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To address the issues of low efficiency in manual terrain feature map annotating and poor realism in terrain elevation map
generation, this paper proposes a terrain elevation map generation method based on self-attention mechanism and multifeature
sketch. Firstly, the proposed method extracts features from a terrain elevation map using an adaptive feature enhancement
method. Afterwards, our method adds a self-attention mechanism to the generator and discriminator of conditional generative
adversarial network to capture the global spatial features and generates a realistic terrain elevation map. Finally, a level of detail
method is used to visualize the three-dimensional terrain, and an interactive terrain editing tool for roaming interaction is
implemented. Experimental data show that the proposed method performs well in subjective visual performance and objective
criteria and has obvious advantages over other current typical methods.

1. Introduction

Terrain is one of the most common elements in nature. Re-
alistic 3D terrains have been widely used in 3D video games,
military simulations, film industry, and other fields. For in-
stance, developers in 3D video games can create a game world
that brings immersive user experience to players; realistic
battlefields can be simulated for virtual military training in
military simulations; visual effect artists can create scenes with
realistic terrains that bring amazing visual experience to the
audience in the film industry. Hence, digital terrains with
realistic features can play an important role in enhancing the
realism of virtual scenes and improving user immersion.

Interactive terrain editing tools aim at generating real-
istic terrains efficiently based on the sketch input from users.
)ese editing tools should provide rich functionalities that
can support users with a little technical background. In
terms of realism, generated terrains should have natural
features of the terrain in the real world, where no traces of
manual editing can be found. Since interactive terrain
editing tools can be widely used in various applications, it is
important to investigate how to efficiently generate terrain
elevation maps with realistic natural features.

In recent years, many researchers have investigated
terrain editing. Existing terrain editing methods can be
classified into three categories: terrain editing based on
fractal noises, terrain editing based on physical erosion
simulations, and terrain editing based on real samples.
Specifically, for terrain editing methods based on fractal
noises, a terrain is simulated by generating fractal noises
based on user input parameters. )e process is hardly
controllable, which is difficult for users to get results that
meet their demands. As for the methods based on physical
erosion simulations, users need to edit a terrain with the
knowledge of physical erosion theory, which is difficult for
nonprofessional users. Finally, for the methods based on real
samples, despite the fact that generated terrains can retain
some natural features of real terrain, there is still much room
for optimization in terms of realism and interaction expe-
rience. In order to enable users to perform interactive editing
flexibly and generate realistic terrain, this paper draws on the
methods based on real samples, which not only ensures that
the generated results have the features of real samples but
also enhances the realism of the generated results further. At
the same time, the proposed method can improve com-
puting efficiency, meet real-time interaction requirements,
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and enhance the user’s interactive experience by visualizing
the three-dimensional terrain. )erefore, it is necessary to
investigate interactive terrain editing techniques based on
multifeature sketches.

)e contributions are summarized as follows:

(1) We propose a terrain feature extraction method
based on adaptive feature enhancement to solve the
problem of low efficiency of manual annotation.

(2) We propose a terrain elevation map generation
method based on self-attention mechanism. )e
conditional generative adversarial network is used to
generate a realistic terrain elevation map.

(3) We propose a three-dimensional terrain visualiza-
tion method based on Levels of Detail, which im-
proves the fluency of user interaction.

(4) We realize an interactive terrain editing tool based
on multifeature sketches. )e tool runs stably and
has a good user interaction experience.

2. Related Work

Interactive terrain editing tools can generate terrain eleva-
tion maps based on various terrain features from user input.
Relevant scholars proposed a method for interactive gen-
eration and display of 3D terrain [1]. )e method can au-
tomatically generate terrain that meets the user’s needs, but
the feedback of the interactive operation is yet to be studied.
)e researchers gradually generated the terrain by
expanding the details of the user sketch [2]. )e algorithm is
computationally efficient and highly interactive. Related
scholars used terrain elevation entropy, extracted features
from Digital Elevation Model (DEM) data to generate ter-
rain frames, and accelerated mapping using GPU to improve
the efficiency of terrain generation during the editing of
terrain [3]. Given the high efficiency of the GPU, a terrain
editing algorithm based on CUDA architecture was pro-
posed [4], which is applicable to large-scale terrain scene
creation. With the development of deep learning, the re-
searchers applied this to the terrain editing problem and
proposed a real-time interactive terrain editing method [5].
)e results obtained by this method conform to the feature
distribution of real terrain samples with high fidelity. Related
scholars implemented interactive terrain editing by pro-
viding the user with functions related to plate tectonics as
well as erosion simulation [6]. )e results of terrain editing
obtained by this method are in accordance with the theories
related to geosciences and are visually closer to the real
terrain. Researchers have proved that the approach with
machine learning could enhance the realism of procedurally
generated terrain [7]. )e method used Deep Convolutional
Generative Adversarial Network (DCGAN) to generate
height maps, and the generated results outperformed the
noise-generated elevation map results, achieving a more
realistic terrain elevation map editing. )e authors proposed
a generation method based on implicit feature representa-
tion of terrain [8]. )is method can create large-scale terrain
with less memory consumption and can implement special

terrain. To solve the problem of less efficient manual editing,
a semiautomatic procedural terrain generation method for
terrain editing tasks has been proven to work [9].

Specifically, terrain feature extraction method, terrain
elevation map generation method, and terrain visualization
method will be introduced as follows.

For terrain feature extractions, the primary goal is to
extract ridge lines and valley lines efficiently and accurately.
A Profile recognition and Polygon breaking Algorithm
(PPA) was firstly proposed in [10]. )is method can effi-
ciently extract terrain ridge lines and valley lines that were
consistent with the actual observation. )e researchers
proposed the necessity of effectively selecting terrain ele-
vation profiles based on DEM data, which can improve the
accuracy of traditional elevation profile extraction methods
[11]. Based on the research [10], relevant scholars proved
that morphological correlation algorithm could be used to
complete the region refinement after polygon construction
[12]. Related researchers proposed a terrain feature ex-
traction algorithm to control feature significance, which can
obtain extraction results of terrain feature lines that were in
line with human eye observations [13]. Inspired by PPA, we
optimize the process of removing redundant branches and
leaves in a feature-connected graph when extracting ridge
lines and valley lines.We propose a terrain feature extraction
method based on adaptive feature enhancement, which can
extract ridge lines, valley lines, and peak points in large-scale
data set production tasks.

For terrain elevation map generations, deep learning
algorithms become mainstream in the field of image gen-
eration. Generative Adversarial Network was proposed [14],
which can create a model for generating high-definition
images. Subsequently, the researchers proposed Conditional
Generative Adversarial Network that added constraints to
the Generative Adversarial Network, which can use category
labels as a condition to get generation results [15]. )e
scholars proposed Deep Convolutional Generative Adver-
sarial Network (DCGAN) [16], which introduced con-
volutional operations into the structure of Generative
Adversarial Network for the first time. )is method can
capture the features of input data well and realize supervised
learning. Based on the research in [15], related scholars
proposed a method where an input image can be mapped to
an output image using a Conditional Generative Adversarial
Network, which can effectively convert picture labels to
pictures [17]. )e researchers added a self-attention
mechanism to the network’s construction, which can cap-
ture structural global features more easily [18]. Inspired by
the work [17, 18], we apply a Conditional Generative
Adversarial Network in terrain elevation map generation
tasks. In addition, a self-attention mechanism is used to
capture the global structure of terrain feature map, which
can improve the performance of generator and discrimi-
nator to generate realistic terrains.

For terrain visualizations, terrain mesh generation and
texture mapping are two key issues. For terrain mesh
generation, it is mainly based on Levels of Detail (LOD)
techniques. Related scholars proposed the concept of LOD
for the first time and proposed a method for reducing the
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complexity of model mesh in a recursive way [19]. )e
researchers introduced elevation variation coefficient to
describe a terrain, which can improve the rendering effi-
ciency of LOD algorithm when constructing a terrain mesh
[20]. Relevant researchers proposed the layer-based Discrete
Cosine Transform (DCT)method to simplify the terrain data
in the terrain grid construction process, improving the ef-
ficiency of terrain grid construction [21]. For texture
mapping, the researchers proposed a texture mapping
method with multifeature control, which considered both
terrain elevation value and terrain slope [22]. Researchers
proposed a multiresolution texture seamless mapping
method based on error control, which can realize seamless
mapping by reducing projection errors based on the distance
between texture block and viewpoint and the current LOD
level [23]. Related scholars proved that a beach scene
simulation method based on Poisson fusion, which can not
only ensure realism but also effectively improve the ren-
dering efficiency [24]. In order to build terrain mesh effi-
ciently and improve the efficiency of terrain rendering, this
paper adopts the terrain visualization method based on
Levels of Detail.

3. Terrain Elevation Map Generation Based on
Self-Attention Mechanism and
Multifeature Sketches

To generate terrain elevation maps with rich natural features
that can improve user immersion, our method first extracts
terrain features based on adaptive feature enhancement to
obtain terrain feature maps, then generates realistic terrain
elevation maps based on self-attention mechanism, and fi-
nally realizes 3D terrain visualization based on Levels of
Detail.

3.1. Terrain Feature Extraction Based on Adaptive Feature
Enhancement. When generating terrain elevation maps, a
large number of terrain samples and feature maps are
needed as data sets. However, methods based on manual
marking terrain feature maps are inefficient and cannot meet
the practical application requirements. To extract terrain
features efficiently and generate terrain feature maps au-
tomatically, it is necessary to study terrain feature extraction
algorithms based on adaptive feature enhancement. In our
method, an adaptive feature enhancement algorithm is used
to preprocess the input data first. Afterwards, ridge lines,
valley lines, and peak points are extracted by a profile
recognition method. Finally, these terrain features can be
extracted quickly and accurately as a terrain feature map.

3.1.1. Self-Adaptive Feature Enhancement. When perform-
ing adaptive feature enhancement, data need to be pre-
processed first, followed by grayscale expansion. In the data
preprocessing stage, when a terrain elevation map is input,
the gray histogram is constructed.

As the larger the range of image grayscale, the difference
between images will be more obvious, and more features can
be distinguished. Hence, it is necessary to expand the

grayscale. )e detailed steps of image grayscale expansion
are as follows:

Step 1. Pixel number calculation: our method traverses
the horizontal axis of a gray histogram in sequential
order and then in reverse order to accumulate the
number of pixels.
Step 2. Grayscale expansion: our method calculates the
percentage of accumulated pixels to total pixels and sets
a threshold Kgray. When this percentage reaches Kgray,
the method records the minimum and maximum
grayscale values as Imin and Imax, respectively. Pixel
values that are less than Imin are mapped to 0 and pixel
values that are greater than Imax are mapped to 255, as
shown in (1):

O(i, j) �
0, I(i, j)< Imin

255, I(i, j)> Imax
 , (1)

where I(i, j) is the pixel value for row i, column j of the
input image; O(i, j) is the pixel value for row i, column
j of the output image.
Step 3. Histogram equalization: the method performs
histogram equalization for those pixels that have a
grayscale value between Imin and Imax using (2), so that
the pixels of each grayscale can be evenly distributed.

O(i, j) � 255∗
I(i, j) − Imin

Imax − Imin
. (2)

)e effect of grayscale expansion is shown in Figure 1,
where the input image is shown in Figure 1(a), and the
output image is shown in Figure 1(b). By comparison, it can
be clearly seen that the terrain features of the output image
are much clearer and more obvious.

3.1.2. Ridge Line Extraction. When extracting ridge lines
from a terrain elevation map, we can judge whether a
sampling point is a terrain feature point by comprehensively
considering multiple profiles after adaptive feature en-
hancement. )e specific process can be divided into five
steps, namely, sampling map generation, feature point de-
termination, feature-connected graph construction, ridge
line prototype generation, and ridge line smoothing.

Step 1. Sampling map generation: since a terrain ele-
vation map contains many pixels, the input data is
sampled with a fixed step size to improve the efficiency
of ridge line extraction. Using a method that traverses
rows first and then columns, the sampling points are
selected in order, and a sampling graph is generated.
Step 2. Feature point determination: in the sampling
graph, the candidate points are determined by tra-
versing the sampling points from left to right and from
top to bottom. Our method traverses four profiles with
the sampling point as the center and calculates the
height difference between the central sampling point
and other sampling points on each profile, as shown in
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Figure 2. For instance, in the “upper right-lower left”
profile, if the elevation value of the central sampling
point is higher than other sampling points on this
profile, the central sampling point becomes a candidate
point for the ridge line.
However, only depending on height differences to
determine feature points is problematic since many
ridge line feature points in valleys or with a low altitude
will also be included. Hence, it is necessary to set a
threshold for further screening. )e threshold value is
calculated based on the global maximum elevation
value Imax and the minimum elevation value Imin in a
terrain elevation map and uses weights to get ridge line
feature points. )e specific screening process is shown
in (3):

P(x,y)
′ ∈ P(x,y)|H(x,y) > � w Imax − Imin(  , (3)

where P(x,y) is the previous sampling point before
screening; P’

(x,y) is the sampled points after screening;
H(x,y) is the elevation value of the sampling point; w is
the weight.
Step 3. Feature-connected graph construction: based on
the extracted ridge line feature points, a feature-con-
nected graph can be constructed, which can be divided
into two steps. Firstly, our method traverses the feature
points from left to right and from top to bottom.
Afterwards, from the current feature point, our method
judges whether there are other feature points on every
profile that uses the current feature point as the center.
To avoid repeated calculation, only half of the profiles
are traversed clockwise, and all feature points on the
profile are connected, as shown in Figure 3. After
traversing all the feature points, a feature-connected
graph can be obtained.
Step 4. Ridge line prototype generation: based on the
generated feature-connected graph, a ridge line pro-
totype can be generated, which can be divided into
three steps. Firstly, a feature edge queue is constructed.
In the feature-connected graph, the edge connecting
two adjacent feature points is a feature edge, and its
weight is the sum of the elevation values of the adjacent
feature points. Our method traverses all the feature
edges of the feature-connected graph and sorts them

based on their weights in descending order to get a
feature edge queue. Afterwards, a minimum spanning
tree is generated based on the Kruskal algorithm. Fi-
nally, our method removes redundant edges by tra-
versing the feature edges in theminimum spanning tree

(a) (b)

Figure 1: Comparisons of the effects before and after adaptive feature enhancement calculation. (a) Input image. (b) Output image.
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Figure 2: Four profiles with the current sampling point as the
center.

255

Figure 3: Our method traverses half of the profiles clockwise from
the top right direction.
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and judging the number of feature edges connected by
the two endpoints of the current feature edge. If the
number of feature edges connected by an endpoint is
less than 2, the current feature edge is redundant and
can be removed. After multiple iterative removals, a
ridge line prototype is generated.
Step 5. Ridge line smoothing: when smoothing ridge
lines, our method takes the current feature point as the
center and traverses its adjacent feature points. )e
method accumulates the elevation values and coordi-
nates of all feature points and updates the position of
the current feature point according to (4):

P′ x0, y0(  �


n
i�0 H xi,yi( P xi,yi( 


n
i�0 H xi,yi( 

, (4)

where P′(x0, y0) is the updated coordinate of a ridge
feature point; P(xi, yi) is the coordinate value of all
adjacent feature points; H(xi, yi) is the elevation value
for the feature point. )is operation can add some
disturbance migrations to the current coordinate
point, which can make the extracted ridge lines more
realistic.

)e process of extracting valley lines is similar to the
process of extracting ridge lines. In the stage of the sampling
map generation, the sampling map is inversed. )e rest of
the steps above can be performed to obtain the extraction
results of valley lines.

3.1.3. Peak Point Extraction. A peak point is the highest
point in a local area of terrain. When dealing with peak
points, our methodmainly performs the extraction from two
perspectives: threshold screening and profile recognition.
)ere are two steps in extracting peak points, namely,
threshold calculation and feature point determination.

Step 1. )reshold calculation: to control the number of
candidate peak points, it is necessary to perform a
preliminary screening of candidate points by calcu-
lating the threshold. Firstly, our method constructs a
gray histogram by traversing every gray level on the
horizontal axis in reverse order and accumulating the
number of pixels under each gray level. When the ratio
of the accumulated value to the total number of pixels is
l, our method stops traversing and takes the grayscale at
this moment as the threshold Kpeak.
Step 2. Feature point determination: our method
screens the pixels larger than Kpeak in the input ele-
vation map to get candidate points. Since the candidate
points only meet the global elevation value, further
screening is needed to determine the local optimal
feature points, which can be divided into two steps.
Firstly, our method sets a profile, which is similar to the
process in ridge line extraction. Afterwards, the ele-
vation difference on each profile is calculated clockwise.

After traversing all candidate feature points, the final
extraction results of peak feature points can be obtained.

)us, terrain feature extraction based on adaptive feature
enhancement is completed. Based on the steps above,
extracted ridge lines, valley lines, and peak points features
can be distinguished by different colors and are drawn into a
terrain feature map to obtain the final result of terrain
feature extraction.

3.2.TerrainElevationMapGenerationBasedonSelf-Attention
Mechanism. Sketch-based terrain editing is to generate a
terrain elevation map with realistic natural features based on
user-edited terrain feature sketches. To generate realistic
terrain elevation maps, our method applies a self-attention
mechanism to the Conditional Generative Adversarial
Network, realizing a terrain elevation map generation al-
gorithm based on self-attention mechanism.

)e input of the algorithm is the terrain feature map
obtained in Section 3.1 or a terrain feature sketch drawn by a
user. Firstly, our method constructs a generator network
based on the UNet network, which is used for generating a
terrain elevation map. Afterwards, our method constructs a
discriminator network based on the PatchGAN network,
which is used for distinguishing real terrain samples from
generating results. )en, our method adds a self-attention
mechanism to the generator and the discriminator, re-
spectively, for capturing global spatial features, which can
improve the performance of the generator and the accuracy
of the discriminator. Finally, our method trains the dis-
criminator and generator according to the adversarial rules
to get a generator model.

3.2.1. Generator Network Construction. In this section, we
describe how our method constructs a generator based on a
UNet network, whose input and output are both two-di-
mensional matrices so that our method can generate terrain
elevation maps based on terrain feature map inputs from
users. In particular, the UNet network we used adopts
jumping connections, which can avoid the issue of losing
input data feature details due to the increase of network
depth.

)e input of the generator is a terrain feature map, and
the output is a terrain elevation map generated based on
prediction. )e whole network of the generator consists of
10 modules, which are numbered from 1 to 10, respectively.
Specifically, the modules numbered from 1 to 5 consist of
two convolutional layers and one pooling layer; the modules
numbered from 6 to 9 consist of two convolutional layers
and an upsampling layer; the module numbered 10 consists
of a convolutional layer. )e diagram of the network is
shown in Figure 4.

)e construction process of the generator network can
be divided into three steps, namely, encoding unit con-
struction, decoding unit construction, and jumping con-
nection setup.

(1) Encoding Unit Construction. )e encoding unit is used for
encoding the input data to obtain the color, shape, and local
spatial features from the input data. )e encoding unit in-
cludes module 1 to module 5. Each module consists of two
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convolutional layers, one pooling layer, and one activation
function. Taking module 1 as an example, the construction
process includes three steps: convolutional layer construction,
pooling layer construction, and activation function setup.

Step 1. Convolutional layer construction: the con-
volutional layer is used to encode the input and obtain
the implicit features from the input terrain data. )e
number of convolutional layers is set to 2; the size of the
convolutional kernel is set to 3× 3; and the number of
convolutional kernels is set to 64.
Step 2. Pooling layer construction: the pooling layer is
used to compress data and reduce the number of pa-
rameters so that the overfitting issue can be mitigated.
)e number of pooling layers is set to 1. )e pooling
method adopts the maximum pooling, and the pooling
layer window size is set to 2× 2.
Step 3. Activation function setup: the activation
function is used to activate the input and perform
nonlinear output. Leaky ReLU activates the output
values that are greater than 0, as shown in equation (5):

LeakyReLU(x) �
x, x≥ 0

ax, x< 0
 (5)

When the input x is negative, neurons can still learn,
which will not lead to deviations in the final output results.

)e parameter a is generally set to 0.01. Compared with
module 1, the number of convolutional kernels of each
convolutional layer in modules 2–5 is twice that of the
previous module, and other configurations are the same as
the previous module.

(2) Decoding Unit Construction. )e decoding unit is used
for decoding the feature information from input and out-
putting the predicted result. A decoding unit includes five
modules, namely, module 6 to module 10. Module 6 to
module 9 adopt the combination of two convolutional
layers, one upsampling layer, and one activation function.
Taking module 6 as an example, the construction process
includes three steps: convolutional layer construction,
upsampling layer construction, and activation function
setup.

Step 1. Convolutional layer construction: the number of
convolutional layers is set to 2; the size of the con-
volutional kernel is set to 3 × 3; and the number of
convolutional kernels is set to 512.
Step 2. Upsampling layer construction: the upsampling
layer and the pooling layer are opposite in terms of
functionality; that is, the values of input data are re-
peatedly filled in the window size area for output. )e
number of upsampling layers is set to 1, and the
window size of the upsampling layer is set to 2 × 2.
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Figure 4: )e structure of the generator network.

6 Computational Intelligence and Neuroscience



Step 3. Activation function setup: similar to the
encoding part, Leaky ReLU is also used for activating
output, and the parameter configuration is identical.

Compared with module 6, the number of convolutional
kernels of each convolutional layer in module 7 to module 9
is half of that in the previous module, and other configu-
rations are the same as the previous module. Module 10
contains only one convolutional layer; the convolutional
kernel size is set to 3× 3; and the number is set to 1. )e
module maps the input into the output result of 3 channels
and predicts the terrain elevation map.

(3) Jumping Connection Setup. Jumping connection can
solve the problem that the features of shallow output are
gradually lost in subsequent network with the increase of
network depth. In Figure 4, the jump connection is indicated
by arrows between the corresponding modules in encoding
units and decoding units. Taking module 1 and module 9 as
an example, the output result of module 1 is directly passed
to the third dimension of module 9 input data of the
decoding unit so that the shallow output features can be
retained in the corresponding deep network structure. )is
can avoid the loss of feature information and improve the
performance of the generator.

3.2.2. Discriminator Network Construction. Since Patch-
GANmaps the whole input data as a probability matrix, each
value in the matrix represents the discriminant result of the
local input. )is operation can evaluate the locally generated
result and improve the performance of the discriminator.
)erefore, this section describes how a discriminator based
on PatchGAN is constructed, whose structure is shown in
Figure 5.

)ere are two types of input for the discriminator: (1)
real terrain features and terrain samples and (2) real terrain
features and generated pseudoterrain samples. )rough
these two sets of data, the ability to discriminate between real
results and generated results can be trained.

)e construction of a discriminator network is relatively
simple. Firstly, our method sets four convolutional layers,
and the convolutional kernel size is set to 4× 4; the number
of convolutional kernels in each convolutional layer is set to
64, 128, 256, and 512, respectively. After each convolutional
layer, the output is activated by Leaky ReLU. )en, our
method sets a convolutional layer, where the convolutional
kernel size is set to 1× 1, and the number is set to 1, which is
used for combining the number of input channels into 1.
Afterwards, the output is activated by a Sigmoid function to
obtain a binary prediction result of the local area, where the
size of the output probability matrix is set to 16×16, and the
number of channels is set to 1. Finally, our method accu-
mulates all the values in the probability matrix and calculates
the average value to obtain the final discrimination result.

3.2.3. Self-Attention Mechanism Construction. In the pro-
cess of terrain generation, the input terrain features include
not only color, shape, and local space but also global spatial

features. In real terrain elevationmap samples, ridge line and
valley line feature areas are often continuous areas, which are
all global spatial features. )is section introduces a self-at-
tention mechanism to capture the global spatial features of
the input data.

)e process of building a self-attention module is shown
in Figure 6. )e input data is the feature map output from
the previous layer, and the shape of the input data is [h, w, c],
where the length of the input feature map is h, the width is w,
and the number of channels is c. )e output is the fusion
result of the self-attention feature and the original feature
map, whose shape is consistent with the input data. )e
construction process includes three steps: input data ini-
tialization, local self-attention feature map calculation, and
global self-attention feature map calculation.

(1) Input Data Initialization. )e input data is initialized by
convolution. As shown in equation (6), our method uses
convolutional kernels Wf and Wg with a number of c/k and
a size of 1× 1 to perform convolution operations on the
input data to obtain feature maps f(x) and g(x). In ad-
dition, our method uses a convolutional kernel Wh with a
number of c and a size of 1× 1 to perform convolution
operation on the input data to obtain feature maps h(x).

f(x) � Wfx,

g(x) � Wgx,

h(x) � Whx,

(6)

where the shape off(x) and g(x) is [h, w, c/k] and the shape
of h(x) is [h, w, c].

(2) Local Self-Attention Feature Map Calculation. Our
method first readjusts the shapes of feature maps f(x),
g(x), and h(x) to [h∗w, c/k], [h∗w, c/k], and [h∗w, c],
respectively. Afterwards, our method calculates f(x)g(x)T

according to equation (7):

aj,i �
exp si,j 


N
i�1 exp si,j 

, si,j � f xi( g xj 
T
. (7)

)en, the softmax function is used to activate the output
of the calculation result and obtain a local self-attention
feature map aj,i with a shape of [h∗w, h∗w], which rep-
resents the local attention to the i-th pixel when the j-th
pixel is generated.

(3) Global Self-Attention Feature Map Calculation. )e
global self-attention feature map is obtained by fusing the
global spatial information and the local self-attention feature
map, as shown in equation (8):

oj � 
h∗w

i�1
aj,ih xi(  , h xi(  � Whxi, (8)

where aj,i represents the local self-attention feature map;
h(xi) represents the global spatial information; and oj

represents the global self-attention feature map when the
j-th region is generated, and the shape is [h∗w, c].
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In order to control the influence of the self-attention
feature map, it is necessary to set parameters for the self-at-
tention feature map and then fuse it with the initial input as the
output. In this case, the network structure can first rely on local
spatial features and then rely on remote spatial features during
the training process, as shown in equation (9):

yj � coj + xj, (9)

where c is the weight of self-attention with an initial value of
0. c can be gradually assigned a larger value during the
training process. )e self-attention module described in this
section is added after module 9 of the generator and after the

fourth convolutional layer of the discriminator, and the
construction of the entire network is completed.

3.2.4. Network Training. We train the network after the
network is built.)e training of the network mainly includes
three steps, namely, optimization target determination,
training process setup, and loss function construction.

(1) Optimization Target Determination. )e goal of this step
is to generate a real terrain elevation map, and the evaluation
standard is to judge whether it is a terrain elevation map

feature
maps(x)

1*1
Conv

attention map

1*1
Conv

1*1
Conv

feature
maps (o)

f(x)

g(x)

h(x)

X

X

Figure 6: )e flow of self-attention calculation.
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Figure 5: )e structure of discriminator network.
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generated by the generator or a real terrain elevation map
sample. Since this is a binary classification problem, we
adopt a binary classification cross-entropy loss function to
optimize the target. )e calculation of the binary classifi-
cation cross-entropy is shown in equation (10):

Ln � −
1
n



n

i�1
yilog yi(  + 1 − yi( (1 − log(1 − y)) , (10)

where n is the number of samples; i is the current i-th
sample; yi is the label of i-th sample; yi is the probabilistic
predicted value of i-th sample.

(2) Training Process Setup. )e training process of a Gen-
erative Adversarial Network is a confrontation between
generator and discriminator. )e process of confrontation
training is to fix the generator first, where the weights of the
discriminator are trained and updated so that the ability of
the discriminator to distinguish between true and false
images can be maximized. )en the discriminator is fixed,
where the network weights of the generator are updated so
that the ability of the discriminator to distinguish between
true and false images is minimized. As the generator cannot
distinguish the true graph from the false graph, the per-
formance of the generator can be improved. )ese processes
are executed alternately until the loss function converges; the
performance of the generator will be optimal at this mo-
ment, which can be used in practical applications.

(3) Loss Function Construction. According to the optimi-
zation goal and training process, the confrontation loss can
be obtained, as shown in equation (11):

min
G

max
D

LG,D � E(x,y)[logD(G(x | y))]

+ E(x,z)|y[log(1-D(G(z | y)))],
(11)

where G is the generator; D is the discriminator; x is the real
terrain data; and z is the noise data randomly generated in
the generator. In addition, in order to measure the difference
between the generated results and the official data at the pixel
level and further improve the performance of the generator,
this paper also introduces L1 loss, as shown in equation (12):

L1 � E(x,y) ‖G(z | y) − G(x | y)‖1 . (12)

Finally, the total loss function is obtained by synthesizing
the above-mentioned confrontation loss and L1 loss, as
shown in equation (13):

L � LG,D + L1. (13)

In this way, the construction of the whole network is
completed. According to the training rule, we train the
network weights and optimize the performance of the
generator so that the trained generator can be used in the
task of generating a terrain elevation map.

3.3. 3D Terrain Visualization Based on Levels of Detail. In
order to build terrain mesh efficiently and ensure the
smoothness of terrain visualization, this section studies the

3D terrain visualization algorithm based on Levels of Detail.
Firstly, the nodes are defined by a quadtree structure, and
then the terrain mesh is constructed according to the node
information. Finally, multiple textures are added to the
mesh.

3.3.1. Quadtree Structure Construction. Quadtree structure
is a tree structure where each node includes 0 or 4 subnodes.
When each node is split, the details can be improved. For a
terrain mesh, when the subdivision degree of the mesh is
increased, the details of the mesh will be richer. )e con-
struction of a quadtree structure can be divided into the
following steps: defining nodes, calculating node coordi-
nates, and judging whether a node needs to be divided and
stored, and a complete quadtree structure can be obtained
finally.

3.3.2. Terrain Mesh Construction. Based on the quadtree
structure, a terrain mesh with multiple Levels of Detail can
be created. Since a terrain mesh is composed of triangular
faces that are surrounded by vertices, there are two steps to
construct a terrain mesh, namely, creating vertices and
drawing triangular faces. )e drawing of triangle faces is
based on the quadtree structure, where the nodes are re-
cursively operated from the root node until all elements in
the quadtree node array are traversed. )us, a terrain mesh
with Levels of Detail is constructed.

3.3.3. Multiple Texture Addition. Since 3D terrain visuali-
zation needs both terrain mesh and texture, it is necessary to
add multiple textures to improve the realism of visualization
results. It can be divided into three steps, namely, selecting
terrain textures, creating mask textures, and fusing output.
As shown in Table 1, there are four kinds of terrain textures
used for visualization, namely, land, grassland 1, grassland 2,
and moss, which correspond to different elevation value
intervals in terrain, respectively. When performing texture
mapping, the texture pixel value of a mesh vertex is cal-
culated based on the value of mask texture. )e four channel
values in the mask texture and the corresponding pixel
values in the four textures are multiplied and then summed,
and the fused texture is the final output.

In this way, the 3D terrain visualization based on Levels
of Detail is completed, which can realize the efficient con-
struction of terrain mesh and realistic texture mapping,
making interactive terrain editing more interesting.

4. Experimental Analysis

)e experiment was designed to verify the feasibility and
effectiveness of the multifeature sketch terrain elevationmap
generation method based on self-attention mechanism. )e
hardware environment of the verification system includes
AMD Ryzen 7 4800H CPU, 16 GB RAM, and NVIDIA
GeForce RTX2060 GPU.)e software environment includes
Windows 10 operating system, PyCharm 2019, Visual Studio
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2019, and Unity3D 2019. Python and C# are used as the main
development languages.

In this study, six experiments are designed, namely,
terrain feature extraction experiment, terrain generation
comparative experiment, self-attention mechanism com-
parative experiment, terrain mesh construction comparative
experiment, multiple textures addition experiment, and
interactive terrain editing software experiment.

4.1. Experiment for Terrain Feature Extraction. To verify the
feasibility of terrain feature extraction based on adaptive
feature enhancement, a terrain feature extraction experi-
ment was designed.

Firstly, adaptive feature enhancement was performed.
Taking the terrain elevation map input in Figure 7(a) as an
example, data preprocessing and grayscale expansion were
performed. When expanding grayscale, Kgray is set to dif-
ferent values in Figures 7(b)–7(d). It can be seen when Kgray
is set to 1%, the details of terrain features can be well retained
while the features can be enhanced. According to the result
in Figure 7(c), terrain feature extraction was performed.

)e specific steps of ridge line extraction are as follows.
First, we set the sampling distance to 5 pixels to

generate a sampling map. We also set the profile for the
sampling points, where the length of the profile was set to
7, making preliminary screening based on the profile.
)en, according to equation (3), the threshold was set for
further screening. Based on our pilot study, we found that
0.03 was an ideal value for the weight w. )e final result of
feature point extraction is shown in Figure 8. Afterwards,
the feature-connected graph was constructed by tra-
versing all feature points, starting from the current feature
point and connecting the feature points on the profile. )e
final construction result is shown in Figure 9. )en, we
sorted the feature edges and stored them in the feature
edge queue to create a minimum spanning tree according
to the feature edge queue, as shown in Figure 10. )e
number of iterative deletions was set to 3, so the re-
dundant edges in the minimum spanning tree can be
removed to obtain a prototype of the ridge feature line, as
shown in Figure 11. )en, smoothing was performed on
the feature-connected graph to make the feature lines
more similar to real terrain features. )e smoothing result
is shown in Figure 12.

)e valley line extraction process is similar to the ridge
line extraction process. When generating a valley line
sampling map, the sampling map is inversed, and then the
steps above are performed to obtain the valley line extraction
result, as shown in Figure 13.

Finally, we extracted the peak points. First, we calculated
the threshold value. Our pilot study showed that when the
accumulated number of pixels accounted for 5% of the total
number of pixels, the number of selected peak points was
more suitable. )en, we determined the feature points and
the peak points through the profile recognition and elevation
difference.)e extraction result of the peak point is shown in
Figure 14.

4.2. Comparative Experiment for Terrain Generation. To
verify the feasibility of terrain elevation map generation based
on a self-attention mechanism, this experiment was performed
from two aspects: (1) using real terrain features to demonstrate
generated terrain elevation maps and compare the differences
between the generated results and real terrain samples; (2)
using hand-painted terrain features to demonstrate generated
terrain elevation maps and 3D visualization effects.

(1) Using Real Terrain Features. We input real terrain fea-
tures in the trained generator model for prediction and
compared the differences between the generated terrain
elevation maps and real terrain samples.

)e experimental results are shown in Table 2, where the
features of ridge lines, valley lines, and peak points in the
generated terrain elevation maps were consistent with the
features in real terrain feature maps. To evaluate the simi-
larity between the generated results and the real terrain
results, the SSIM image similarity evaluation algorithm was
used. )e calculation result of SSIM is between 0 and 1; the
closer the result is towards 1, the more similar the two
images will be. It can be seen that the SSIM results obtained
by our method were all greater than 0.5, which suggested
that the similarity with the original image was high. )is
demonstrated the feasibility of our proposed method, which
can meet the needs of interactive terrain editing.

(2) Using Hand-Painted Terrain Features. To further verify
the feasibility of our proposed method, this experiment
input terrain feature sketches drawn by users into the trained

Table 1: Textures used in the experiment.

Land Grassland 1 Grassland 2 Moss
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generator model for prediction and demonstrated the
generated terrain elevation maps and 3D visualization
results.

)e experimental results are shown in Table 3. It can be
seen that terrain feature sketches can be very simple, which
only have a few simple strokes. We input these sketches into
the trained generator model, which can generate highly
realistic terrain elevation maps based on these sketches.

We also used World Machine software to render the
terrain elevation maps based on user sketches to further

verify the realism of editing results. It can be seen that the
rendered terrain results have realistic ridge lines, valley lines,
and peak points, which can meet the demands of interactive
editing.

4.3. Comparative Experiment for Self-Attention Mechanism.
To verify the effectiveness of the self-attention mechanism in
terrain elevation map generation, this experiment compared
the results with and without the self-attention mechanism.

Figure 9: Feature-connected graph build based on feature points. Figure 11: Feature line prototype after redundant edge removal.

(a) (b) (c) (d)

Figure 7: Comparison of original input data and enhanced data. (a) Input of a terrain elevation map. (b) Result when Kgray is set to 0.05%.
(c) Result when Kgray is set to 1%. (d) Result when Kgray is set to 1.5%.

Figure 8: )e candidate feature points for ridge lines obtained by
profile recognition and screening.

Figure 10: )e minimum spanning tree extracted from feature-
connected graph.
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)e input was the terrain features of real samples, as shown
in Table 4. It can be seen that some ridge line and valley line
structures in the generated results are incomplete without a
self-attention mechanism, as shown in the places marked by
red circles. In contrast, the results with the self-attention
mechanism are much better in terms of completeness and
detail, and the generator model also has a higher performance.

4.4. Comparative Experiment for Terrain Mesh Construction.
To verify the feasibility and effectiveness of the terrain mesh
construction in our proposed method, a terrain mesh

construction experiment based on Levels of Detail was
designed.

First, we established a quadtree structure. Afterwards, we
constructed a terrain mesh and a vertex array. According to
whether each node can be divided, a terrain mesh was
constructed by drawing triangle faces. In the scene view in
Unity3D editor, WireFrame mode was used to display the
terrain mesh. )e result is shown in Figure 15.

It can be seen that the terrain mesh constructed based on
Levels of Detail has lower mesh complexity. While the areas
that are far from the viewpoint have lower details, the areas
that are close to the viewpoint have greater details. By
moving the viewpoint, the changes of details can be clearly
seen in local terrain areas. As shown in Table 5, when the
camera moved towards the terrain mesh, the terrain details
became gradually enriched. )us, our method realized dy-
namic control of mesh details, and rendering efficiency was
high.

4.5. Experiment for Multiple Texture Mapping. To verify the
effectiveness of using multiple textures to enhance the re-
alism of 3D terrain, an experiment of multiple texture
mapping was designed.

First, a mask texture was created based on a terrain
elevation map drawn by a user.)en, the sample texture and
mask texture were fused for outputting multiple textures,
which adopted different elevation value intervals for dif-
ferent texture mapping. Finally, random translations and
mirror operations were performed on the sample texture to
reduce texture repetitions during the tiling process.

)e experimental results are shown in Figure 16. It can
be seen that multiple texture mapping can assign different
textures based on the elevation value intervals of the terrain
elevation map. From 3D visualizations of terrains, users can
have an intuitive and fun experience in interactive terrain
editing and terrain elevation map creation.

4.6. Experiment for Interactive Terrain Editing. To provide a
good user experience for interactive terrain editing, we
designed an interactive terrain editing tool based on the
methods for terrain feature extraction, terrain elevation map
generation, and 3D terrain visualization that are described
earlier in this paper. With the help of this tool, users can
freely draw ridge line, valley line, and peak point features on
a sketch. )e tool can generate terrain elevation maps with
realistic features in real time based on the sketch and provide
3D visualization for the terrain that users can interact with.

)e interactive terrain editing tool based on a multi-
feature sketch can be divided into four modules: terrain
feature extraction module, terrain elevation map generation
module, terrain visualization module, and human-computer
interaction module. Specifically, terrain feature extraction is
used for extracting terrain features, creating data sets, and
training networks to get the generator model with the best
performance. With this generator model, the terrain ele-
vation map generation module can generate a terrain ele-
vationmap based on a terrain feature sketch drawn by a user.
)e terrain visualization module adopts LOD mode to build

Figure 12: )e final result of ridge line feature extraction.

Figure 13: )e result of valley line feature extraction.

Figure 14: )e result of peak point feature extraction.
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a terrain mesh and adopts multiple texture mapping to
improve the realism of 3D terrain. Finally, the human-
computer interaction module provides a user interface for
the functionalities above, creating a good user experience for
the interactive terrain editing tool.

(1) Terrain Feature Extraction Module. Terrain feature ex-
traction module is the core module for interactive terrain
editing. In the terrain editing tool, terrain features are
distinguished by using different colors and drawing
methods. Specifically, red lines are used for ridge lines; blue
lines are used for valley lines; cyan dots are used for peak
points.

(2) Terrain Elevation Map Generation Module. Terrain el-
evation map generation module is the basis for real-time
interactive terrain editing. )e trained generator model can
be loaded by the LoadModel() method in the Keras library. A
series of format conversions are performed on the user-
created feature sketch to obtain a suitable data format for the
model input, and the Predict() method is called to predict
and generate a terrain elevation map. Finally, the generated

result is converted to PNG format, where the user can choose
different resolutions to save the file.

(3) Terrain Visualization Module. Terrain visualization
module allows users to observe the generated results intu-
itively. )e module includes two submodules: mesh con-
struction and texture mapping. Due to the LOD-based mesh
construction, it is possible to ensure the user experience on
low-performance devices.

(4) Human-Computer Interaction Module. Human-com-
puter interaction module can have a great impact on user
experience for the terrain editing tool. )e module can be
divided into two submodules: interactive user interface
module and interactive function module. Specifically, the
interactive user interface module includes a main user in-
terface, a feature extraction user interface, and a roaming
user interface; interactive function module includes terrain
feature extraction function, editing and saving function, and
roaming display function.

)e initial user interface of our interactive terrain
editing tool is shown in Figure 17. )e black area on the

Table 2: Generated terrain results based on real terrain features.

Terrain features Real terrain samples Generated results SSIM

0.60

0.65

0.63
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Table 3: Generated terrain results based on sketch input.

Terrain feature sketches Generated results Rendered results

Table 4: Comparison of generated terrain elevation maps with and without self-attention mechanism.

Terrain features Real terrains Without self-attention mechanism With self-attention mechanism
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Table 4: Continued.

Terrain features Real terrains Without self-attention mechanism With self-attention mechanism

Figure 15: )e result of terrain mesh constructed based on Levels of Detail.

Table 5: Generated terrain meshes based on different distances.

Distance� 9000 Distance� 6000

Distance� 3000 Distance� 1000
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Figure 17: )e initial user interface of our interactive terrain editing tool.

Figure 18: )e interface of terrain feature extraction.

Figure 16: )e result of adaptive texture mapping.
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left side is the user sketch drawing area, and the white area
on the right side is the terrain generation area. )e
rightmost sidebar has six functions, namely, feature ex-
traction, drawing board emptying, work saving, roaming
display, terrain feature selection, and output resolution
selection.

Users can click the feature extraction button to start
terrain feature extraction, which can perform feature en-
hancement and feature extraction operations on the local
terrain elevation map data sets. )e user interface for terrain
feature extraction is shown in Figure 18. After successful
input, feature enhancement, and extraction, a popup will be

Figure 20: )e interface for successful feature enhancement and feature extraction.

Figure 21: )e generated terrain elevation map based on a user sketch.

Figure 19: )e interface for successful input.
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displayed to indicate the operation is successful, as shown in
Figure 19 and Figure 20.

Users can select different brushes to draw terrain features on
a sketch, and the generated results will be displayed in the terrain
generation display area. As shown in Figure 21, three types of
features, including ridge lines, valley lines, and peak points, are
drawn on the sketch. Since the low-level GPU-driven generator
is used, the calculation can be done in real time. When a user is
drawing terrain features on the sketch, the prediction of terrain
elevation map can be completed in real time.

After drawing, the user can click the roaming display
button to start interactive roaming to observe the visuali-
zation effect of 3D terrain. To increase the fun for user
interaction, users can click the number key 1 to display a
snow scenery, which can display a terrain under different
weather conditions, as shown in Figure 22.

5. Conclusions and Future Work

To address the issues of low efficiency in obtaining terrain
feature map by manual annotation and poor realism in
generated terrain elevation map, this paper proposes a
method of generating terrain elevation map based on self-
attentionmechanism andmultifeature sketch. First, a terrain
feature extraction method based on adaptive feature en-
hancement and profile recognition is proposed to realize the
rapid and automatic terrain feature extraction of ridge lines,
valley lines, and peak points, which can perform well in
large-scale terrain feature map generations. Afterwards, our
method adopts terrain elevation map generation based on
the self-attention mechanism, where a generator network
based on UNet network and a discriminator network based
on PatchGAN network are built, and then self-attention
mechanism are added to the generator and the discrimi-
nator, respectively, to capture the global spatial features for
generating a realistic terrain elevation map. Finally, by
constructing a terrain mesh and adding multiple textures, a

3D terrain visualization method based on Levels of Detail is
proposed, which can provide high rendering efficiency and
realistic visualization results. In this paper, an interactive
terrain editing tool based on a multifeature sketch is
implemented, which allows users to interact with the gen-
erated terrain. Experimental data show that the proposed
method is effective in terrain feature extraction, terrain
elevation map generation, and 3D visualization. In addition,
the editing tool can run smoothly, providing intuitive user
interactions and a good user experience.

Since the research on interactive terrain editing tech-
niques is conducted under specific conditions, there are
certain limitations and spaces for optimization. Here are a
few points that can be further studied in theory and practice:

(1) Network Structure Optimization. )e network
adopted in this paper is based on the Conditional
Generative Adversarial Network structure. In the
future, we can explore the influence of different
network structures on the generation results and the
efficiency of different training models and further
optimize the network structure.

(2) Texture Mapping Optimization. Despite the fact that
multiple texture mapping is used in this paper, there
is a limit on the number of textures. In the future, we
can explore new ways to create mask textures,
eliminating the limitation on the number of sample
textures to achieve more realistic texture mapping.
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Figure 22: )e result of snow-style terrain visualization.
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