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Adaptive algorithms are widely used because of their fast convergence rate for training deep neural networks (DNNs). However,
the training cost becomes prohibitively expensive due to the computation of the full gradient when training complicated DNN. To
reduce the computational cost, we present a stochastic block adaptive gradient online training algorithm in this study, called
SBAG. In this algorithm, stochastic block coordinate descent and the adaptive learning rate are utilized at each iteration. We also
prove that the regret bound of O(

��
T

√
) can be achieved via SBAG, in which T is a time horizon. In addition, we use SBAG to train

ResNet-34 and DenseNet-121 on CIFAR-10, respectively. �e results demonstrate that SBAG has better training speed and
generalized ability than other existing training methods.

1. Introduction

Bene�tting from a great many data samples and complex
training model, deep learning has gained great interest in
recent years and has been applied in resource allocation
[1–4], signal estimation [5, 6], computer vision [7–9], and
so on. However, the computing cost is very high in the
training process of deep learning, which needs large
amounts of training data and iteration update to obtain
good model parameters. It is key to speed up model
training process and improve model performance.
�erefore, besides proposing new training architecture
[10], designing an e�ective training algorithm is also
important. �is study focuses on the design of e¡cient
training algorithms for deep neural networks (DNNs). In
fact, many questions in practice can be modeled to be an
optimization problem in general [11–13], which can be
solved by employing gradient-based methods. �e sto-
chastic gradient descent (SGD) method is an e�ective
optimization algorithm [14]. Moreover, it is easy to im-
plement because of its simplicity and is frequently used in
the training process of DNN.

Although the simplicity of stochastic gradient descents,
the problem of slow convergence rate always exists. �e
same learning rate is not suitable for all parameter updates
across the training process, especially in the case of sparse
training data. For this reason, a number of training methods
are presented to address this issue, for instance, AdaGrad
[15], RMSProp[16], AdaDelta [17], and Adam [18]. �ese
methods are referred as Adam-type algorithms since the
adaptive learning rates are employed. Further, Adam has
attained the most wide application in many deep learning
training tasks, such as optimization of convolutional neural
networks and recurrent neural networks [19, 20]. Despite its
popularity, Adam incurs the convergence issue. For this
reason, AMSGrad [21] was presented by introducing a
nonincreasing learning rate. Besides, the learning rates of the
Adam algorithm are either too big or too small, which results
in poor generalization performance. To avoid the learning
rate of extreme cases, a variant of Adam, Padam [22], was
presented via employing a partial adaptive parameter p.
SWATS [23] used the switch method from Adam to SGD.
AdaBound [24] limited the learning rate to a dynamic bound
over time at each iteration.
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In deep learning, gradient-based methods are used to
optimize the model parameter, which needs to calculate the
gradients of all coordinates in decision vectors at each it-
eration, and a huge number of data and complex model lead
to expensive computation cost. Randomized block coordi-
nate descent is an efficient method for high-dimensional
optimization problem and has been successfully utilized in
the large-scale problem generated in machine learning [25].
It divides the set of variables into different blocks and carries
out a gradient update step on a selected block coordinates
randomly at each iteration, while holding the remaining
ones fixed. In this way, the computational expense of each
iteration can be effectively reduced.

In this study, we propose a stochastic block adaptive
gradient online learning (SBAG) algorithm to rapidly train
DNN, which incorporates an adaptive learning rate and
stochastic block coordinate approach to improve the
generalization ability and computation cost. Our key
contributions are as follows:

• We present the SBAG algorithm based on the
stochastic block coordinate descent method and
AdaBound optimization algorithm to solve
high-dimensional optimization problems.

(i) We provide the theoretical analysis on the conver-
gence for SBAG. Moreover, we show that SBAG is
convergent in the convex setting under common
assumptions and its regret is bounded by O(

��
T

√
),

where T is the time horizon.
(ii) We demonstrate the performance of SBAG on a

public dataset. .e simulation results show that the
algorithm takes lesser time to achieve the best ac-
curacy on the training set and test set, and it out-
performs other methods.

.e rest of this study is arranged as follows. In the next
two sections, we will review the extant literature and in-
troduce related background. In Section 4, we will present
SBAG in detail. In Sections 5 and 6, we will describe our
convergence analysis and performance evaluation. Finally,
we present the conclusion of this paper in Section 7.

2. Related Work

SGD is one of the most popular algorithms used in DNN
because of its implementation easily. However, it has the
same learning rate for all parameters updated at each iter-
ation across the training process, and the parameters are
updated to the same extent no matter how different the
feature frequencies are, which consequently results in slow
convergence rate and poor performance. Hence, some
variants of SGD were proposed to improve its convergence
rate by either making the learning rate adaptive or using
historical gradient information for descent direction. Gha-
dimi et al. [26] used the Heavy-ball method to combine one-
order historical gradients and current gradients for updates.
Sutskever et al. [27] presented Nesterov’s accelerated gra-
dient (NAG) method. Duchi et al. [15] proposed AdaGrad
that first used an adaptive learning rate, whereas AdaGrad’s

performance is worse in the case of dense gradients because
all historical gradients are used in the updates, and this
limitation is more severe when dealing with high-dimen-
sional data in deep learning. Hinton [16] proposed
RMSProp, which utilizes an exponential moving average to
solve the problem that the learning rate drops sharply in
AdaGrad. Zeiler [17] proposed AdaDelta, which prevents
learning rate decay and gradient disappearance over time. In
fact, further research was to combine adaptive learning rate
with historical gradient information, such as those used in
Adam [18] and AMSGrad [21]. Moreover, Adam has a good
convergence rate in many scenarios. However, it was found
that Adammay not converge in the later stage of the training
process on account of oscillated learning rate. Reddi et al.
[21] presented AMSGrad, but the result of the experiments
was not much better than Adam. In general, Adam-type
algorithms have better performance on convergence, but
often do not work well as SGD in out of sample. To address
this issue, Keskar and Socher [23] proposed the SWATS
algorithm. SWATS utilizes Adam to learn in the early part of
the training and switches to SGD in the later stage of the
training. In this case, it enjoys the quick convergence rate of
Adam and the good performance of SGD, but the switching
time is difficult to determine in practice. Huang et al. [28]
presented NosAdam increasing the effect of past gradients on
parameter update to avoid trapping in local or divergence.
Nevertheless, it depends a lot on the initial conditions. Padam
[22] introduced a parameter p making the level of adaptivity
of the update process controlled. Luo et al. [24] proposed the
AdaBound algorithm, which provides a dynamic bound for
learning rate, and AdaBound is evaluated on a public dataset
and is shown to converge as fast as Adam and perform as well
as SGD. However, the aforementioned methods need to
calculate all coordinates of gradients in decision vectors at
each iteration, and computation cost will be aggravated due to
the high-dimensional data and complex model structure.

.e randomized block coordinate descent method is a
powerful and effective approach for the high-dimensional
optimization problem. It employs randomized strategies to
pick a block of variables to update per iteration. For general
gradient descent algorithms, all the coordinates of gradient
vector should be calculated each time. One can easily observe
that this will incur significant computing cost when dealing
with high-dimensional data. In contrast, the randomized
block coordinate method only calculates one block coor-
dinate of gradient vector, which is considered as the descent
direction. In particular, the randomized block method se-
lects a coordinate based on probability p and updates the
responding decision variable according to its descent di-
rection. In addition, other coordinates of decision vector
remain the same as the last time. Although the randomized
block coordinate method can save significant computing
cost for the learner, especially in optimization problems with
high dimension data, it uses the fixed learning rate that scales
the entries of gradient equally, and an adaptive learning rate
has not been applied in this method.

Compared with the current work, we combine the
randomized block coordinate descent method with an
adaptive learning rate in this study. At each iteration, a part
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of gradient vectors is picked randomly, and the corre-
sponding decision vectors are updated. In this way, the
gradient is then calculated based on the chosen block co-
ordinates instead of full gradients. Moreover, the extreme
learning rates are restricted to a suitable range. Our method
not only enjoys good generalization performance but also
saves computation cost.

3. Preliminaries

In this section, we first introduce the optimization problem
in detail. .en, we begin with the background about the
randomized block coordinate method.

3.1. $e Online Optimization Problem. In this work, the
analysis of sequence iteration optimization problem is based
on the online learning framework, which can be seen as a
trade-off between a learner (the algorithm) and an opponent.
In such an online convex setting, the learner selects a de-
cision point xt ∈ X produced by the algorithm per time step
t, t � 1, . . . , T, andX is a convex and compact subset of Rn.
At the same time, the opponent responds to the decision of
the learner with a loss function ft, which is convex and
unknown in advance, and the algorithm suffers a loss ft(xt).
Repeating the process, we have a sequence of loss functions
f1(x1), f2(x2), . . . , ft(xt)􏼈 􏼉 where ft: X⟶ R, and they
vary with time t. In general, the online learner’s prediction
problem can be represented as follows:

min
x∈X

􏽘

T

t�1
ft(x). (1)

For online learning tasks, the goal is to optimize the
regret RT of the online learner’s predictions against the
optimal decision in hindsight, which is defined as the dif-
ference in the total sum of loss functions 􏽐

T
t�1 ft(xt) after

performing online learning over T rounds and its minimum
value 􏽐

T
t�1 ft(x∗) in the deterministic decision point x∗. In

particular, we define the regret in the following:

RT � 􏽘
T

t�1
ft xt( 􏼁 − 􏽘

T

t�1
ft x∗( 􏼁, (2)

where x∗ ≔ argminx∈X ft(x), t � 1, 2, . . . , T. It is desired
that if the regret of online optimization algorithm is a
sublinear function of T, which suggests limT⟶∞RT/T � 0,
then, on average, the online learner executes just and the
fixed optimal decision afterwards. In other words, the
proposed algorithm converges when its RT is bounded.
.roughout this study, the diameter of convex compact set
X is assumed to be bounded and ‖∇ft(xt)‖ is bounded for
all t � 1, 2, . . . , T. Hereafter, ‖ · ‖ denotes the ℓ2 norm.

3.2. Relevant Definitions. Now, we will describe the relevant
definitions that are used in the next sections.

Definition 1. A function f(·): X⟶ R is L-Lipschitz,
where L is Lipschitz constant, and L> 0; if ∀x, y ∈ X,

|f(x) − f(y)|≤L‖x − y‖. (3)

Definition 2 (Equation (3.2) of Section 3 in [29]) A function
f(·): X⟶ R is convex and differentiable where X is a
convex set; if ∀x, y ∈ X,

f(y)≥f(x) +〈∇f(x), (y − x)〉. (4)

Definition 3. A function f(·): X⟶ R is σ-strongly
convex and differentiable, σ > 0, and if ∀x, y ∈ X,

f(y)≥f(x) +〈∇f(x), (y − x)〉 +
σ
2

‖x − y‖
2
. (5)

4. SBAG Algorithm and Assumptions

.is section presents the proposed algorithm, followed by
the common assumptions for convergence analysis of the
algorithm.

4.1. Algorithm Design. In this study, we develop the high-
dimensional online learning problems and aim to solve the
optimization problem (1) by incorporating the stochastic
block coordination method and adaptive learning rate.
Because the dimensionality n of the decision variable x is
high, the computing cost of the gradients is prohibitive. In
addition, the tuning of the learning rate is challenging. For
these reasons, a stochastic block coordinate adaptive opti-
mization algorithm, dubbed SBAG, is proposed for settling
the online problem (1). In our algorithm, the objective
functions at different times satisfy some conditions, which
are displayed in Assumption 1.

SBAG is described in Algorithm 1, whose input includes
x1 � 0, m1 � 0, and v1 � 0. .e parameters of SBAG are
β1t ∈ [0, 1), β1 ≜ β11, β2 ∈ [0, 1), and αt � 1/

�
t

√
, where

t � 1, 2, . . . , T. At each round t, a n order diagonal matrix Mt

is generated and includes random variables wt,i􏽮 􏽯 with
P(wt,i � 0) ≔ 1 − pt and P(wt,i � 1) ≔ pt, for
t � 0, 1, . . . , T and i � 1, . . . , n. In particular, the gradient dt

is computed as follows.

dt � Mt∇ft xt( 􏼁, (6)

where Mt ≜ diag wt􏼈 􏼉 � diag wt,1, wt,2, . . . , wt,n􏽮 􏽯, and ele-
ments of wt consist of 0 and 1. When wt,i � 1, it means that
the ith coordinate of decision vector is selected to calculate
the gradient at time t. From (6), one can observe that the
computation cost is greatly reduced at each iteration. In
addition, let Ht denotes the σ− algebra, which means Ht

consists of all variables before time t. More explicitly,
Ht � M1, M2, . . . , Mt−1􏼈 􏼉.

By Using dt, one and second momentum terms mt and
vt are obtained as follows, respectively.

mt � β1tmt−1 + 1 − β1t( 􏼁dt, (7)

vt � β2vt−1 + 1 − β2( 􏼁d2t . (8)
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Furthermore, SBAG introduces a bound of learning rate
as follows:

􏽥μt � Clip
α
��
Vt

􏽰 , μlow(t), μupp(t)􏼨 􏼩, (9)

where each element of the learning rate α/
��
Vt

􏽰
is clipped to

constrain in an internal at time t, and the upper and lower
bounds of the interval are μlow(t) and μupp(t), respectively.
.at is, the output of equation (9) is constrained in
[μlow(t), μupp(t)], and the technique was also used in
[23, 24]. Moreover, let

μt �
􏽥μt�

t
√ . (10)

.en, SBAG updates xt+1 as follows:

xt+1 � ΠX,diag μ−1
t{ } xt − μt°mt( 􏼁, (11)

where ° is the coordinate-wise product operator. Further-
more, the projection step of equation (11) is equivalent to the
following:

xt+1 � argminx∈X μ−1/2
t ° x − xt − μt°mt( 􏼁􏼂 􏼃

����
����. (12)

4.2. Assumptions. Before presenting the convergence anal-
ysis of SBAG, we will now introduce the below common
assumptions.

Assumption 1. Loss functions f1(x), f2(x), . . . , ft(x)􏼈 􏼉,
where t � 1, 2, . . . , T, are convex, differentiable, and
L-Lipschitz over X.

Assumption 2. In this study,X is a bounded feasible set; i.e.,
‖xi − xj‖≤B∞, where i, j ∈ 1, 2, . . . , T{ } and B∞ > 0.

Assumption 3. In this study, ‖∇ft(xt)‖ is bounded for all
t � 1, 2, . . . , T over X; i.e., ‖∇ft(xt)‖≤C∞, where C∞ > 0.

Assumptions 1–3 are some standard assumptions in the
literature, for example [18, 21, 24]. In addition, the con-
vergence of SBAG is analyzed based on these assumptions in
the following.

5. Convergence Analysis

Now, we will analyze the convergence of SBAG.We consider
the regret, equation (2), in the online optimization problem
(a typical scenario). .e proposed algorithm generates the
gradient dt with probability pt at time t. .erefore, dt is a
random variable. Moreover, xt is calculated by dt and xt−1 at
time t. According to the knowledge of probability and
statistics, the expectation should be considered when the
variable is randomized. .erefore, we define the regret of
SBAG as follows:

􏽢RT � 􏽘
T

t�1
E ft xt( 􏼁􏼂 􏼃 − ft x∗( 􏼁􏼂 􏼃. (13)

From the convexity of ft, it follows that

ft xt( 􏼁 − ft x∗( 􏼁≤∇ft xt( 􏼁
⊤ xt − x∗( 􏼁. (14)

Moreover, by the definition ofmatrixMt, we know thatMt

is a sparse matrix. .erefore, applying equation (14) leads to

Input: x1
Parameter: x1 ∈ X, and β1t ∈ [0, 1) where β11 � β1 and β2 ∈ [0, 1). pt denotes coordinate selection probability at time t.
Moreover, β1t � β1λ

t where λ ∈ (0, 1) and t � 1, 2, . . . , T.
Initially Set: m1 � 0 and v1 � 0.
Output: xt+1

(1) fort � 1, 2, 3, . . .do
(2) t←t + 1
(3) Generating diagonal matrix Mt � diag wt􏼈 􏼉 with probability pt

(4) dt,i �
∇ift(xt), wt,i � 1
0, wt,i � 0􏼨

(5) Generating gradient dt � [dt,1dt,2 . . . dt,n]

(6) mt � β1tmt−1 + (1 − β1t)dt

(7) vt � β2vt−1 + (1 − β2)d
2
t

(8) 􏽢vt � max vt, vt−1􏼈 􏼉 and Vt � diag 􏽢vt􏼈 􏼉

(9) 􏽥μt � Clip α/
���
Vt

􏽰
, μlow(t), μupp(t)􏽮 􏽯

(10) μt � 􏽥μt/
�
t

√

(11) xt+1 � ΠX,diag μ−1
t{ }(xt − μt°mt)

(12) end for
(13) returnxt+1

ALGORITHM 1: SBAG.
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ft xt( 􏼁 − ft x∗( 􏼁≤ Mt∇ft xt( 􏼁
⊤ xt − x∗( 􏼁

����
����

+∇ft xt( 􏼁
⊤ xt − x∗( 􏼁 � d⊤t xt − x∗( 􏼁

����
���� + ∇ft xt( 􏼁

⊤ xt − x∗( 􏼁.

(15)

Taking conditional expectation (conditioned on Ht) on
both sides of equation (15), it implies that

E ft xt( 􏼁|H
t

􏽨 􏽩 − E ft x∗( 􏼁|H
t

􏽨 􏽩

≤E d⊤t xt − x∗( 􏼁
����

����|H
t

􏽨 􏽩 + E ∇ft xt( 􏼁
⊤ xt − x∗( 􏼁|H

t
􏽨 􏽩.

(16)

By equation (1.1f) of Section 4 in [30], and taking un-
conditional expectation for equation (16), it follows that

E ft xt( 􏼁􏼂 􏼃 − ft x∗( 􏼁]

≤E d⊤t xt − x∗( 􏼁
����

����􏽨 􏽩 + E ∇ft xt( 􏼁
⊤ xt − x∗( 􏼁􏽨 􏽩.

(17)

From equations (13) and (17), the following equation
holds

􏽢RT � 􏽘
T

t�1
E d⊤t xt − x∗( 􏼁

����
����􏽨 􏽩 + 􏽘

T

t�1
E ∇ft xt( 􏼁

⊤ xt − x∗( 􏼁􏽨 􏽩.

(18)

To get the bound of 􏽢RT, we should consider the two
terms on the right side of equation (18). .us, we first

propose the following lemmata to estimate term
􏽐

T
t�1 E[‖d⊤t (xt − x∗)‖].

Lemma 1. If Assumptions 1 to 3 are satisfied, sequences
xt􏼈 􏼉, mt􏼈 􏼉, and vt􏼈 􏼉 are generated by SBAG with

t ∈ 1, 2, . . . , T{ }. Moreover, X is a convex and compact set.
β1 ≔ β11, β1t ≤ β1(t−1) ≤ β1, and β1/

��
β2

􏽰
≤ 1 for t � 1, . . . , T.

In addition, suppose μlow(t + 1)≥ μlow(t)≥ 0, μupp(t + 1)≤
μupp(t), and limt⟶∞μlow(t) � limt⟶∞μupp(t) � α, where
α> 0. Let L∞ ≔ μlow(1), U∞ ≔ μupp(1), and
pt ∈ [pmin, pmax]. $en, we have the following relation:

􏽘

T

t�1
E μ1/2t °mt

����
����
2

􏼔 􏼕≤
pmaxβ1U∞(2

��
T

√
− 1)

1 − β1
􏽘

n

i�1
d1: T,i

����
����
2
.

(19)

Proof. From equations (9) and (10), it follows that
�
t

√
μt

����
����∞≤ μupp(t)≤ μupp(1) ≔ U∞, (20)

and
�
t

√
μt

����
����∞≥ μlow(t)≥ μlow(1) ≔ L∞. (21)

From equations (20) and (21), and by property of ex-
pectation, it can be verified that

􏽘

T

t�1
E μ1/2t °mt

����
����
2

􏼔 􏼕≤ 􏽘
T

t�1
E mt

����
����
2U∞�

t
√􏼢 􏼣 � U∞􏽘

T

t�1

pt mt

����
����
2

�
t

√ ≤pmaxU∞􏽘

T

t�1

mt

����
����
2

�
t

√ ,

� pmaxU∞ 􏽘

T−1

t�1

mt

����
����
2

�
t

√ + pmaxU∞􏽘

n

i�1

m
2
T,i��
T

√ .

(22)

Plugging equation (7) into equation (22), it yields

􏽘

T

t�1
E μ1/2t °mt

����
����
2

􏼔 􏼕

≤pmaxU∞ 􏽘

T−1

t�1

mt

����
����
2

�
t

√

+
pmaxU∞��

T
√ 􏽘

n

i�1
􏽘

T

j�1
1 − β1j􏼐 􏼑 􏽙

T− j

k�1
β1(T− k+1)dj,i

⎛⎝ ⎞⎠

2

􏽼√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√􏽽
(a)

.

(23)

By Cauchy–Schwarz inequality, we further bound the
term (a) of equation (23) and have

(a)≤ 􏽘
n

i�1
􏽘

T

j�1
􏽙

T−j

k�1
β1(T−k+1)

⎡⎢⎢⎣ ⎤⎥⎥⎦ 􏽘

T

j�1
􏽙

T−j

k�1
β1(T−k+1)d

2
j,i

⎡⎢⎢⎣ ⎤⎥⎥⎦

≤ 􏽘
n

i�1
􏽘

T

j�1
βT−j
1

⎛⎝ ⎞⎠ 􏽘

T

j�1
βT−j
1 d

2
j,i

⎛⎝ ⎞⎠

≤
1

1 − β1
􏽘

n

i�1
􏽘

T

j�1
βT−j
1 d

2
j,i.

(24)

.e second inequality of equation (24) follows from the
fact β1k ≤ β1 for all k ∈ 1, . . . , T{ }. In addition, the third
inequality of equation (24) is due to the inequality
􏽐

T
j�1 β

T−j
1 ≤ 1/1 − β1. Moreover, plugging equation (24) into

equation (23) leads to
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􏽘

T

t�1
E μ1/2t °mt

����
����
2

􏼔 􏼕≤pmaxU∞ 􏽘

T−1

t�1

mt

����
����
2

�
t

√

+
pmaxU∞

1 − β1( 􏼁
��
T

√ 􏽘

n

i�1
􏽘

T

j�1
βT−j
1 d

2
j,i

≤
pmaxU∞
1 − β1

􏽘

T

t−1

1
�
t

√ 􏽘

n

i�1
􏽘

t

j�1
βt−j
1 d

2
j,i

≤
pmaxU∞
1 − β1

􏽘

n

i�1
􏽘

T

t−1

1
�
t

√ 􏽘

t

j�1
βt−j
1 d

2
j,i

≤
pmaxU∞
1 − β1

􏽘

n

i�1
􏽘

T

t−1
d
2
t,i 􏽘

t

j�1

βt−j
1�
j

􏽰

≤
pmaxβ1U∞
1 − β1

􏽘

n

i�1
􏽘

T

t−1
d
2
t,i 􏽘

t

j�1

1
�
j

􏽰 .

(25)

Moreover, since 􏽐
T
t�1 1/

�
t

√
≤ 1 + 􏽒

T

1 1/
�
t

√
dt � 2

��
T

√
− 1,

and by equation (25), it follows that

􏽘

T

t�1
E μ1/2t °mt

����
����
2

􏼔 􏼕≤
pmaxβ1U∞(2

��
T

√
− 1)

1 − β1
􏽘

n

i�1
􏽘

T

t−1
d
2
t,i

≤
pmaxβ1U∞(2

��
T

√
− 1)

1 − β1
􏽘

n

i�1
d1: T,i

����
����
2
.

(26)

.erefore, the proof of Lemma 1 is completed. Next, we
introduce Lemma 2 to estimate the term
􏽐

T
t�1 E[‖d⊤t (xt − x∗)‖]. □

Lemma 2. If Assumptions 1 to 3 are satisfied, sequences
xt􏼈 􏼉, mt􏼈 􏼉, and vt􏼈 􏼉 are generated by SBAG with

t ∈ 1, 2, . . . , T{ }. Moreover, X is a convex and compact set.
β1 ≔ β11, β1t ≤ β1(t−1) ≤ β1, and β1/

��
β2

􏽰
≤ 1, for t � 1, . . . , T.

In addition, suppose μlow(t + 1)≥ μlow(t)≥ 0, μupp(t + 1)≤
μupp(t), and limt⟶∞μlow(t) � limt⟶∞μupp(t) � α, where
α> 0. Let L∞ ≔ μlow(1), U∞ ≔ μupp(1), and
pt ∈ [pmin, pmax]. $en, we have the following:

􏽘

T

t�1
E d⊤t xt − x∗( 􏼁

����
����􏽨 􏽩≤

B
2
∞L∞

��
T

√

2 1 − β1( 􏼁pmin
+

β1B
2
∞L∞

2 1 − β1( 􏼁(1 − λ)pmin

+
pmaxβ1U∞(2

��
T

√
− 1)

1 − β1( 􏼁
2 􏽘

n

i�1
d1: T,i

����
����
2
.

(27)

Proof. Let x∗ ≔ argminx∈X ft(x) with t � 1, 2, . . . , T. By

equations (11) and (12), the following equation holds

xt+1 � ΠX,diag μ−1
t{ } xt − μt°mt( 􏼁

� argminx∈X μ−1/2
t ° x − xt − μt°mt( 􏼁􏼂 􏼃

����
����.

(28)

Using Lemma 3 of [31], it can be proved that

μ−1/2
t ° xt+1 − x∗( 􏼁

����
����
2
≤ μ−1/2

t ° xt − μt°mt( 􏼁 − x∗( 􏼁
����

����
2

� μ−1/2
t ° xt − x∗( 􏼁

����
����
2

− 2m⊤t xt − x∗( 􏼁

+ μ1/2t °mt
����

����
2
.

(29)

Substituting equation (7) into equation (29) yields

μ−1/2
t ° xt+1 − x∗( 􏼁

����
����
2
≤ μ−1/2

t ° xt − x∗( 􏼁
����

����
2

+ μ1/2t °mt
����

����
2

− 2 β1tmt− 1 + 1 − β1t( 􏼁dt􏼂 􏼃
⊤ xt − x∗( 􏼁,

� μ−1/2
t ° xt − x∗( 􏼁

����
����
2

+ μ1/2t °mt
����

����
2

− 2β1tm
⊤
t−1 xt − x∗( 􏼁 − 2 1 − β1t( 􏼁d⊤t xt − x∗( 􏼁.

(30)

Rearranging the terms of equation (30), and by
β1t ≤ β1(t−1), it follows that

d⊤t xt − x∗( 􏼁≤
μ−1/2

t ° xt − x∗( 􏼁
����

����
2

2 1 − β1t( 􏼁
+

μ1/2t °mt
����

����
2

2 1 − β1t( 􏼁

−
β1tm
⊤
t−1 xt − x∗( 􏼁

1 − β1t

−
μ−1/2

t ° xt+1 − x∗( 􏼁
����

����
2

2 1 − β1t( 􏼁

≤
μ−1/2

t ° xt − x∗( 􏼁
����

����
2

− μ−1/2
t ° xt+1 − x∗( 􏼁

����
����
2

2 1 − β1t( 􏼁
+

μ1/2t °mt
����

����
2

2 1 − β1t( 􏼁
+
β1tm
⊤
t−1 xt − x∗( 􏼁

1 − β1t

.

(31)
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Applying Young’s inequality and the Cauchy–Schwarz
inequality into equation (31) leads to

d⊤t xt − x∗( 􏼁≤
μ−1/2

t ° xt − x∗( 􏼁
����

����
2

− μ−1/2
t ° xt+1 − x∗( 􏼁

����
����
2

2 1 − β1t( 􏼁

+
μ1/2t °mt

����
����
2

2 1 − β1t( 􏼁
+

β1t

2 1 − β1t( 􏼁
μ1/2t °mt− 1

����
����
2

+
β1t

2 1 − β1t( 􏼁
μ−1/2

t ° xt − x∗( 􏼁
����

����
2
.

(32)

Summing equation (32) over t ∈ 1, 2, . . . , T{ } and taking
expectation on the obtained relation imply that

􏽘

T

t�1
E d⊤t xt − x∗( 􏼁

����
����􏽨 􏽩≤E

μ−1/2
t ° xt − x∗( 􏼁

����
����
2

− μ−1/2
t ° xt+1 − x∗( 􏼁

����
����
2

2 1 − β1t( 􏼁
⎡⎢⎢⎣ ⎤⎥⎥⎦

+
1

2 1 − β1t( 􏼁
E μ1/2t °mt

����
����
2

+ μ1/2t °mt− 1
����

����
2

􏼔 􏼕 +
1

2 1 − β1t( 􏼁
E β1t μ−1/2

t ° xt − x∗( 􏼁
����

����
2

􏼔 􏼕

≤E
μ−1/2

t ° xt − x∗( 􏼁
����

����
2

− μ−1/2
t ° xt+1 − x∗( 􏼁

����
����
2

2 1 − β1( 􏼁
⎡⎢⎢⎣ ⎤⎥⎥⎦ +

1
2 1 − β1( 􏼁

E μ1/2t °mt
����

����
2

+ μ1/2t °mt− 1
����

����
2

􏼔 􏼕

+
1

2 1 − β1( 􏼁
E β1t μ−1/2

t ° xt − x∗( 􏼁
����

����
2

􏼔 􏼕.

(33)

By Lemma 1 and equation (33), it follows from that

􏽘

T

t�1
E d⊤t xt − x∗( 􏼁

����
����􏽨 􏽩≤ 􏽘

T

t�1
E

μ−1/2
t ° xt − x∗( 􏼁

����
����
2

2 1 − β1( 􏼁
⎡⎢⎢⎣ ⎤⎥⎥⎦≤ − 􏽘

T

t�1
E

μ−1/2
t ° xt+1 − x∗( 􏼁

����
����
2

2 1 − β1( 􏼁
⎡⎢⎢⎣ ⎤⎥⎥⎦

+ 􏽘
T

t�1

E β1t μ−1/2
t ° xt − x∗( 􏼁

����
����
2

􏼔 􏼕

2 1 − β1( 􏼁
+

pmaxβ1U∞(2
��
T

√
− 1)

1 − β1( 􏼁
2 􏽘

n

i�1
d1: T,i

����
����
2

≤E 􏽘
n

i�1

μ−1
1,i x1,i − x

∗
i􏼐 􏼑

2

2 1 − β1( 􏼁
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + E 􏽘

T

t�2
􏽘

n

i�1

μ−1
t,i xt,i − x

∗
i􏼐 􏼑

2
− μ−1

t−1,i xt,i − x
∗
i􏼐 􏼑

2

2 1 − β1( 􏼁
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+ 􏽘
T

t�1
􏽘

n

i�1

E β1tμ
−1
t,i xt,i − x

∗
i􏼐 􏼑

2
􏼔 􏼕

2 1 − β1( 􏼁
+

pmaxβ1U∞(2
��
T

√
− 1)

1 − β1( 􏼁
2 􏽘

n

i�1
d1: T,i

����
����
2
.

(34)

Since μt � 􏽥μt/
�
t

√
� α/

���
t􏽢vt

􏽰
and 􏽢vt � max vt, vt−1􏼈 􏼉, we

have 0< μt ≤ μt−1. .erefore, we further obtain μ−1
t ≥ μ−1

t−1.
.en, from equation (34), it can be proved that
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􏽘

T

t�1
E d⊤t xt − x∗( 􏼁

����
����􏽨 􏽩≤E 􏽘

n

i�1

μ−1
1,i x1,i − x

∗
i􏼐 􏼑

2

2 1 − β1( 􏼁
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+ E 􏽘
T

t�2
􏽘

n

i�1

μ−1
t,i xt,i − x

∗
i􏼐 􏼑

2
− μ−1

t−1,i xt,i − x
∗
i􏼐 􏼑

2

2 1 − β1( 􏼁
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + 􏽘

T

t�1
􏽘

n

i�1

E β1tμ
−1
t,i xt,i − x

∗
i􏼐 􏼑

2
􏼔 􏼕

2 1 − β1( 􏼁

+
(2

��
T

√
− 1)pmax2U∞C

2
∞

1 − β1
≤E 􏽘

n

i�1

μ−1
T,i xT,i − x

∗
i􏼐 􏼑

2

2 1 − β1( 􏼁
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + 􏽘

T

t�1
􏽘

n

i�1

E β1tμ
−1
t,i xt,i − x

∗
i􏼐 􏼑

2
􏼔 􏼕

2 1 − β1( 􏼁

+
pmaxβ1U∞(2

��
T

√
− 1)

1 − β1( 􏼁
2 􏽘

n

i�1
d1: T,i

����
����
2
.

(35)

Applying Assumption 2 and property of expectation
yields

􏽘

T

t�1
E d⊤t xt − x∗( 􏼁

����
����􏽨 􏽩≤

B
2
∞

2 1 − β1( 􏼁pmin
􏽘

n

i�1
μ−1

T,i

+
B
2
∞

2 1 − β1( 􏼁pmin
􏽘

T

t�1
􏽘

n

i�1
β1tμ

−1
t,i +

pmaxβ1U∞(2
��
T

√
− 1)

1 − β1( 􏼁
2 􏽘

n

i�1
d1: T,i

����
����
2

≤
B
2
∞L∞

��
T

√

2 1 − β1( 􏼁pmin
+

β1B
2
∞L∞

2 1 − β1( 􏼁(1 − λ)pmin
+

pmaxβ1U∞(2
��
T

√
− 1)

1 − β1( 􏼁
2 􏽘

n

i�1
d1: T,i

����
����
2
.

(36)

.erefore, the proof of Lemma 2 is completed. Next, we
estimate the last term in (18). □

Lemma 3. If Assumptions 1 to 3 are satisfied, sequences
xt􏼈 􏼉, mt􏼈 􏼉, and vt􏼈 􏼉 are generated by SBAG with

t ∈ 1, 2, . . . , T{ }. Moreover, X is a convex and compact set.

β1 ≔ β11, β1t ≤ β1 and β1/
��
β2

􏽰
≤ 1, for t � 1, . . . , T. In addi-

tion, suppose μlow(t + 1)≥ μlow(t)≥ 0, μupp(t + 1)≤ μupp(t),
and limt⟶∞μlow(t) � limt⟶∞μupp(t) � α, where α> 0. Let
L∞ ≔ μlow(1) and U∞ ≔ μupp(1). $en, we attain the fol-
lowing inequality:

􏽘

T

t�1
E ∇ft xt( 􏼁

⊤ xt − x∗( 􏼁􏽨 􏽩≤
B
2
∞L∞

��
T

√

2 1 − β1( 􏼁

+
β1B

2
∞L∞

2 1 − β1( 􏼁(1 − λ)
+
β1U∞(2

��
T

√
− 1)

1 − β1( 􏼁
2 􏽘

n

i�1
d1: T,i

����
����
2
.

(37)

Proof. For the original full gradient, we have E[∇ft(xt)] �

∇ft(xt). Let mt
′ ≔ β1tmt−1′ + (1 − β1t)∇ft(xt), vt

′ � β2vt−1′+
(1 − β2)∇f2

t (xt), and μt
′ � 􏽥μt
′/

�
t

√
, which are generated by

AdaBound [24].
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.e proof of Lemma 3 is similar to that of .eorem 4 in
[24]. Starting with the following inequality implies

􏽘

T

t�1
E ∇ft xt( 􏼁

⊤ xt −x∗( 􏼁
����

����􏽨 􏽩≤
μ′−1/2t ° xt −x∗( 􏼁

�����

�����
2

− μ′−1/2t ° xt+1 −x∗( 􏼁
�����

�����
2

2 1−β1( 􏼁

+
μ′1/2t °mt′

�����

�����
2

+ μ′1/2t °mt−1′
�����

�����
2

2 1−β1( 􏼁
+
β1t μ′−1/2t ° xt −x∗( 􏼁

�����

�����
2

2 1−β1( 􏼁

≤
μ′−1/2t ° xt −x∗( 􏼁

�����

�����
2

− μ′−1/2t ° xt+1 −x∗( 􏼁
�����

�����
2

2 1−β1( 􏼁
+
β1t μ′−1/2t ° xt −x∗( 􏼁

�����

�����
2

2 1−β1( 􏼁

+
β1U∞(2

��
T

√
−1)

1− β1( 􏼁
2 􏽘

n

i�1
d1: T,i

����
����
2≤

B
2
∞L∞

��
T

√

2 1−β1( 􏼁
+

β1B
2
∞L∞

2 1−β1( 􏼁(1−λ)
+
β1U∞(2

��
T

√
−1)

1− β1( 􏼁
2 􏽘

n

i�1
d1: T,i

����
����
2
.

(38)

.erefore, the proof of Lemma 3 is finished.
To attain the bound of regret 􏽢RT in equation (18), we

establish .eorem 1 as follows. □

Theorem 1. Suppose that Assumptions 1 to 3 are satisfied,
and sequences xt􏼈 􏼉, mt􏼈 􏼉, and vt􏼈 􏼉 are generated by SBAG
with t ∈ 1, 2, . . . , T{ }. Moreover, X is a convex and compact
set. β1 ≔ β11, β1t ≤ β1, and β1/

��
β2

􏽰
≤ 1 for t � 1, . . . , T. In

addition, suppose μlow(t + 1)≥ μlow(t)≥ 0, μupp(t + 1)≤
μupp(t), and limt⟶∞μlow(t) � limt⟶∞μupp(t) � α, where
α> 0. Let L∞ ≔ μlow(1), U∞ ≔ μupp(1), and
pt ∈ [pmin, pmax]. We obtain the bound of regret as follows:

􏽢RT ≤
1 + pmin( 􏼁B

2
∞L∞

��
T

√

2 1 − β1( 􏼁pmin
+

β1 1 + pmin( 􏼁B
2
∞L∞

2 1 − β1( 􏼁(1 − λ)pmin

+
1 + pmax( 􏼁β1U∞(2

��
T

√
− 1)

1 − β1( 􏼁
2 􏽘

n

i�1
d1: T,i

����
����
2
.

(39)

Proof. Applying lemmata 1, 2, and 3 into (18) yields

􏽢RT ≤
B
2
∞L∞

��
T

√

2 1 − β1( 􏼁pmin
+

β1B
2
∞L∞

2 1 − β1( 􏼁(1 − λ)pmin

+
pmaxβ1U∞(2

��
T

√
− 1)

1 − β1( 􏼁
2 􏽘

n

i�1
d1: T,i

����
����
2

+
B
2
∞L∞

��
T

√

2 1 − β1( 􏼁

+
β1B

2
∞L∞

2 1 − β1( 􏼁(1 − λ)
+
β1U∞(2

��
T

√
− 1)

1 − β1( 􏼁
2 􏽘

n

i�1
d1: T,i

����
����
2

�
1 + pmin( 􏼁B

2
∞L∞

��
T

√

2 1 − β1( 􏼁pmin
+

β1 1 + pmin( 􏼁B
2
∞L∞

2 1 − β1( 􏼁(1 − λ)pmin

+
1 + pmax( 􏼁β1U∞(2

��
T

√
− 1)

1 − β1( 􏼁
2 􏽘

n

i�1
d1: T,i

����
����
2
.

(40)

.erefore, we complete the proof of .eorem 1.
From .eorem 1, we obtain limT⟶∞

􏽢RT/T � 0. .is

suggests that SBAG is convergent. In addition, the bound of
regret 􏽢RT is O(

��
T

√
); i.e., given some accuracy ε, it requires

an order of O(1/ε2) iterations at least to achieve the given
accuracy. □

6. Performance Evaluation

In this section, we perform our experiments on a public
dataset to evaluate the performance of algorithm objectively.
We consider the machine learning problem, multi-classifi-
cation tasks taking advantage of the DNN for the
experiments.

6.1. Setup. To assess our SBAG algorithm, we research the
performance on the classification task problem. We use the
CIFAR-10 [32] dataset for our experiments, which is widely
used for classification problem. It consists of 10 classes and
50000 training samples and 10000 test samples.

For the experiments, we use the convolutional neural
network to solve classification tasks on the CIFAR-10 image
dataset, which has a good effect on image classification and
object recognition, and specifically implement ResNet-34
[33] and DenseNet-121 [34].

6.2. Parameters. To study the performance of our proposed
algorithm, we compare SBAG with SGD [14], AdaGrad [15],
and AdaBound [24]. .e hyper-parameters of these algo-
rithms are initialized as follows.

For SGD, the scale of the learning rate is selected from
the set 100, 10, 1, 0.1, 0.01{ }. AdaGrad uses the initialized
learning rate set 5e − 2, 1e − 2, 5e − 3, 1e − 3, 5e − 4{ }, and
the value 0 is set for the initial accumulator value of Ada-
Grad. .e value of hyper-parameters of AdaBound is set the
same as Adam. We directly use the initialized hyper-pa-
rameter values of AdaBound in our algorithm. In addition,
we set the probability of choosing a coordinate from these
values in the set 0.10%, 0.50%, 1.00%, 5.00%,{ 10.00%,

50.00%}.
In addition, we define the dynamic bound functions

following with [24] for our simulation experiments, i.e.,

μlow(t) � 0.1 −
0.1

1 − β2( 􏼁t + 1
, (41)
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and

μupp(t) � 0.1 +
0.1

1 − β2( 􏼁t
. (42)

6.3. Results. We take account of the image multi-class
classification problem on the CIFAR-10 dataset using
ResNet-34 and DenseNet-121 and run 200 epoch in this
experiment. First, we operate a group of experiments with
epochs and runtime for ResNet-34 and DenseNet-121 on

CIFAR-10. .e findings of experiments are reported in
Figure 1, and when completing the same number of it-
erations of 200 epochs, our method takes the least time,
and the AdaBound spends the most time. .e main reason
is that only several blocks of coordinates are calculated in
the gradient descent process for our algorithm at each
iteration t, while the compared algorithms calculate the
full gradients at each iteration. Moreover, AdaBound
combines the first- and second-order momentum, while
SGD and AdaGrad only use first-order gradients; thus,
SGD and AdaGrad incur less time than AdaBound. .e
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Figure 1: Running time with epochs for ResNet-34 and DenseNet-121 on CIFAR-10: a comparative summary. (a) Runtime for ResNet-34.
(b) Runtime for DenseNet-121.
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Figure 2: Loss with running time for ResNet-34 and DenseNet-121 on CIFAR-10: a comparative summary. (a) Loss for ResNet-34. (b) Loss
for DenseNet-121.
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same results can be seen for the DenseNet-121 in
Figure 1(b).

We present another group of experiments with average
loss and running time, which are executed for ResNet-34 and
DenseNet-121 on CIFAR-10. .e findings are shown in
Figure 2. At about 150 epochs, SGD has the biggest average
loss than others and decreases sharply after that time, while
the average loss of SBAG is smaller compared with others
and reaches the minimum value in the shortest running time

finally. .e reason for fast descent rate of SBAG is due to the
randomized block method, which chooses one block co-
ordinate of decision vector to calculate the gradient. In other
words, SBAG calculates more samples than other compared
algorithms in the same running time. .erefore, the con-
vergence of SBAG is verified by the findings presented in
Figure 2.

In Figures 3 and 4, the training and test accuracy with
running time of four algorithms are evaluated. As we can see,
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Figure 3: Training accuracy with running time for ResNet-34 and DenseNet-121 on CIFAR-10: a comparative summary. (a) Training
accuracy for ResNet-34. (b) Training accuracy for DenseNet-121.
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Figure 4: Test accuracy with running time for ResNet-34 and DenseNet-121 on CIFAR-10: a comparative summary. (a) Test accuracy for
ResNet-34. (b) Test accuracy for DenseNet-121.

Computational Intelligence and Neuroscience 11



in about 150 epochs, AdaBound achieves the highest ac-
curacy, and AdaGrad and our algorithm almost have the
same accuracy of 92.36% and 93.99%. As the running time
goes, the AdaBound and SBAG have the accuracy of 99.96%
and 99.93%, respectively. .e similar results can be seen on
the DenseNet-121. In a word, SBAG works well on training
or test set, and at the same time, it has the good general-
ization ability on both ResNet-34 and DenseNet-121.

From the experiments above, we observe that the SBAG
shows a very good performance on both ResNet-34 and
DenseNet-121. It incurs less computation cost for each it-
eration in experiments, which is consistent with theory.

7. Conclusion

In this study, we proposed a randomized block adaptive
gradient online learning algorithm..e proposed algorithm,
SBAG, is designed to reduce the gradient computation cost
of high-dimensional decision vector. .e convergence
analysis of SBAG and evaluations on CIFAR-10 demon-
strated that the regret bound of SBAG is O(

��
T

√
) when loss

functions are convex and achieved significant computation
cost savings, without adversely affecting the performance of
the optimizer. In the same 200 epochs, the proposed al-
gorithm has the least running time and tightly less in average
loss in the end. .e accuracy of training sample for ResNet-
34 and DenseNet-121 is 99.93% and 99.72%, slightly less
compared with that of 99.96% of AdaBound, but our method
reaches the highest accuracy on the test sample than Ada-
Bound, SGD, and AdaGrad; i.e., SBAG is the fastest in four
methods, and the curves are milder than SGD.
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