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A large array of objects is networked together under the sophisticated concept known as the Internet of ings (IoT). ese
connected devices collect crucial information that could have a big impact on society, business, and the entire planet. In hostile
settings like the internet, the IoT is particularly susceptible to multiple threats. Standard high-end security solutions are in-
su�cient for safeguarding an IoTsystem due to the low processing power and storage capacity of IoTdevices.is emphasizes the
demand for scalable, distributed, and long-lasting smart security solutions. Deep learning excels at handling heterogeneous data of
varying sizes. In this study, the transport layer of IoT networks is secured using a multilayered security approach based on deep
learning.e created architecture uses the intrusion detection datasets fromCIC-IDS-2018, BoT-IoT, and ToN-IoT to evaluate the
suggested multi-layered approach. Finally, the new design outperformed the existing methods and obtained an accuracy of 98%
based on the examined criteria.

1. Introduction

Rapid product introductions and great hopes the devel-
oping Internet of ings (IoT) technologies are currently
being seen around the world. It is expanding quickly and
connecting billions of gadgets that we use every day.
According to a Gartner event analysis, by 2020, there will be
almost 25 billion connected things [1]. ese inter-
connected devices improve daily tasks and create clever
solutions. However, the enormous bene�ts and prospects
provided by IoT technology are overshadowed by serious
security issues and privacy trade-o�s [2]. ere are a lot of
factors to consider when designing solutions for the In-
ternet of ings, including the sheer number of inter-
connected gadgets, the level of complexity involved, the
prevalence of competing trends, and the wide range of

variables that must be managed. e present security
methods are only suitable for brief sessions on powerful
computers [3].

e same method of protection cannot be used for
prolonged sessions. ese factors made IoT devices ap-
pealing targets for hackers, putting our lives in jeopardy
from unforeseen dangers [4]. Using the terms “lightweight”
and “adoption” to create strong security solutions could be
one realistic way to handle these IoT complexity issues [5].
Solutions that are “adaptive lightweight” have repeatedly
shown their value in resolving inconsistencies in very large
distributed networks. e vast number of connected devices
makes it extremely di�cult to individually secure each one.
ere is a greater practical need to protect information
passed between devices in an Internet of ings network
[6–8].
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Artificial intelligence can analyze a wide range of types
and sizes of data and offer adaptive IoT system solutions.
Massive amounts of IoT data are currently being analyzed
using machine learning and data analytics techniques to
enhance customer service and network performance. +is
study proposes a multilayered security method for an IoT
system. Deep learning techniques were then used to monitor
the IoTnetwork in order to categorize activities as “normal”
or “malware” for each tier of the design by establishing a
baseline with the intrusion detection datasets from the CIC-
IDS-2018, BoT-IoT, and ToN-IoT.

Deep learning has huge potential to draw insights from
IoT data, even if it is still being studied in the IoT business,
particularly in IoT security. We think that IoT solutions can
be maximized through the clever application of deep
learning techniques. Despite the complexity of the neural
network topologies, lightweight functionality for IoT solu-
tions can be obtained by tuning the hyperparameters. We
based our approach on applying deep learning ideas to IoT
network security on this supposition.

1.1. Aim of the Study

(i) To examine security concerns in the IoT context.
(ii) To create a multilayered security solution for the

transport layer in the Internet of +ings network.

We anticipate that these findings will pave the way for
future deep learning applications in fields like cybersecurity
and the Internet of +ings. +e vast amount of heteroge-
neous data that must be explored to fully understand the
importance of security in today’s connected world neces-
sitates the use of artificial intelligence. While many deep
learning algorithms exist, the study problem calls for one
with the ability to glean insights from past data. In light of
this, we choose to employ neural networks in our research.
With this detailed introduction, Section 2 examines the
background work, Section 3 describes the system method-
ology, Section 4 explains the experimental design, followed
by a conclusion in Section 5.

1.2. Related Study. +e Internet of +ings (IoT) concepts
and technology, as well as its security and privacy problems,
are covered in this section. +is section also discusses the
qualities that should be taken into account when creating
IoT security solutions. In this part, network security and
intrusion detection technologies are further explained. We
describe the network’s structure and illustrate the signifi-
cance of ML and DL in IoT security with real-world use
cases.

+e IoT is made possible by the fusion of numerous
enabling technologies. Significant IoT contributors include
sensors, smart technologies, nanotechnologies, and radio
frequency identification (RFID). Wireless microchips,
known as RFID devices, are used to automatically identify
and tag items.With the help of tags to feel the collections and
detect the channel, these devices can wirelessly identify an
object even when it is out of line the of sight. Credit cards,

automotive ignition keys, and other modern applications all
make use of RFID technology. In order to use mobile nodes
and build intelligent systems, RFID needs to be used in the
Internet of +ings [9].

Adaptive technology with reliable network performance,
gadgets like smart appliances, smartphones, and other
wearable technology enable the Internet of +ings (IoT)
dream. +e IoT system’s resources can be accessed through
smart technologies, which also increase the network’s
processing power [10]. Nanotechnologies are used by
complex IoT systems and have the ability to influence the
development of intelligent solutions. Nanosensors, for in-
stance, can be employed in urban settings to track the spread
of illnesses. Although the Internet of +ings (IoT) has
numerous advantages for society, it also raises significant
privacy and security issues. Because it relies on real-time
apps and the fact that the vast majority of IoTdevices are left
unattended without any form of monitoring, the IoT system
presents several privacy and security challenges. +ere are a
wide variety of Internet of +ings-related infrastructure,
network, device, and interface vulnerabilities [11].

+e sheer variety and number of nodes in an IoTnetwork
make it difficult to implement per-device security. Data
transmissions on a network can be monitored to detect
intrusion attempts. If you are concerned about the security
of your IoT devices, you might want to consider network-
based solutions instead, as they only require minor tweaks to
work with different networks. Devices on an IoT network
need to be registered before they can gain access or be
protected from intrusion. Each device’s whole incoming and
outgoing traffic must be watched, and a template for the
typical network traffic flowmust be developed. Any network
data that deviate from the expected behavior is considered a
threat, and the device owners are alerted [12].

An intrusion detection system (IDS), a piece of software
that keeps an eye on harmful activity on networks or sys-
tems, can assist in achieving network security. IDS can be
divided into various types. IDS are divided into active IDS
and passive IDS categories based on how responsive they are
[13]. +e IDS is also divided according to where it is
mounted. IDSs are referred to as “network intrusion de-
tection systems” when installed on a network segment and
“host-based intrusion detection systems” when installed on
workstations. +ere are many problems with host-based
intrusion detection systems, and they might not be ap-
propriate for research [14].

+e main difference between deep learning and machine
learning is how performance varies as data amount in-
creases. Machine learning uses the least amount of data
while deep learning algorithms use more data to detect
patterns in the network. In the study of different, multi-
modal IoT data, deep learning is also applicable [15]. Tra-
ditional machine learning algorithms cannot deliver long-
term results for IoTdevices, which are frequently connected
for prolonged periods. +e performance of the method can
be significantly impacted by various deep neural network
topologies [16]. A multilayer neural network is a deep
structure that may be created by stacking the network with
numerous layers. +is method has several uses in high-
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dimensional data, weather forecasting systems, and speech
recognition systems [17]. To achieve optimal performance,
multi-layered neural networks share hyperparameters,
weights, and biases throughout all of their layers.

2. System Methodology

+e key characteristics required for IoT solutions include
learning from the past, being lightweight, multilayer, dis-
tributive, and adaptive. In order to scale down the size of the
datasets used by the IDS classifier, we developed a unique
IoT network architecture. To conduct our experiments, we
chose the CIC-IDS-2018, BoT-IoT, and ToN-IoT Intrusion
Detection Datasets [18]. Using a decision tree classifier, we
did feature engineering and chose the features that were of
the utmost value. Before the data were utilized as input to the
model, we thoroughly analyzed the data and produced it
necessarily. Multimodal data are sent over time in an IoT
system, which is built with a variety of heterogeneous de-
vices. We identified the following three crucial aspects as
being precisely necessary to manage IoT systems:

2.1. Security. A few IoT devices have low-end operating
systems, which prevents them from processing antimalware
software.+ey cannot carry out complexmalware protection
measures, and they also do not have enough memory to hold
the malware databases that are always growing. By utilizing
security solutions, developers may more simply roll out
security updates and gather data on device performance to
assess whether new services or products are required to
improve performance.

2.2. Multiple Layers. +e varied capabilities of IoT end
devices underscore the idea of a multi-layered distribution
approach in the IoT architecture. +e system is strong be-
cause of the multilayered architecture that handles devices
and their data at many levels. A multilayered design that is
dispersed across the system enables processes to operate at
various levels, from complex to basic, depending on the
situation. A single-layer approach may restrict the position
or range of components and may not offer the best per-
formance in an IoT system.

2.3. Maintenance. Compared to traditional handheld con-
sumer devices, the Internet of +ings has various mainte-
nance needs. In an IoT context, it is expensive to keep track
of the deployment’s maintenance for a long time. Addi-
tionally, security solutions should be able to support
evolving malware threats over time when used for longer
periods.

3. Proposed Design

In light of the aforementioned needs for an IoT security
solution, we have designed an architecture to provide se-
curity on intrusion detection activity. +e topology of the
neural network, which describes the number of layers and
neurons for each layer with connections, is developed to

show how feature extraction may be applied to an IoT
network. +e artificial neurons use forward propagation,
which has a perceptron classifier and an activation function.
IDS will gather all data traveling through a network node
once it is installed, classifying it as either “attack” or
“normal” and recording its classification. Due to the in-
herent diversity of smart IoT network systems, this strategy
might not be effective. For this reason, we designed a
multitiered neural network architecture that performs better
over a longer period of time.

A single IDS system needs to be able to process network
data from all linked devices fast and with appropriate
memory. Since there are so many devices and they are so far
apart, an IoT network will not function well under these
conditions. Based on malware attacks that take place at the
transport layer, we developed an architecture that enables
four intrusion detection systems to take the place of a
system-wide IDS. Each IDS positioned at a transport layer
only keeps track of the information collected from the
devices that are a part of that layer. By sharing the network
burden with the system, the response time will increase.
Figure 1 depicts the neural layers and Figure 2 depicts the
multilayered security architecture.

3.1. Feature Extraction. It is critical to limit the number of
features and employ only those crucial features needed for
the algorithm’s training and testing. As a feature selection
methodology, we employed a decision tree classifier, which
has been shown to be the most effective way to reduce the
dimensionality of datasets. +e decision tree employs tree-
based techniques that prioritize the value of the attributes in
accordance with their capacity to enhance node purity (Gini
impurity). Before entering the top 10 features for each
dataset into the model, we graphically showed the signifi-
cance of each feature. +e input data’s 92 features were
reduced to 10 so that the model could be trained and used
more quickly, making it versatile and adaptive.

3.2. Algorithm

(i) Training sample set as input.
(ii) Set the feature ordering set [] and the original

feature set f� f0,f1,f2,. . .to their initial values.
(iii) +e classifier in the decision tree has been trained.
(iv) By using the F-test (ANOVA), it is possible to

identify the features of a single variable.
(v) Determine the ranking score.
(vi) +e least-cored feature should be located.
(vii) Refresh feature set f.
(viii) Remove additional components from f.
(ix) end for
(x) Output: Set f for feature sort.

3.3. IDS—Datasets. +e CIC-IDS-2018, BoT-IoT, and ToN-
IoTdatabases are the three most frequently utilized datasets.
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+e testing data were gathered for three weeks, whereas the
training data were gathered for ten. +e total dataset in-
cludes more than 750 instances of IoT packet traffic and 84
different forms of network-based attacks. Either “normal” or
one of the attack types is assigned to all network traffic. Links
to the three different versions of the dataset are available in
the repository on the Kaggle website, where the datasets are
also available. Out of these three, the 20 percent CIC-IDS-
2018 dataset is utilized most frequently in literature; hence
we are using it in our study.

As was previously said, using the same dataset as before
will allow us to compare the findings of this study to those of
previous studies. +ere are 56 attack kinds in 20 percent of
the CIC-IDS-2018 dataset, which is frequently referred to as
malware. In all three datasets used for this study, seven
attacks on transport layers are taken into account. A label of
either “normal” or “malware” and 92 attributes are used to
represent the training and testing samples.+e functions can

be broken down into three categories: those that reveal
details about the command used to establish a connection;
those that discuss the specifications of that command; and
those that reveal details about other connections that point
to the same destination and use the same service. We looked
at every single piece of data available for this study.

4. Experimental Analysis

As can be seen in the architectural diagram, the dataset is
segmented into various tiers depending on the nature of the
assaults against the various TCP/IP layers. Since no attacks
in the dataset can be classified as Link Layer attacks, this
layer is ignored. Each kind of assault in the dataset belongs to
the group depicted in Table 1 below, which describes the
transport layer.

Based on the type of assault, each sample is read and
added to a new data collection. +ere are a total of 472,454
samples in the CIC-IDS-2018 dataset for transport layer IDS,
out of which 86,352 are considered “normal” and the other
samples fall into one of seven attack categories. +ere are a
total of 328,892 samples in the BoT-IoT dataset for the
transport layer, of which 98,642 are classified as assaults.
+ere are a total of 426,534 typical cases and 90,326 attack
samples in the ToN-IoTdataset for the transport layer and all
layers. In order to feed into the algorithm model, the three
categorical elements from the dataset must first be trans-
formed into numerical form. “Protocol type”, “service” and
“flag” are functions that are encoded in numbers.

Every dataset has two portions: the training portion,
which comprises 75% of the data, and the testing portion,
which comprises 25% of the data. Later, a feature set and the
related label set are created for each dataset. +e labels
“normal” and “malware” are encoded as [0 1] and [1 0],
respectively. Using a multilayered neural network, the
transport layer IDS classifier’s full results and evaluation
metrics are discussed. We began the tests by building a
neural network with two hidden layers. For each hyper-
parameter set (learning rate, time-steps, and hidden layers),
we carried out 25 sets of experiments and fine-tuned them to
produce the desired outcomes. Because of this, we evaluated
categorization using metrics including accuracy, precision,
recall, and F-Score.

4.1. Feature Description. +e features that were picked for
the transport layer classifier are shown in Table 2. As can be
seen from the table, all intrusion detection layers have the
“protocol type” feature chosen. +is indicates that the
“protocol type” element provides sufficient information to
categorize the label as “normal” or “malware.”

+e sample set of attributes and weight are shown in
Figure 3. IDS has the following key attributes: 2, 8, 9, 11, 17,
18, and 23. +is list serves as the input for our classification
tasks. Figure 4 shows the importance of the features for the
transport layer, respectively.

4.2. Classifier Performance. Changing the hyperparameters
of the neural network algorithm improves the performance

Input Layer

First Hidden Layer

Second Hidden Layer

Output Layer
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Malware

Figure 1: Neural network layers.
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Figure 2: Multilayer architecture for IoT networks.
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of the Transport Layer IDS classifier. Training accuracy,
recall, precision, and F-Score were compared to examine the
model’s responsiveness to iterative improvements. For the
purpose of this experiment, we disguised two levels of en-
cryption to meet the stringent security standards of the IoT
platform. Results are summarized in Table 3.

+e model performance is optimized when the iteration
count is set to 7, as seen in Table 3. Plots for the effects of
iterations on the transport layer IDS classifier’s accuracy
(Figure 5), precision (Figure 6), recall (Figure 7), and F-Score
(Figure 8) can be shown.

+e experiments in this section made use of the
transport-layer attack dataset created in the previous
section. +e transport layer IDS classifier’s optimized
findings function better when used in a multi-layer design,
making them appropriate for an IoT system. Table 4
displays the results of our extra analysis, and we con-
trasted them with earlier research on the classification of
intrusion detection using machine learning techniques.
Figure 9 demonstrates how our method outperformed all
prior research attempts. We assume X patterns exist in the
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Figure 3: Weight for each input feature.

Table 1: Attack Types for the transport Layer.

No Type
1 Session hijacking
2 SYN flooding
3 TCP/UDP flood
4 Desynchronization
5 IPSec flood
6 False message Injection
7 Energy drain

Table 2: Transport layer features.

No Selected features
1 Frame length
2 Header length
3 Number of packets
4 Protocol type
5 Error rate
6 Port rate
7 Service rate
8 TCP flags
9 src_host
10 dest_host
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Figure 4: Feature importance for the transport layer.

Table 3: Performance metrics for the transport layer IDS classifier.

Iteration Accuracy Precision Recall F-score
1 94.5 0.9872 0.9956 0.0021
2 96.2 0.9876 0.9962 0.0058
3 96.8 0.9861 0.9958 0.0002
4 97.1 0.9962 0.9967 0.0046
5 97.4 0.8921 0.9972 0.0124
6 97.6 0.9246 0.9964 0.0088
7 98.4 0.9468 0.9968 0.0264
8 98.2 0.9968 0.9975 0.0002
9 98.1 0.9979 0.9982 0.0042
10 97.6 0.9984 0.9978 0.0068
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Figure 5: Accuracy analysis.
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Figure 6: Precision analysis.
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training set and Y in the validation or testing set. +e
multilayered network’s (two hidden layer) neural net is
fed pairs of patterns from the training set X. Each pattern
is processed in parallel at the level of individual neurons
using distributed (and asynchronous) processing. +e
initial weight and the features of the dataset also affect the
convergence time, which is a random variable with a value
that determines how many iterations are needed to get a
solution. It is usual for the number of iterations to
fluctuate slightly. +e number of hidden layer neurons
varies from dataset to dataset because of the varying
number of patterns present.

5. Conclusion and Future Work

+e significant essence of this work lies in the fact that deep
learning techniques are being used to secure the IoT. Prior to
tackling the security concerns of the IoT, we first took a close
look at its underlying design. We focused our examination
exclusively on data security in networks as part of our study.
To detect intrusions in IoT networks, we have presented a
multilayered neural network architecture. We proposed
placing the IDS classifier at the transport layer based on the
attack types seen there and the design of the layer itself.
Because of this, the training set for the classifier shrunk, but
accuracy, recall, precision, and F-score all improved. +is
strategy has produced excellent outcomes that outperform
previous research in the literature. Additionally, we con-
ducted the experiments using the CIC-IDS-2018, BoT-IoT,
and ToN-IoT datasets. According to experimental data, the
Transport Layer IDS outperforms all other IDS classifiers
with an accuracy of 98.1 percent. In order to protect against
security threats, it is critical to create robust solutions as the
IoT deals with user personal data and industry information.
Given that the Internet of +ings produces a vast amount of
heterogeneous data, this is conceivable using deep learning
ideas. Convolutional and recurrent neural networks can be
combined to create a hybrid network that can handle
multimodal data. +e IoT devices with limited processing
power and small data sizes were the focus of this study.
Applying this research to a sizable amount of real-time IoT
data will advance it.

Data Availability

+e data used to support the findings of this study are in-
cluded in the article.
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