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Deep neural networks are efficient methods of recognizing image patterns and have been largely implemented in computer vision
applications. Object detection has many applications in computer vision, including face and vehicle detection, video surveillance,
and plant leaf detection. An automatic flower identification system over categories is still challenging due to similarities among
classes and intraclass variation, so the deep learning model requires more precisely labeled and high-quality data. In this proposed
work, an optimized and generalized deep convolutional neural network using Faster-Recurrent Convolutional Neural Network
(Faster-RCNN) and Single Short Detector (SSD) is used for detecting, localizing, and classifying flower objects. We prepared 2000
images for various pretrained models, including ResNet 50, ResNet 101, and Inception V2, as well as Mobile Net V2. In this study,
70% of the images were used for training, 25% for validation, and 5% for testing. The experiment demonstrates that the proposed
Faster-RCNN model using the transfer learning approach gives an optimum mAP score of 83.3% with 300 and 91.3% with 100
proposals on ten flower classes. In addition, the proposed model could identify, locate, and classify flowers and provide essential

details that include flower name, class classification, and multilabeling techniques.

1. Introduction

Flower identification is extremely important in agricultural
production, forest management, and other allied sectors.
Because of their enormous presence, complex structure, and
unpredictable diversity of classes in nature, automated
species identification was initially presented 17 years ago [1].
In recent years, the rapid development of technology, flower
segmentation, and identification has been an interesting area
of research in the image processing and computer vision
community. Previous research mostly focused on flower
recognition using a conventional detector and technique.
Gaston and O’Neill [1] argued that advances in artificial

intelligence and digital image processing might generate
automated species identification a reality. The rapid devel-
opment and growing prevalence of key information tech-
nologies, along with the widespread availability of compact
devices such as digital cameras and smartphones, have
resulted in a huge quantity of digital pictures that have been
gathered in online databases. As a result, their vision is now
almost tangible: mobile devices are utilized to photograph
specimens in the field and then identify their species.
With the debut of smartphones and mobile applications,
millions of plant pictures have been acquired [2]. Real-world
social-based ecological surveillance [3], invasive exotic plant
monitoring [4], environmental science popularization, and


mailto:cshikali@seku.ac.ke
https://orcid.org/0000-0002-8695-0319
https://orcid.org/0000-0003-4511-387X
https://orcid.org/0000-0003-2709-5508
https://orcid.org/0000-0001-6479-5947
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9359353

other applications rely on mobile-based automated plant
identification. Scholars and engineers are paying more at-
tention to improving the effectiveness of mobile-based plant
identification models [5]. On an extensive dataset, the re-
searchers used a combination of characteristics to enhance
flower classification efficiency. The local form/texture, the
shape of the border, the overall geographical distribution of
petals, and the color are all defined by distinct character-
istics. A multiple support vector machine (SVM) classifier
was utilized for classification. Fernando [6] developed an
image classification-based approach for differentiating fea-
ture fusion, in which the color and shape characteristics are
merged by the logistic regression strategy for flower picture
classification. However, developing an automated flower
category classification system remains a difficult challenge
due to certain similarities within classes. The textural
characteristics from the Gabor replies and the intensity co-
occurrence matrix were utilized to automatically classify
flowers using the K-nearest neighbor (KNN) classifier [7].
Color texture moments, gray-level co-occurrence matrix,
and Gabor responses were used to classify flower pictures
[8]. A classifier was built using a probabilistic neural net-
work. The author [9] used a neural network for logistic
regression on flower picture characteristics to solve the
problem of flower classification. An aspect-based method for
flower identification has been proposed in [10]. Visual
characteristics were retrieved and generalized to fresh
photographs of unidentified flowers to characterize flower
pictures. A sparse representation classifier forecasted the
characteristics of a particular flower picture. Several tech-
niques depend on human participation [11]. Following years
of research and development, smartphone applications like
LeafSnap [12], Pl@ntNet [2], and Microsoft Garage’s Flower
Recognition app [13] are used to identify flowers rapidly.

The technique of flower identification is an essential
component of conventional plant ecology research processes.
In this research work, photos of various flowers using mobile
devices or digital cameras subsequently have been acquired.
The name and other information about the blooms from the
horticultural expert of MNS-UAM were found uot. It would
be really useful to accelerate this work and make it more
accessible to nonexperts. Manual flower species identification
may be difficult to scale to high-throughput needs even for
specialists although it may be prohibitively time-consuming
and erroneous for nonexperts. Furthermore, existing models
only classify images, limiting the model’s ability to recognize
numerous flowers in a single image. In contrast, our proposed
framework classifies with localization, allowing it to recognize
countless flowers in a digital image by placing a boundary box
around the identified flower with the label.

2. Proposed Methods

We used an eighth Generation Core i7 Quad-Core Processor
with 8 GB RAM, 8 GB NVIDIA, and a 520 GB SSD hard
drive for our research. This research is divided into four
different sections. The first section discusses dataset col-
lection. Image labeling is described in the second section.
The third section contains the training of the model on
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different hyperparameters. The fourth and final section il-
lustrates the model’s testing and evaluation with varying
inputs from different angles.

2.1. Implementation Detail. Some key hyperparameters are
introduced to the proposed network, such as the anchor
initialization, the maximum number of bounding boxes
retained, and the learning rate decay. We initialize our
anchors on each pixel of the feature map obtained from the
base net. This equates to placing anchors every 16 pixels on
each screen dimension. An initialized total of nine anchors
will be created for each pixel of the feature map. Three
different scales and three different height-width ratios are
used to create the nine anchors in the image. 0.5, 1.0, and 2.0
are the scales we use. It has 0.5, 1.0, and 2.0 dimensions. We
also need to use the target bounding boxes as labels to train
our RPN. Anchors that overlap with the ground-truth box
more than RPN POSITIVE OVERLAP =0.60 are chosen as
foreground labels. Anchors that overlap with any ground-
truth box less than RPN NEGATIVE OVERLAP =0.40 are
chosen as negative or background labels. Table 1 shows the
training hyperparameters for four nets we trained, inception
V2, ResNet50, ResNet101, and MobileNet V2 SSD.

2.2. Image Acquisition. This research adopted specific
techniques to collect datasets inspired by Michael Rzane and
Zhenzhen Song’s papers [1, 2]. An image-capturing scheme
was developed to collect data on different classes of flowers.
The dataset was collected by ourselves, and therefore no web
scraping tool was used. A Canon EOS 2000D DSLR was
employed to collect data and yield high-resolution images
with 2976 x 1984 dimensions with a bit depth of 24. The
ordinary lens of the Canon EOS 2000D DSLR with “Intel-
liAuto mode” was used to capture images. The color rep-
resentation of each image is SRGB with 72dpi horizontal and
vertical resolution. Out of 10 classes, seven classes were
obtained from the university garden and 3 classes from the
local park. The images were captured from different angles
and lens focus (Zoom In, Out).

For an entirely distinct dataset, images of each class were
taken at different periods (morning, afternoon, and evening)
with different lighting conditions, direct sunlight, shadows,
and flashlight in the evening. The images were saved in JPEG
format. Each class comprises three images of the same flower
from predefined perspectives (entire flower, frontal, and
lateral view); (1) the whole flower: it is an image of the whole
flower from its natural position on the plant; (2) although
the side view of the flower in this group will be comparable to
the entire flower image, this study primarily focused on the
side view of the flower in this group; (3) flower top view: for
this view, we used focus mode instead of “IntelliAuto mode”
to focus on all the flower’s leaves. Most of the images are of
this type in the dataset.

The ten summer season classes are selected for the
dataset category containing ten species of flowers as shown
in Figure 1 such as Petunia, Dianthus, Jatropha, Periwinkle,
Europhobia Milli Phlox, Ixora, Tacoma, Anthurium,
Bounganwellia.
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TaBLE 1: Selected hyperparameters.
Net Optimizer Decay epoch Total epoch Bach size GPU
Inception V2 Momentum 8 30k 4 2
ResNet50 SGD 8 50k 4 2
ResNet101 SGD 8 55k 4 2
MobileNet V2 SSD Momentum 8 200k 4 2
Train Valid Test
70% 25% 5%

-

Dianthus

Anthurium

Perwinkle

Euphorbia
Millie

Bougainvillea

FIGURE 1: Categories of flowers.

2.3. Data Labeling. In this study, 2000 pictures are captured.
There are up to 15 target flowers objects in each picture, with
aresolution of 2976 x 1984 pixels (ROI). To identify pictures
with localization, we categorized the flower dataset with
annotation comprising ten types of flowers, each with
roughly 200 images. When we label the 2000 images, we get
3500 total objects. To acquire the ROI (Region of Interest),
we used the GitHub application tools named tagging and
marked the area to be selected and then identified photos
one by one to offer information about the images. The data
labeling is saved in an XML file once the image has been
tagged. The XML file includes variables (w =width;
h=height) that form a rectangle in the picture. Since these
flowers are usually in the shape of a group, we labeled this
composite flower a single flower head (i.e., Ixora). Each
class’s dataset is split into three folders at random: training,
validation, and testing, as shown in Figure 2.

2.4. Data Augmentation. Data augmentation is a technique
used to increase data size by adding slightly modified copies
of existing data or creating new synthetic data from existing
data. This technique is used to reduce overfitting when
training machine learning models.

We have used adding noise, cropping, flipping, scaling,
brightness, and rotation for data augmentation. In adding
noise, we added some noise like a blur for viewing the data
more accurately. In cropping, we select some parts, crop the
image, and resize the original image size. While flipping, the
images are flipped horizontally and vertically. While scaling,
we scaled the images outward and inward; this way, an image
can be more minor and more significant by its original size.

OO

FIGURE 2: Dataset splitting ratio.

Brightness is a process in which we can change an image into
brightness and darkness. This technique allows the model to
view an image as brightness and lighter. In rotation, the idea
is to rotate by a degree ranging from 0 to 360 degrees from its
original position. Every rotated image will have a unique
representation in the model. When we complete the data
augmentation, we have 6540 whole ideas and obtain 10080
natural objects.

2.5. Construction of SSD MobileNetV2. The SSD (Single Shot
MultiBox Detector) is a fast flower identification detection
model based on a single deep neural network [14]. An SSD
could simultaneously eradicate multiple target detection and
forecast targeted segments and binding boxes.

The feedforward convolutional network is being used in
the SSD model. Its backbone is VGG16, and it follows the
primary network with six layers of different characteristics.
The size of the inserted map is decreased layer by layer,
employing six distinct feature layers to achieve a target of
varied scales: low predictive levels and high predictive levels.
To forecast the bounding box set of various sizes, the range of
objects, and associated confidence, a substantial majority of
multiple-choice selections are performed on distinct levels of
information. To address the issue of excessive parameter size
and training model efficiency, the convolution layer on the
actual SSD is substituted by a mobile net splitting layer,
which enhances the efficiency and performance of real-time
flower recognition as shown in Figure 3.

Real-time object accessibility is also available in the app
store, thanks to the MobileNetV2 developers. SSDLite, a
hybrid of SSD Object Detector and MobileNetV2, was in-
troduced. Remember how, in the CNN Model, we employed
ssd_mobilenetv2 to identify a flower object in images?
SSDLite is just the same way. The purpose of using an SSD is
straightforward. Since the SSD lacks a whole network,
conferences are substituted by a highly fragmented con-
volution. For MobileNetV2, the very first layer of SSDLite is
attached to the extension of layer 15. The set of parameters
required by the network to detect an item is substantially
reduced when the usual combination is supplanted by in-
tensely split convolution.

When we apply the construction of SSD MobileNetV2,
first we apply Data Augmentation, which means the images
will be trained in a different dimension; after that convo-
lution filter will be used and the output image is obtained.
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FiGure 3: SSD mobile net V2 framework.

2.6. Construction of Faster R-CNN Inception V2. Faster re-
gion-based convolution neural network architecture is
shown in Figure 4. This architecture was proposed by [15],
and it uses Inception V2 for feature extraction, as explained
in [16]. Each image was parted into subregions during the
preprocessing of the model, as shown in Figure 4, “image
division with overlay.”

After that, inception V2 [15] generates the convolutional
map feature that has been used in two stages Inception V2
[15] and Faster-RCNN [16]. In Regional Proposed Network
(RPN), a convolutional network is used at the first stage that
relays over the feature map, extracted by Inception V2, while
anchors are placed on each point. Using two similar fully
connected layers, the coordinates of the rectangular box
around the flower and its probability of accuracy to
matching class are determined. In the next step, the de-
termined regions of the image are used to draw a feature map
and classify each and every ROI (Region of Interest) with
localization. After that, all extracted ROIs are passed through
the pooling layer and fully connected layer to determine
their probability of classification and localization [17]. These
ROIs define the flower’s location with a matching class in the
output image, as shown in Figure 4.

At last, all output images are transposed and joined to
show the original image as they are “divided with overlay” in
Figure 1 and they came from training or testing datasets. The
bounding boxes were refined and decreased in number by
using the suppression algorithm [18]. All this was done by
using Tensor Flow and anaconda prompt. Final selected
hyperparameters for the next model Faster-RCNN are
shown in Table 1 after refining. We give input image to the
model Inception V2 applied on it, and feature extraction has
been applied. RPN (Region Proposal Network) has been
implemented wusing fully connected layers, activation

function, regression feature vector, and ROI pooling. After
the proposed region is located in the image, it converts into a
Box Classifier, in which two functions are performed: (1)
Bounding Box Coordinates and (2) Object Probabilities. The
output shows the classification of the input image with a
boundary box around the flower.

The output shows the classification of an input image
with a boundary box around the flower.

2.6.1. Inception V2. The Inception V2 package was created
to decrease the intricacy of the convolution network in
flower identification. This control system expands the
convolution network rather than making it deeper. Func-
tionalities in Inception V2 are classified into three modules:
A, B, and C. It substituted a 3 x 3 convolution for the 5x5
convolution. This adheres to the idea that spatial aggregation
may be performed over lower-dimensional embedding with
little or no loss of representational capacity. Convolution
performance was improved by using the 3 x 3 convolution.
They discovered that dividing convolution filter size nxn
into 1 xn and n x 1 convolutions made their technique 33%
cheaper than a single 3 x3 convolution. Additionally, the
filter was enhanced to adhere to the concept that higher-
dimensional depictions are simpler to process natively inside
a network as shown in Figure 5.

2.6.2. ResNet 50. There are 48 Convolution layers in ResNet50
[19,20], 1 MaxPool layer, and an Average Pool layer. The layers
fitted a residual mapping and labeled it as H(x), and the
nonlinear layers fitted another mapping F(x) = H(x) — x, so the
original mapping became F(x)+x. The total number of
floating-point operations is 3.8 x 10 * 9.
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FIGURE 4: Faster R-CNN flower identification using Inception V2 architecture for feature extractor.

2.6.3. ResNet 101. Residual connections can be divided into

two categories:

(1) Identity shortcuts (x) may be directly used for in-
puts and outputs with the exact dimensions.

y=fle{wi)+ X

(1

Feature Vector

. ROI Pooling

[ \
I I
O .
Bo;r(l)iing Class
Coordinates Probabilities

......................

(2) When the dimensions change, (A) identifiability
mapping is still performed, with extra zero entries
padded with the increased dimension. (B) Using a
projection shortcut, the dimension can be matched
(for example, by using 1# 1 Conv) using the fol-

) lowing formula:

Residual block function is with the same input and

output dimensions as Equation (1).

y=fx Wi+ WX
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FIGURE 5: Inception V2 modules A, B, and C using 3 x 3 convolution.

Equation (2) deals with residual block function, which
has different input and output dimensions.

3. Experiment Results and
Performance Analysis

A series of comparisons of different object detection models
have been conducted to evaluate the effectiveness of the
proposed integrated approach. In this research, three object
detection models are implemented. During the experiment,
we have (1) trained the SSD and Faster-RCNN over ten
flower clas images and analyzed its performance and (2)
trained the object detection models using a transfer learning
approach on different backbones that include Inception V2,
ResNet 50, ResNet 101, and Mobile Net V2.

3.1. Quantitative Analysis of Flower Detection Performance.
Furthermore, the performance of both approaches using
qualitative and quantitative measurement methods has been
compared. Several evaluation metrics were used to measure
the effectiveness of flower detection for quantitative analysis,
including the Mean Average Precision (mAP), Average
Recall (AR), and average precision (AP). It is most com-
monly used to calculate the Precision and Recall of mea-
surement systems based on the following equations:

TP
Precision = —————, 3
recision ™+ Fp (3)
TP
Recall = ——— 4
TPy EN )
Fl 2 * Precision * Recall (5)

Precision + Recall

TP stands for true positives, FP for false positives, and
FN for false negatives. Further, the correctness of a positive is
assessed through FPs and FNs evaluated by the intersection
over union (IoU) overlap with the corresponding ground-
truth bounding box [21]. It is calculated according to the
following equation:

of N
IoU = Area Areaof U (6)

Detected objects that were not matched to the ground-
truth bounding box were considered false positives (FP). If
the IoU (6) exceeded the threshold, it was considered a true
positive (TP). Furthermore, a false negative (FN) is iden-
tified in the missed ground-truth bounding box. We have
chosen 0.5 and 0.75 as the threshold values for this study.
Detection performance has been determined by averaging
the mean average precision (mAP) score and AP values from
all classes [22]. As mAP increased, the overall performance
of the flower dataset improved. Tables 2 and 3 show that
these different object detection models have different de-
tection performance results [20].

A summary of the Precision (given equation (3)) and
Recall (given equation (4)) of different detection models is
presented in Tables 1 and 2. With the different AP IoU (0.5:
0.95, 0.50, and 0.75) 0.81, 0.92, and 0.91, the proposed model
Faster R CNN inception V2 with 100 proposals gives the best
performances. Moreover, the values of different AR detections
(1, 10, and 100) were 0.77, 0.91, and 0.89, respectively. We
calculate F1-score using mean precision @0.5 IoU and recall
@10 concerning 100 and 300 proposals, as shown in Table 4.

3.2. Qualitative Analysis for Different Flower Detection Ex-
periment Results. The intersection qualitatively evaluates the
correctness of a detected object over union (IoU) overlap
with the corresponding ground-truth bounding box [14].
The ground-truth bounding boxes are those hand-labeled
boxes from the training set indicating where the flowers are
on the image. An example of the IoU overlap is seen in
Figure 6, and this suggests that the prediction bounding box
will be evaluated using IoU (i.e., prediction of object de-
tection model).

Across all object detection models, the flower dataset has
shown good performance. The red box indicates the ground-
truth label, and the boxes of colored lines indicate prediction
bounding boxes [23]. We compared the object detection model
results to examine the effect of different pretrained CNN
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TaBLE 2: The performance of Average Precision (AP) for different object detection models.

. AP, IoU
Object Backbone @ [1oU=0.5:0.95] @ [1oU=0.5] @ [1oU=0.75]
detection pretrained
model model @ 100 @ 300 @ 100 @ 300 @ 100 @ 300 proposals
proposals proposals proposals proposals proposals
Inception V2 0.71 0.65 0.91 0.83 0.81 0.74
Faster-RCNN ResNet 50 0.69 0.61 0.76 0.79 0.73 0.66
ResNet 101 0.75 0.68 0.86 0.77 0.79 0.71
SSD MobileNet V2 0.65 0.76 0.69
TaBLE 3: The performance of Average Recall (AR) for different object detection models.
) AR, detections
Object Backbone @1 AR@10 AR@100
detection pretrained
model model @ 100 @ 300 @ 100 @ 300 @ 100 @ 300 proposals
proposals proposals proposals proposals proposals
Inception V2 0.81 0.77 0.83 0.79 0.84 0.80
Faster-RCNN ResNet 50 0.8 0.71 0.81 0.76 0.84 0.78
ResNet 101 0.72 0.58 0.74 0.59 0.76 0.61
SSD MobileNet V2 0.65 0.66 0.67
TaBLE 4: The performance of F1-score for different object detection models.
. . . F1-score
Object detection model Backbone pretrained model
@ 100 proposals @ 300 proposals
Inception V2 0.87 0.81
Faster-RCNN ResNet 50 0.78 0.77
ResNet 101 0.79 0.66
SSD MobileNet V2 0.71

FIGURE 6: Performance of object detection models for Faster-RCNN using (a) Inception, (b) ResNet50, (c) ResNet101, and (d) SSD using
MobileNet V2.
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F1GURE 7: Output of testing images of different classes: (a) Petunia; (b) Jatropha; (¢) Tacoma; (d) Europhobia milli; (e) Periwinkle; (f) Phlox;

(g) Diahtus; (h) Bouganwelia; (i) Anthrium; (j) Jatropha; (k-1) Nulls.

architectures on flower detection performance [24]. Figure 6
shows some quantitative results for flower classes. Figure 7
shows the performance of Faster-RCNN. Figures 7(a) to 7(j)
are part of the dataset, and Figures 7(k) and 7(1) are not part of
the data used to determine the model generalization.

4. Conclusion

An efficient and generalized deep convolution neural net-
work (DCNN)-based model for flower detection, localiza-
tion, and classification has been proposed. The proposed
model localization and recognition of flower species provide
flower names, class classification, and multilabeling tech-
niques. This study demonstrated that some classes are very
similar in shape and color. In contrast, others can be dis-
tinguished better by their external shapes than their internal
shapes and vice versa. Faster-RCNN and other object de-
tection models have been evaluated using pretrained models
of the COCO dataset. The proposed model provides an
optimum mAP score of 83.3% with 300 and 91.3% with 100
proposals on the flower class dataset up to 100% accuracy
confidence. However, it still has some limitations due to
color similarity between the two classes of flowers, as shown
in Figures 7(c) and 7(i). Furthermore, a multilabel classi-
fication model provides botanical information about a
flower to help farmers, horticulture, and nonbotanists un-
derstand what type of flower it is. We should jointly train the
models with visually similar classes as a future step.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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