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Minimally invasive surgery has a smaller incision area than traditional open surgery, which can greatly reduce damage to the
human body and improve the utilization of medical devices. However, minimally invasive surgery also has disadvantages such as
limited �exibility and operational characteristics. �e interactive minimally invasive surgical robot system not only improves the
stability, safety, and accuracy of minimally invasive surgery but also introduces force feedback in controlling the surgical robot,
which is a new development direction in the �eld of minimally invasive surgery. �is paper reviews the development status of
interactive minimally invasive surgical robotic systems and key technologies to achieve human-robot interaction and �nally
provides an outlook and summary of its development. Fuzzy theory and reinforcement learning are introduced into the parameter
adjustment process of the variable guide control model, and a human-robot interaction method for minimally invasive surgical
robot posture adjustment is proposed.

1. Introduction

Minimally invasive surgery has gradually become a hot spot
for research in the �eld of surgery because of its advantages
such as less intraoperative pain, smaller surgical incisions,
lower chance of postoperative infection, and shorter re-
covery period. Robot-assisted minimally invasive surgery
transforms the traditional bedside operation mode of
minimally invasive surgery into a teleoperation mode based
on the human-machine system, which also brings new
challenges to surgeons. �e uncoordinated hand-eye oper-
ation, narrow operation space, limited visual information
(only the area within the endoscopic illumination range can
be observed), lack of force feedback information, and im-
precise movement of the robot arm caused by the unaided
control will make the surgeon easy to overoperate during the
operation, which will lead to collision and interference of the
robot actuator and the end of the actuator out of the �eld of
view. �is not only increases the mental burden of the
surgeon and a�ects the e�ciency of the surgery but also

poses the risk of causing secondary injuries to the patient,
which brings safety problems that should not be under-
estimated [1–3]. �erefore, how to take measures to avoid
such problems and improve the e�ciency and safety of
robot-assisted minimally invasive surgery is an important
issue in the �eld of medical robotics research today.

In this paper, we introduce fuzzy theory and rein-
forcement learning into the parameter adjustment process of
the variable guide control model and propose a human-
robot interaction method for minimally invasive surgical
robot posture adjustment and then build a guide parameter
adjustment model containing individual operation charac-
teristics in the joint space by online learning, in order to
expect to obtain an adaptive human-robot interaction
control strategy.

2. Description of the Problem

In robot-assisted minimally invasive surgery, the following
three unexpected situations caused by human misoperation
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often occur due to the shortcomings of the robot master-
slave teleoperation model.

2.1. Collision Interference between Patient Extracorporeal
Robotic Arms. -e main surgeon is located on the console
side; only through monitoring, the image information of the
patient’s internal lesion is obtained but cannot grasp the
movement of the patient’s extracorporeal robot arm in real
time; it is very easy for collision interference of the robot arm
caused by excessive operation; the movement of the robot
arm is blocked; the robot arm is stuck if not timely pro-
cessing will cause damage to themotor [4, 5]. In this case, the
operation is interrupted, and the assistant is needed to re-
position the robot arm before continuing the operation,
which affects the efficiency of the operation.

2.2.Collision Interferencebetween theSurgical InstrumentRod
and the Endoscope Rod in the Patient’s Body Cavity. -e
endoscopic rod and the surgical instrument rod outside the
endoscopic illumination area in the body cavity are not
within the doctor’s visual range, so the relative distance
between them cannot be known during the operation. When
the two collide and interfere, it may lead to damage to the
surgical instruments or even inconsistent master-slave
motion mapping due to the accidental movement of the
endoscope head, which will lead to serious medical
accidents.

2.3. #e End of the Robot Actuator Is out of the Field of View.
Due to the imprecision of the freehand operation and the
uncertainty of the motion trajectory, the surgeon is likely to
move the surgical tool outside the visual field during the
operation. At this time, the medical staff cannot determine
the exact position of the surgical tools in the patient’s body,
which may lead to damage to the organs and tissues outside
the visualization range of the endoscope. Preoperative
planning to find a reasonable incision position and initial
robot arm position can greatly prevent this from happening
in the effective operating space (within the area covering the
lesion), but the robot actuator reach space is often larger
than the actual demand, and it is impossible to completely
prevent the actuator from moving outside the safe operating
area, and the operating space for some procedures is narrow.
-erefore, effective measures for human-robot interaction
should be designed to ensure safe and smooth operation
[6, 7].

3. Pendulum Control Algorithm

In this section, the specific implementation process of the
main dynamic pendulum algorithm of the minimally in-
vasive surgical robot is described in detail. -e algorithm
consists of two parts: the joint guide control model and the
parameter adjustment model. -e joint guide control model
is used to establish the correspondence between the contact
torque and the joint output velocity in order to realize the
force interaction process between a human and a machine.

-e parameter adjustment model is mainly used for online
learning and real-time adjustment of the guide model pa-
rameters, which are obtained by fuzzy Sarsa (λ) learning
through online training.

3.1. Conductance Control Model. -e impedance or ad-
mittance control model is the most common active com-
pliance control method. Impedance control and
conductance control complement each other; impedance
control usually uses position as the model input to control
the force or torque output, while conductance control uses
force or torque as the input to control the position or ve-
locity output of the robot arm [8, 9]. -e one-dimensional
admittance control model is defined as follows:

fh � m x − xd(  + c x − xd(  + k x − xd( , (1)

where fh is the contact force applied to the robot arm, x is
the end position of the robot arm in the Cartesian coordinate
system, m is the virtual mass parameter, c is the virtual
damping parameter, and k is the virtual stiffness parameter.
Since the robot active joint pose requires the robot arm to
move freely in its workspace without constraints, the cor-
responding desired position xd, velocity xd, acceleration xd,
and virtual stiffness are set to 0, which leads to

fh � mx + cx. (2)

Unlike the direct teaching approach of industrial robots,
the active pose of minimally invasive surgical robots is
designed to avoid intraoperative collisions between robotic
arms and to ensure that minimally invasive instruments can
obtain an effective working space and therefore tends to
focus more on the independent attitude adjustment of each
linkage of the robotic arm rather than the trajectory of the
end-effector in Cartesian space. In order to facilitate the
posture adjustment of the minimally invasive surgical ro-
botic arm linkage, the pendulum movements of each active
joint should be independent of each other and not affected
by each other. In addition, the contact position between the
operator and the robotic arm should not be constrained by a
specific position [10]. It is clear that contact force detection
by means of a six-dimensional force sensor at the end of the
arm is not suitable for the active pose operation of minimally
invasive surgical robots. For these reasons, and in order to
address the new application environment, this paper inte-
grates torque sensors at each drive joint of the robot arm to
detect contact torque, allowing the operator to apply force to
any position of the linkage in a more direct manner for
posture adjustment. In the independent motion space of
each active joint, equation (2) is modified accordingly, as
shown in equation (3), to meet the practical needs of in-
dependent compliance control of each linkage.

τh � mθ + cθ. (3)

where τh is the contact moment applied to the driving joint
and θ is the joint position.

-e selection of the control model parameters will de-
termine the guide control characteristics, the virtual mass
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will affect the rate of change of speed and the stability of the
system, while the human-machine interaction feeling is
mainly determined by the virtual damping parameter. When
the virtual damping parameter increases, the controllability
of the operation increases and the required force is also
increased. When the damping parameter is small, the robot
arm can reach the target position quickly, and the operating
experience is less laborious, but it is followed by poor
controllability and operating accuracy.

Usually, it is necessary to reduce the virtual damping at
the beginning acceleration stage of the motion to achieve a
fast response of the control intention and increase the virtual
damping at the end stage of the motion to improve the
positioning accuracy of the action. -erefore, how to adjust
the damping parameters reasonably according to the current
state during the human-computer interaction and balance
the two contradictions is the problem that needs to be solved
by the variable conductance control strategy [11, 12].

3.2. Virtual Damping Parameter Adjustment Model

3.2.1. Fuzzy Sarsa (λ) Learning Algorithm. Sarsa (λ) learning
algorithm is a multistep time-difference-based strategy value
iteration algorithm. If S � s1, . . . , sN  represents the set of
environmental states and A � a1, . . . , aM  represents the
output action set, then at any moment t, the intelligence
selects and executes the action at ∈ A. According to the
environmental state st ∈ S and the current strategy, the
action at will have a certain impact on the environment at
the next moment, and the environment then transforms to a
new state st+1 ∈ S, while the intelligence will receive the
instantaneous return value r(sr + ar) ∈ R from the envi-
ronment and update the action value function Qr+1(sr + ar).
According to the return, the above steps are repeated in the
learning process and the current policy is modified in an
iterative manner to gradually approach the optimum.

Traditional reinforcement learning algorithms are gen-
erally applicable to discrete and finite state space descrip-
tions and action outputs; however, many practical problems
in reality have large or continuous state spaces, and in some
cases, continuous action outputs can enhance the practical
application of the algorithm. If reinforcement learning is
applied to the pendulum adjustment process of a minimally
invasive surgical robot, it is necessary to face the actual
situation that the state space (velocity, acceleration, contact
force, etc.) varies continuously and the action output
(control model parameters) is required to be continuous
[13–15].-e introduction of fuzzy theory into reinforcement
learning can effectively solve these problems and can better
respond to human intentions and help improve the inter-
action experience. Fuzzy Sarsa (λ) learning uses the concept
of fuzzy sets to deal with continuous state input problems.
-e current environmental state is determined by both state
variables Ii(1≤ i≤NI) and fuzzy rules. -e state quantity Ii

is represented by Ni fuzzy sets in its theoretic domain Xi,
and the membership degree μ(Ii) of the state variable Ii and
the currently activated fuzzy state set F � s1, . . . , sn , n<N,
are obtained by the fuzzy state rules, where N is the spatial

dimension divided by the fuzzy states. -e degree of acti-
vation corresponding to each fuzzy state is calculated by the
parametric number T (equation (5)), represented by the
normalized weights w(sj), where the 1≤ j≤ n fuzzified
environmental state is used as the input for reinforcement
learning U(F), and the correspondence between each fuzzy
state division and the discrete action set A is established by
continuous online training and the continuous action
output U(F) for fuzzy Sarsa(λ) learning is calculated by
weighted summation (equation (6)). It can be seen that the
main role of fuzzy rules is to accomplish the recognition of
continuous environmental state inputs at the input side of
reinforcement learning and to achieve the linear integration
of discrete actions for the output part of reinforcement
learning [16, 17].

N � 

N1

i�1
Ni, (4)

w sj  �


N1
i�1 μj Ii( 


n
j�1 

N1
i�1 μj Ii( 

, (5)

U(F) � 
n

j�1
akw sj , 1≤ k≤M. (6)

-e action selection for Sarsa (λ) learning follows the
same strategy as the update of the action value function. -e
discrete action selection in each fuzzy state is determined by
the current exploration strategy according to the corre-
sponding action value function, and the Boltzmann explo-
ration strategy used in this paper is shown as follows:

P ak|sj  �
e

Qt sj,ak( /T


M
k�1 e

Qt sj,ak( /T
, (7)

where P(ak|sj) denotes the probability of selecting a discrete
action ak when the fuzzy state is sj. T is the temperature
parameter, which is used to control the randomness of
action selection. In order to reflect the long-term impact
produced by the current action of the intelligence, the
qualification trace function is used to realize part of the
memory function of the intelligence to make the rein-
forcement learning more efficient as shown in the following
formula:

et(s, a) �
cλet−1(s, a) + w sj , s � sj and a � aj

cλet−1(s, a), otherwise

⎧⎨

⎩

⎫⎬

⎭, (8)

where et(s, a) is the eligibility trace of the tmomentary state-
action pair, c is the discount factor to weigh the impact of
future returns on the current generation, and λ is the tra-
jectory degradation parameter. After the execution action aj

corresponding to the fuzzy state sj is selected, the eligibility
traces of all state-action pairs are updated according to
equation (8), i.e., the current state and the qualification
traces of the action pair increase the corresponding weights
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and the rest decay proportionally [18]. Combining the eli-
gibility traces, the action value functions of the state-action
pairs are iteratively updated as follows:

Qt+1 sj, aj( ) � Qt sj, aj( ) + αδet st, at( ),

Qt Ft, Ut( ) �∑
n

j�1
Qt sj, aj( )w sj( ),

δt � r Ft, Ut( ) + cQt Ft+1, Ut+1( ) − Qt Ft, Ut( ),

(9)

where δ is the time di�erence error, r(F,U) is the instan-
taneous return value, and α is the learning rate, which
determines the proportion of the instantaneous return in the
current Q value update.

3.2.2. Return Function. In order to make the online training
process of robotic arm pendulum operation not constrained
by position, this paper only uses the robotic arm joint ve-
locity, acceleration, and contact moment between a human
and a machine as the state input variables for reinforcement
learning and obtains the continuously changing environ-
mental state during force interaction through state variables
and fuzzy rules [19]. Since the virtual mass parameters in the
conductance control model have much less in�uence on the
operation feeling than the virtual damping, this paper sets
the virtual mass parameters as constant values based on
experience under the premise of ensuring the stability of the
pendulum operation and takes the online adjustment of the
virtual damping parameters as the main goal of fuzzy Sarsa
(λ) learning, i.e., the action output set of fuzzy Sarsa (λ)
learning is a number of discrete virtual damping values. �e
online learning process of the fuzzy Sarsa (λ) algorithm is
actually to establish the optimal matching relationship be-
tween the fuzzy state inputs and the action outputs, and the
so-called optimal matching relationship can be re�ected by
the payo� function. �e goal of learning is to obtain the
action execution policy that maximizes the cumulative
payo� value of the whole learning process. �erefore, the
payo� function can be de�ned according to the performance
metrics that are expected to be optimized during the human-
computer interaction [20]. �e ideal human-machine force
interaction approach is to expect the robotic arm to produce
a soft and natural following motion as a human arm does for
mobile operations. When a human-controlled arm performs
a point-to-point movement task, it always instinctively
minimizes the acceleration variation of the motion process,
i.e., the cumulative value of the additive acceleration. In
addition, the acceleration is also used as a smoothness in-
dicator in the human-computer interaction of redundant
robotic arms. In order to improve the operating perception
during the active swing of the robotic arm and make the
following motion of the robotic arm closer to the human
operating characteristics, we want to optimize the above
evaluation metrics by the reinforcement learning algorithm
in an online learning manner. �e instantaneous return
function for fuzzy Sarsa (λ) learning is constructed as follows
[21, 22]:

r(F, U) � − ∑
tm+1

k�tm

θk
...∣∣∣∣∣
∣∣∣∣∣, (10)

R �∑
tt

t�0
r Ft, Ut( ), (11)

where tm is the execution period of fuzzy Sarsa (λ) learning
and |θk

...

| denotes the absolute value of joint plus acceleration.
Online training by fuzzy Sarsa (λ) learning searches for the
virtual damping parameter adjustment strategy that maxi-
mizes equation (11) based on the environmental state and
instantaneous returns, i.e., minimizes the variation R of the
accumulated acceleration throughout the operation, where
tt is the execution time of the pendulum operation.

4. Experiment and Analysis

4.1. Experimental Platform and Experimental Design. In this
section, the proposed variable conductance control algo-
rithm will be veri�ed by a self-developed minimally invasive
surgical robotic arm. Figure 1 shows the active control part
of the arm, including two active rotating joints and one
moving joint, using a real-time control system based on
TwinCAT with an EtherCAT control cycle of 0.4ms. Each
active joint has an integrated torque sensor to detect the
applied torque [23].

As shown in Figure 1, the posture adjustment of the
minimally invasive surgical arm can be performed by
dragging the two active joints in successive perpendicular
directions of rotation. Since the contact force detection and
control models of each joint are independent of each other,
the relevant performance veri�cation is carried out in this
paper using drive joint 1 as an example [24]. �e state
variables of the joints (joint velocity I1, acceleration I2, and
contact moment I3) are represented by �ve fuzzy sets in their
respective theoretical domains, i.e., Ni � 5, i � 1, 2, 3. �e
fuzzy sets are described by a triangular a�liation function,
and their center-of-mass positions are uniformly and
symmetrically distributed with 0 as the center. �e adjust-
ment range of the damping parameters can be roughly
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Figure 1: Structural design of the robotic arm of the surgical
instruments.
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determined empirically by setting the corresponding dis-
crete action set A� {0.11, 0.17, 0.23, 0.29, 0.35}. -e algo-
rithm execution cycle tm � 4ms, virtual mass parameter
m� 0.25 kg, learning rate α� 0.01, discount factor c � 0.95,
and qualification trace degradation parameter λ� 0.95. -e
above reinforcement learning parameters are selected
according to the actual test results.

In order to evaluate the actual performance of the active
pendulum control algorithm proposed in the paper, three
sets of comparison experiments are conducted, and the
online training process of the corresponding virtual
damping parameter tuning model is recorded, and when the
algorithm converges to an approximately optimal strategy, it
is compared and analyzed with the low damping value
conductance model (c� 0.11), high damping value con-
ductance model (c� 0.35), and variable damping model,
respectively. In addition to the reinforcement to the per-
formance metrics that need to be optimized for reinforce-
ment learning, the operational accuracy and the energy
required for the interaction process are also considered [25].
-e positioning accuracy of the minimally invasive surgical
manipulator arm can be obtained by measuring the maxi-
mum joint drift angle after the contact force disappears, and
the energy required for the positioning process can be
calculated by integrating the contact moment over the
turning angle, i.e., 

tt

0 |τh|dθ.

4.2. Experimental Results and Analysis. During the training
process, participants turned the robotic arm from the
starting position (double blue bar alignment position, −π/6)
as shown in Figure 2(a) to the stopping position (single blue
bar alignment position, π/6) as shown in Figure 2(b)
according to their personal operating habits for a com-
plete reinforcement learning training and repeated this
process continuously until the instant of fuzzy Sarsa (λ)
learning. -e return value tends to be stable and the algo-
rithm converges to an approximately optimal strategy, at
which point the online training process of the variable
derivative model ends.

In the online learning process of the variable conduc-
tance control model, with the increase of the training times,
the changes of the virtual damping parameters gradually
become clear from the chaotic state at the beginning, and the
corresponding optimization indexes are also optimized. -e
return function converges to a fixed value after 21 inde-
pendent training sessions (about 1min), and the change
process of the virtual damping parameters becomes stable.
When the contact moment increases, the variable conduc-
tance control strategy automatically reduces the damping
parameter value according to the current joint motion state,
so that the motion speed of the robot arm changes faster and
can quickly follow the motion trend of the arm in response
to the human control intention, which makes the operation
feel more effortless and easier to start. Conversely, when the
contact force gradually decreases, the variable conductance
control model increases the damping parameter accordingly
to improve the positioning accuracy of the pendulum op-
eration, assisting the operator to stop the robotic arm linkage
at the desired posture position to reduce the overshoot and
enhancing the safety of active compliance control, which is
especially important for the pendulum operation of the
minimally invasive surgical robotic arm [26]. At the same
time, the fast convergence speed ensures the fast adaptation
of the algorithm to different operator characteristics
according to the experimental results of the minimally in-
vasive surgical robotic arm pendulum control model
comparison. For the same moving distance, the variable
conductance control model based on fuzzy Sarsa (λ) learning
is more energy-efficient than the high-damped-conductance
model, with the maximum torque reduced from 2.72Nm to
1.9Nm, and the required energy decreased by 38.58%, while
the positioning accuracy is very close to that of the high-
damped-conductance model, with a significant improve-
ment over the larger positioning overshoot of the low-
damped-conductance model. Comparing with the variable
guide parameter adjustment method, the damping param-
eter adjustment strategy optimized by the fuzzy Sarsa (λ)
learning algorithm has a significant improvement in the

(a) (b)

Figure 2: Online training position of the robotic arm. (a) Start position. (b) Stop position.
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control of acceleration fluctuations, which makes the active
swing operation of the minimally invasive surgical armmore
supple and natural [27–35].

5. Conclusion

In this paper, the active pose process of minimally invasive
surgical robotic arm is implemented using variable con-
ductance control. According to the actual requirements of
robot-assisted minimally invasive surgery, a variable con-
ductance control model oriented to the driving joints is
designed, and each linkage of the minimally invasive surgical
robotic arm can be adjusted independently for posture. Since
the impact of virtual mass parameters on the human-robot
interaction experience is minimal, this paper focuses on the
study of adaptive variable damping methods. -e human
operating characteristics are taken into account in the online
adjustment strategy of the virtual damping parameters
through reinforcement learning and fuzzy theory. Com-
bined with the experiments and the above analysis, it can be
seen that the human-machine force interaction model
proposed in this paper can respond well to the operator’s
control intention, effectively reduce the operation intensity,
and has good flexibility, controllability, and rapid operator-
oriented adaptation capability, which is suitable for the
active positioning task of the minimally invasive surgical
robotic arm. -e adaptive adjustment strategy in this paper
adopts the reinforcement learning method based on the
fuzzy theory to train the guide parameters online, so the
corresponding fuzzy space division and action set distri-
bution will have some influence on the learning effect. In
order to improve the online optimization efficiency of the
algorithm and obtain a better human-computer interaction
experience, the optimization of fuzzy set parameters will be
the main research direction in the following.
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