal approximating
original one. As EMD holds a superior character of adap-
tiveness for nonlinear dataset analysis, it is extensively
imported in various research fields [28]. EMD has some
strong assumptions in order to obtain acceptable decom-
position results:

(1) Original signal contains at least two points with
extreme values, including maximum and minimum
values

(2) Time scale in extreme points decides characters of
initial signal in the local time domain

(3) If there are only inflection points in the data without
an extreme point, the extreme value is able to be
acquired by differentiation strategy repeatedly to
produce the final decomposition result by
integration

In our study, the price dataset we used fits three as-
sumptions and EMD should be effective theoretically. For a
specific signal X(t), the procedure of process is as follows:

(1) Search extreme points located in the original signal
X(t)n

(2) Cubic spline interpolation method is used to fit the
lower envelope min(t)n and the upper envelope
max(t)n

(3) Mean envelope ave(t)n � (min(t)n + max(t)n)/2, if
ave(t) is close to 0, the iterative process terminates

(4) IMFn � X(t)n − ave(t)n
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(5) Let X(t)n+1 � X(t)n − IMFn be a new original sig-
nal, repeat EMD decomposition process from (1)–(4)

EMD decomposition process is recursive through a
screening process, repeating steps (1)-(4) for decomposition of
the original sequence X(t)n. When the mean value d(t) is 0 or
the stop criterion is satisfied, the iterative process is stopped. In
each iteration, one IMFn is generated, and the corresponding
residual signal X(t)n − IMFn continues to be as a new original
signal for decomposition. -rough iterations precede, the
number of extreme points is decreasing along with the gen-
eration of new IMFs that becomes intended significant com-
ponents appropriating original X(t).

-e phenomenon of mode mixing is a serious drawback of
EMD decomposition, where one IMF consists of multiple
signals with different frequency and amplitude. -ese IMFs are
nonstationary and detrimental to forecasting models regardless
of machine learning or deep neural networks. Moreover,
nonstationary IMFs with different frequency or amplitude
cannot reveal discriminative nonlinear relationships in the
electricity price fluctuation of the trading market. Subsequently,
Flandrin et al. [39] proposed EEMDmethod to solve the mode
mixing problem.-emodel mixes white noise into initial series
on the basis of the monotonicity of frequency distribution in
stochastic noise. With the help of white noise, the stationary
character of the original series is improved to a distinct extent,
and the issue of mode mixing is effectively handled. Definitely,
EEMD model is a striking breakthrough for optimization to
EMD, and it works remarkably to improve the effectiveness and
robustness of EMD. Meanwhile, other extended EMD like
CEEMD methods continuously emerge that are dedicated to
alleviating the influence of added white noise. However, in
practice, EEMD and extended EMD still inevitably cause
nonstationary IMFs with different frequency and amplitude.
Signals with higher and unstable frequency are not suitable as
hand-crafted features for forecasting models. As illustrated in
Figure 2, the decomposition results hold obvious nonstationary
IMF1-IMF4 components with higher frequency, which account
for 50% of total IMFs and represent indispensable proportion of
original signal information. If these remarkably nonstationary
IMFs are completely ignored and no attention is paid to the
forecasting model as some researchers did [40–42], the lost

information undoubtedly hurts the accuracy of price fore-
casting, which gives large promotion space for service to deep
learning models.

2.3. VMD. VMD is another extended signal decomposition
approach with higher adaptiveness proposed in 2014 [43],
which is able to disaggregate the electricity price series into
several interesting modes. Completely nonrecursive and
quasiorthogonal are remarkable qualities in VMD imple-
mentation. -e effective strategy of variational mode is
explored iteratively to identify the frequency center and
bandwidth to each disaggregated mode. Equation (2) shows
the variational problem of VMD.

min ηk,ζk( ) 
k

α
αt

ψ(t) +
j

π
 e

jζkt

��������

��������

2

2

⎧⎨

⎩

⎫⎬

⎭,

s.t. 
k

ηk(t) � x.

(2)

In equation (2), ηk � η1, η2, η3, . . . , ηK  represents theK

modes obtained from the decomposition of VMD.
ζK � ζ1, ζ2, ζ3, . . . , ζK  represents the frequency center of
each mode. x expresses the input signal.

Two major parameters k and alpha of VMD have a
great influence on the decomposition results, where alpha
is the balancing parameter for VMD. -e reasonable
choice of these parameters can improve the effect of the
decomposition so that the accuracy of prediction will be
promoted.

-e method envelope spectrum entropy (ESE) is used to
select these two parameters. -e entropy values of the signal
decomposed by VMD are estimated by ESE. Initial values of
k and alpha in decomposition are selected stochastically and
the total entropy of all decomposed modes will be mini-
mized. -e calculation formula of entropy value is shown in
the following equation:

Qnj � − 
T

t1�1

βt1


T
t2 βt2

ln
βt1


T
t2 βt2

 , j � 1, 2, . . . , k, (3)

Yesterday Today
m = 0

m = 1 m = 2 m = 3 m = 11 · · ·  · · ·m = –1

h = 1h = 24 h = 2

m = 1 m = 2

O–1
(1) O0

(1)

Figure 1: Our proposed ITRH framework. We adopt this strategy with a well-established electricity forecasting model to optimize the
operational scheduling of BESS.
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where βt1 is the envelope spectrum of the signal x and the
calculation expression is as follows:

βt1 �

�������

x
2

+ x′
2



, (4)

where x′ with instantaneous value and phase angle are
obtained by Hilbert transformation. Optimal k and alpha
could be selected according to the results of sufficient ex-
periments. In our study, k and alpha are set to 8 and 5,
respectively. We tried to decompose nonstationary IMF1
and IMF2 with high frequency in Figure 2. Moreover,
Figures 3 and 4 illustrate the results of the VMD decom-
position. It is found that results of decomposition to IMF1
and IMF2 tend to be flat with relatively lower frequency,
which is possible to be selected as additional hand-crafted
features for forecasting models. Meanwhile, it addresses the
issue of nonstationary IMFs that are not appropriately of-
fered to price prediction, which would be borrowed from
innovation spirit for electricity price prediction and opti-
mization of operational scheduling in BESS.

2.4. TCMS-CNN Model. At present, most research has
demonstrated electricity price forecasting models based on
deep learning provide more superior performances rather
than statistical and machine learning. Recent works using
deep learning skills in majority focus on LSTM or GUR
models [26, 27] and the deep convolutional neural network
has already verified its excellent ability of nonlinear rela-
tionships extraction compared with RNN [20, 44, 45] in
short-term load forecasting.

In the study, we optimize our previous work of multi-
scale convolutional neural networks using time-cognition

(TCMS-CNN) for single andmultistep short-term electricity
price forecasting. -e framework of our proposed model is
illustrated in Figure 5.

TCMS-CNN model is a hybrid network of multiscale
convolutional neural network and time-cognition models.
In Figure 5, there are two subnetworks that constitute the
entire network. -e left subnetwork mainly consists of
multiscale dilated convolutional layers, which provide dif-
ferent dilate ratios and serve the capability of learning local
and global features. -is mechanism benefits extracting
complex nonlinear relationships in electricity price fluctu-
ation.-e right branch contains lots of fully connected layers
that are fed on periodic coding of hours in each day and days
in each week. Periodic coding stresses the uniqueness of the
time period that offers more context exogenous features for
deep analysis. In practice, we design coding styles relying on
a unique markup of sin and cos functions. In the same way,
the input of the left branch is a matrix divided into two parts,
price vectors of each week filled in each row and corre-
sponding periodic coding hours-week in a row of the other
part. At the end of both branches, a feature fusion layer is
provided for single or multistep electricity price forecasting.
Temporal characters of the price series are extracted supe-
riorly in our work, which provides an advanced prediction
for optimization of operational scheduling in BESS.

2.5. Multiple Nonstationary Decompositions for Electricity
Price Forecasting. Since electricity price reflects great vari-
ations and sharp peaks generally, some negligible IMFs
produced by EEMD hold characters of higher and unstable
frequency and amplitude, which expresses irregular features
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Figure 2: Results of the EEMD decomposition. IMF1-IMF4 shows great nonstationary components. Res denotes the trend of the original
signal.
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and affects the performance of a deep convolutional neural
network for price forecasting. In this paper, we propose
multiple nonstationary decomposition models with an end-
to-end structure to optimize feature selection of signal de-
composition that benefits the deep learning model for
electricity forecasting.

In detail, as described in Figure 6, we adopt EEMD to
decompose the original signal into k IMFs with different
frequencies. imf1, imf2, imf3, . . . imfk and res are ob-
tained. In the next step, we need to select some IMFs that are
unstable and should be processed further. -ere are some
methods to define candidates. Our approach calculates the
value of fuzzy information in each IMF and ranks them. Top
2 IMFs with large entropy could be chosen for further VMD
decomposition. In fact, threshold 2 can be set as an ex-
perimental experience. Afterward, we use VMD to de-
compose these candidate IMFs into stationary and
significant modes, acquiring n modes, respectively. -en,
these products of EMD and VMD are together delivered to a
sophisticated TCMS-CNN model for improvement of price
forecasting accuracy. Sum of two branches prediction is the
final price forecasting result. In another perspective, we
understand this process as EEMD-VMD-CNN.

3. Case Study

3.1. Dataset Description. In this study, we evaluate the ef-
fectiveness and economic savings of our proposed models
using Ontario’s market electricity price dataset, where large
consumers are referred to a peak demand over 50 kilowatts.
IESO decides the wholesale price according to the rela-
tionship between buyers and suppliers in the real-time
market, and bidding price is dynamically changing hourly
[25].

In the union of Hourly Ontario Electric Price (HOEP),
predispatch price (PDP) is generated as electricity price
forecasting by IESO. IESO publishes PDPs in each hour for
the next three hours on the website. Nevertheless, there is a
clear inconformity between PDPs and HOEPs. Related
deviation located in the year 2015 is around 38.49%,
according to the definition (1/n) 

n
i�1 abs(HOEPi − PDPi).

If we intend to maximize the profits of BESS running, it is
not advisable that decisions of operational scheduling are
dependent on PDP, which cannot include sufficient infor-
mation of price spikes. Consequently, it is necessary to
devise an effective price forecasting model to provide ac-
curate price prediction adaptive in the short and long terms.
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Figure 3: Results of VMD decomposition for IMF1 from EMD decomposition.
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As shown in Figure 7, great fluctuation of nonstationary
price series is remarkable and locations of the daily peak
distribute stochastically in view. With a combination of

short-long term price forecasting, IESO could simply give a
conclusion if the current hour has attained the peak price in
the trading market. -e information of Market Clear Price,
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Figure 4: Results of VMD decomposition for IMF2 from EMD decomposition.
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Ontario demand, total generation, etc., are included in the
dataset. MCPs, which are set every five minutes, are used for
single step prediction, and HOEP, a mean value of 12 MCPs
in each hour, supports multistep prediction.

Some exogenous factors could be incorporated into
electricity price short-term forecasting and scheduling of
BESS models, involving weather, periodic information, and
economic conditions [46]. Research has evaluated

performances of several exogenous factors in the task of
HOEP forecasting [47]. In our experiment, some electricity
trading features including state load profiles, electricity
consumption demand, generation magnitude, and flows are
selected as inputs to devised models. In addition, other
studies have reported an apparent influence of MCPs on
price forecasting [11]. -erefore, we import historical MCPs
into consideration for price short-term forecasting. To

imf2 imf3 imf4 imfk res

imf3′ imf4′ imfk′ res′

imf1

Forecasitng based on TCMS-CNN Forecasitng based on TCMS-CNN 
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M11′ M12′ M1n′ M21′ M22′ M2n′

Summation of forecast values

Forecast electricity price series

First decomposition using EEMD

Second decomposition using VMD

Original electricity price series

Figure 6: Framework of our proposed electricity price forecasting with an end-to-end structure.-e original price series is first decomposed
using EEMD. According to fuzzy information entropy, two nonstationary components are selected to be decomposed by VMD furthermore.
A different group of significant components is sent to the TCMS-CNNmodel for price forecasting respectively. Both results of branches are
added as the final price prediction.
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increase additional significant features of periodicity, sine-
cosine encoding is also included as well.

At the beginning, in this dataset, small quantities of data
are lost and redundant, and we restore the lost data by the
nearest neighborhood interpolation and remove the re-
dundant information. In addition, the dataset is divided into
a training set, validation set, and testing set by 80%, 10%,
10%, respectively. Finally, the MCP in Ontario dataset is
normalized into 0-1, which can reduce the error of the
experimental results due to the drastic change of gradient.

3.2. Neural Network Training. Two subnetworks MS-CNN
and fully connected networks, build up the baseline of our
proposed model based on a multiscale deep convolutional
neural network.-e subnetwork on the left is MS-CNN, and
the input data sequences contain historical load, holiday,
and periodical coding. Subnetworks on the right hold two
full connection layers, inputs of which are periodic encoding
of many predicted steps. -e representation vectors output
from the two subnetworks are concatenated as inputs of the
top-level fully connected layer for generating loads at the
predicted steps. -is framework ensures the model obtains
sufficient characteristics, which enhances the understanding
of the dataset. -e parameters of our proposed model based
on deep learning are shown in Table 1.

-e training process of our proposed deep learning
model is described in Figure 8, where after 20 epochs, the
loss of target function will stay close to 0.00. Entire steady
training denotes a better robustness complexity in deep
learning computation, which implies excellent effectiveness
of our proposed multiscale dilated convolutional neural
network for electricity price forecasting. In experiments, the
average time of forward inference is close to 0.02 seconds.
All experiments were conducted on a cloud server with two
NVIDIA P4 computing cards and the CPU with 8 cores. -e

implementations of machine learning tools are based on the
StatsModels and scikit-learn packages, respectively. Other
neural network-based models are realized by the Keras
framework with Tensorflow backend.

3.3. Evaluation Metrics. -is section evaluates the perfor-
mance of electricity price forecasting from the perspective of
statistics. Our forecasting model is trained on the dataset
from the electricity market in Ontario, Canada, from 2012-
2014 and tested on the data in 2015. -e loss function of
training adopts mean square error (MSE), and its calculation
formula is as follows:

mse �
1
m



m

i�1
yi − y
∧

i 
2
, (5)

where m represents the total number of data samples, yi

denotes the ground truth, and y
∧

i expresses the predicted
values.
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Figure 7: Illustration of electricity price fluctuation.

Table 1: Shared parameters of neural network models and related
strategies selected.

Parameters MS-CNN
Depth 34
Hidden neural None
Kernel size 8
Kernel number 24
Batch size 128
Input length 336
Dropout rate 0.05
Loss function MSE
Optimizing method AMSGrad
Start learning rate 0.01
Learning rate decay 0.3
Training stop Early stopping
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Mean absolute error (mae), root mean square error
(rmse), and r-Square (r2) are used as evaluation metrics,
and related formulas are defined as equations (6)–(8), re-
spectively. -e first two evaluation criteria are different
description forms of error and a smaller value is preferred
and reflects a better prediction result. In r2, the numerator
part represents the sum of the square difference between real
value and predicted value, and the denominator part tells the
sum of the square difference between real value and mean
value. -e value range of r2 is [0, 1]. If the result is 0, the
model fitting effect is very poor; if the result equals 1, the
model is error free. In general, a larger value r2 holds, the
fitting effect is more acceptable. yi denotes mean value of
samples.

mae �
1
m



m

i�1
yi − y
∧

i 




, (6)

rmse �

�������������

1
m



m

i�1
yi − y
∧

i 
2




, (7)

r
2

� 1 −
i y
∧

i − yi 
2

i yi − yi( 
2 . (8)

3.4. Statistical Analysis. In order to demonstrate the effec-
tiveness of our proposed multiple nonstationary decom-
position for electricity price forecasting, we use EEMD to
decompose original electricity price series and prove the

negative influence of IMFs with higher fuzzy information
entropy on the performance of forecasting model. In
practice, we choose multistep price prediction of 24 points
for ablation study and a forecasting model based on ResNet.
Experimental results are illustrated in Figure 9.

In the experiment, we acquired 8 IMFs and a res
components which are delivered to the forecasting model,
respectively, for 24 point prediction in a rolling manner.
-en, with the same hyperparameters and white noise
setting, the 24 points ground truth is (GT) also decomposed
into 8 IMFs and res as GT. -e difference between
decomposed signals and GT is marked in red. It is easily
found that IMF1 and IMF2 serve large distances because of
their higher and different frequency, which reflects non-
stationary EEMD IMFs will hurt the performance of price
forecasting.

-erefore, in order to further improve the prediction
accuracy, our proposed multiple nonstationary decompo-
sition adopts VMD to decompose nonstationary IMFs. In
our work, the threshold k is 2 and 2 IMFs is considered
respectively further. All products from EMD or VMD are
sent to TCMS-CNN for price forecasting respectively. -e
sum of all branches is the final prediction result. To verify the
advantage of our proposed model EEMD-VMD-CNN, we
compared it with the state-of-the-art works. TCMS-CNN
has proved its great predominance in short-term load
forecasting [20] and joined in our comparable study. Be-
sides, a combination of EEMD and CNN models has been
popular in the forecasting area providing attractive per-
formances [48, 49], which is also selected as a subject for
comparison called EEMD-CNN. Approaches based on
VMD and CNN emerge recently as another focus in fore-
casting topic [50, 51] called VMD-CNN in this paper. For
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Figure 8: Training process of our proposed model based on deep learning for price forecasting.
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fairness in ablation study, the CNN model is TCMS-CNN
and the dataset depends on Ontario’s market electricity price
dataset. Tables 2 and 3 show the single step and multistep of
24 hours prediction results of CNN, EEMD-CNN, VMD-
CNN, and EEMD-VMD-CNN according to MSE, RMSE,
MAE, and R2, respectively.

In Table 2, MSE, MAE, RMSE, and R2 of our proposed
model EEMD-VMD-CNN are 0.1583, 0.0801, 0.3978, and
0.8632, respectively, in single step price forecasting. In 24
hours multistep prediction, the MSE, MAE, RMSE, and R2
of the hybrid model EEMD-VMD-CNN are 0.4865, 0.2424,
0.6975, and 0.5791. -e prediction model EEMD-VMD-
CNN proposed in this paper has the minimum MSE value,
RMSE value, MAE value, and the maximum R2 value, which
shows that the prediction effect of the model is remarkably
superior. In addition, the performance of EEMD-CNN is
more acceptable than VMD-CNN in both forecasting tar-
gets. VMD tries to extract features in another semantic
space, and its experimental results imply the weakness of
hand-craft feature discrimination. Price forecasting merely
based on CNN is proved disadvantages obviously, since the
amount of extracted significant features falls behind other
hybrid models. Besides, accumulative errors lead to accurate

prediction of a single step against multistep forecasting.
Results of our ablation study demonstrate the predominance
of our proposed approach that holds a promising prospect in
electricity price forecasting.
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Figure 9: Forecasting results of each IMFs and res by EEMD, which shows nonstationary IMFs, affect the performances of electricity price
forecasting and significance of our proposed multiple nonstationary decompositions.

Table 2: Comparison results of CNN, EEMD-CNN, VMD-CNN,
and EEMD-VMD-CNN models for single step electricity price
forecasting.

Model CNN EEMD-CNN VMD-CNN EEMD-VMD-CNN
MSE 1.8735 0.4831 0.6453 0.1583
MAE 0.2578 0.1097 0.1846 0.0801
RMSE 1.3687 0.6951 0.8033 0.3978
R2 0.3067 0.6098 0.5763 0.8632

Table 3: Comparison results of CNN, EEMD-CNN, VMD-CNN,
and EEMD-VMD-CNN models for multistep electricity price
forecasting of 24 hours.

Model CNN EEMD-CNN VMD-CNN EEMD-VMD-CNN
MSE 3.1262 0.7667 0.9779 0.486 5
MAE 0.8976 0.5097 0.5764 0.242 4
RMSE 1.7681 0.8756 0.9889 0.6975
R2 0.1023 0.4034 0.3476 0.5791
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In order to show the prediction ability of our proposed
model more intuitively, the single step and multistep
forecasting results of each model are plotted in comparison
to the ground truth. As shown in Figures 10 and 11, the red
line of the true price series can closely match the prediction
curve and effectively capture its great fluctuations especially
sharp spikes. It shows that the hybrid model EEMD-VMD-
CNN proposed in this paper holds attractive prediction
ability on single-step or multistep electricity price
prediction.

In order to verify our proposed EEMD-VMD-CNN for
single step or multistep electricity price forecasting, we
imported another electricity price dataset collected from
New South Wales (NSW) to evaluate the performance and
quality of our proposed hybrid models. -e experimental
results are shown in Table 4, and it is found that our pro-
posed model provides more competitive performances over
MSE, MAE, RMSE, and R2 metrics. Although another
dataset of electricity price dataset is tested for the study,
EEMD-VMD-CNN served acceptable stable evaluations,
which demonstrates better robustness rather than the state-
of-the-art works. Specifically, the performances using the
NSW dataset of our and other models were relatively me-
diocre than Ontario’s as a result of different resolution in
both datasets. Ontario’s market electricity price dataset with
5 minutes MCPs contains great information to describe
nonlinear relationships in price fluctuation. Nevertheless,
the NSW dataset holds 30minutes resolutions and is not
good at reflecting sufficient potential rules in electricity price
sequences.

3.5. Economic Analysis. We evaluate multiple nonstationary
decomposition for electricity price forecasting from an
economic perspective. -erefore, the electricity price fore-
casting relying on our hybrid model EEMD-VMD-CNN is
applied in operations and dispatching of BESS in a local
microgrid, Ontario, Canada. -e microgrid plays a crucial
role of a backup power supply when the main grid is cut off.
-e emergency power supply of the key load in the
microgrid building should be provided by a 500 kW lithium-
ion battery. Part of the battery capacity is required to reserve
for emergency utilization. And rest capacity of storage could
be utilized for energy trading to the main grid. In experi-
ments, the capacity of the emergency load is defined as
150 kW. Battery’s depth of discharge (DOD) runs around
70% and 200 kW can participate in the trading market.

According to the real-time electricity price change, the
end-users in the power market can take corresponding
measures to deal with the changes of electricity price at
different times in each day in order to reduce their power
operation cost [52]. Compared with the total load of the
microgrid, the battery has a smaller volume, so any major
power flow problems will not occur when the battery is
running. -e purpose of BESS scheduling optimization is to
maximize profits. From another perspective, it is necessary
to reduce the total amount of energy purchased from the
electricity market in the peak period of high electricity
prices. At the same time, the microgrid is injected from BESS

in the price peak period because of the high price of elec-
tricity. In addition, nonprice factors such as renewable
energy fluctuation or load balance may also affect the normal
operation of the battery system in a microgrid. -ese factors
should also be taken into account when operators formulate
corresponding charging and discharging strategies. -ese
factors have less influence and are not the focus of our
research, and they are not considered here.

According to the electricity price forecast and historical
data, in order to facilitate comparison, the following four
charging and discharging strategies are considered:

(1) Our proposed strategy: this model denotes our
proposed multiple nonstationary decomposition for
electricity price forecasting, illustrated in Figure 6,
which adopts our presented TCMS-CNN that pro-
vides an excellent capacity of nonlinear relationships
in price fluctuations. -e multistep forecasting
branch focuses on hour-level variations to predict
rest hours price in one day, while the single-step
branch pays more attention to five-minute resolution
for the next 60 minutes forecasting. With both
forecasting targets, it offers a reliable estimation for
the detection of price spikes, which builds a solid
foundation for the operational scheduling of BESS.
-e operation of the battery is determined by
comparing the output of single step prediction and
multistep prediction. When the current single step
forecast price is higher than all subsequent multistep
forecast prices, the battery will discharge in price
spike, and vice versa.

(2) PDP Scheduling: price forecasting via PDP public
dataset. Nevertheless, these public datasets provide
larger granularity with hour-level that serves limited
information and cannot benefit optimization to
operations of BESS scheduling.

(3) Special strategy #1: mean price in hours calculated in
2003 and 2014, respectively, for supporting elec-
tricity price estimation. For acquiring the exact time
of discharging, the candidate time is decided when
the highest mean value comes, which is similar in
decisions of charging.

(4) Special strategy #2: whether discharging or charging
is decided according to previous day experiences of
price fluctuations.

In experiments, profits of comparative models are cal-
culated each month, as shown in Figure 12. -rough the
difference between maximum and minimum of an entire
day, the BESS scheduling is able to obtain up to $4553 of
potential profits over the year 2015. Specifically, the decision
of charging happens when the electricity price is located in
the statistical lowest level in the dataset, and vice versa. In
comparison, by applying our proposed multiple nonsta-
tionary decompositionmodel, 86.99% of the potential saving
can be captured (totally $3960). -e strategy of PDP
scheduling holds the potential saving of 12.28% profit (total
$559) only. Moreover, the special strategies #1 and #2 give
39.26% and 26.99% (totally $1787 and $1229), respectively.
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As PDP scheduling lives only on an hourly resolution
dataset, the profit margin is relatively lower, which dem-
onstrates the effectiveness of our hybrid model with fine-

grained resolution. -ese statistical results reflect the re-
markable performance of our proposed electricity fore-
casting model.
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Figure 11:-e result of 24-hour multistep prediction. Compared with single-step prediction, the predicted value curve has a relatively weak
fitting effect because of accumulative errors within the rolling process, but it can also capture most of the peak points.
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Our strategy has the highest economic benefit in every
month, and February is the best.

Table 5 shows the percentage of each strategy over
12months in year 2015 relative to the possible maximum
profits. Statistically, our proposed multiple nonstationary
decomposition model outperformed others in each month
and reached the highest income of 95.069 5% ($740 in total,
$779 in expectation) in February. Compared with other
methods, our proposed approach can increase the revenue

by 43.270 7% maximum and 25.542 4% minimum, re-
spectively, at least. -e model based on PDP scheduling
provides unacceptable performances because of low-res-
olution dataset that cannot provide more valuable infor-
mation. Both special strategy #1 and special strategy #2
have similar average performances but distinct in each
month. -ey are determined by statistical experience and
not convincing as a result of changes in microgrid structure
and behaviors of end-users. Only one-hour-ahead

Table 4: Comparison results of CNN, EEMD-CNN, VMD-CNN, and EEMD-VMD-CNNmodels for single step electricity price forecasting
using NSW dataset.

Model CNN EEMD-CNN VMD-CNN EEMD-VMD-CNN
MSE 4.363 1.281 7 1.008 9 0.585
MAE 1.581 0.956 2 0.69 0.273 4
RMSE 2.901 8 1.727 3 1.318 8 0.743 6
R2 0.205 6 0.473 5 0.451 6 0.772 5
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Figure 12: Monthly economic benefits of each model.

Table 5: -e percentage of each strategy over 12 months in the year 2015 relative to the ideal maximum profit (%).

Our proposed PDP Special Special
Nonstationary decomposition Scheduling Strategy #1 Strategy #2

Jan. 81.837 6 51.798 8 11.660 5 7.374 4
Feb. 95.069 5 8.163 9 29.213 6 12.116 5
Mar. 88.411 2 8.156 3 67.714 5 45.967 6
Apr. 86.453 6 10.294 6 55.565 7 22.988 7
May. 91.755 7 0.897 9 23.898 0 11.639 3
Jun. 90.357 5 2.620 7 31.324 6 52.630 4
Jul. 78.803 4 12.6221 55.212 5 41.011 6
Aug. 93.958 4 3.589 2 36.566 3 31.6441
Sep. 86.154 4 22.893 0 43.569 6 39.539 0
Oct. 50.6631 4.123 6 37.451 0 17.173 7
Nov. 92.006 3 13.672 6 69.5271 43.5491
Dec. 88.009 7 17.420 9 35.776 5 40.690 3
Average 85.29 12.946 3 41.456 7 30.527
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forecasting could grasp real-time trends in the electricity
market.

4. Conclusion

With emerging of hybrid models with signal decomposition,
popular methods like EMD and extended EMD approaches
cannot address the issue of nonstationary decomposed
components, which has a negative influence on the per-
formance of the forecasting unit. In this paper, we propose
an innovative electricity price forecasting model for the
optimization of operational scheduling in BESS from an
economic perspective. At first, we use EEMD to acquire
IMFs from the original price series. In addition to non-
stationary components with higher frequency and different
amplitudes, VMD is adopted to process them and produce
more stable modes. Moreover, all products from EEMD and
VMD are fed to our devised multiscale and time recognition
convolutional neural network for price forecasting, re-
spectively. Results of all branches are summed up as the final
prediction. In comparison to the state-of-the-art methods,
our presented approach reflects remarkable superior per-
formances, which strengthens optimization of scheduling in
BESS for the purpose of economic profits.-rough sufficient
economic analysis, in comparison to another scheduling
strategy, our method obtains the largest profit savings ob-
viously, which manifests a promising prospect in the elec-
tricity market.

-ere is a strong assumption that our BESS serves a
smaller capacity compared with the whole trading market,
which cannot influence the bidding prices and can be op-
erated without consideration of market factors. In contrast,
if the scale of BESS becomes larger, the influence of oper-
ations should be taken into account. Besides costs of
equipment maintenance and depreciation, investment in-
terests are not considered in our work that should not be
ignored in practice.

Future works contain designing more advanced multi-
task deep learning network to improve performances of
price forecasting and spike detection, which should be
adaptive in different electricity market using transfer
learning skills, in order to enhance generalization and ro-
bustness of our work. Furthermore, online learning should
be studied to promote the practicality of electricity fore-
casting models.
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