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Crowdsourcing has become a new distributed paradigm, which uses online crowds to solve complex problems. Recently, in order
to reduce the development workload and research threshold of crowdsourcing applications, crowdsourcing process modeling is
attracting more and more attention. However, complex crowdsourcing processes used for creative and open-ended work have
remained out of reach for process modeling, because this type of process usually has a dynamic execution, in which the type,
number, and order of tasks and subtasks are often unknown in advance but are determined dynamically at runtime. In this paper,
we propose a modeling approach and supporting framework to �ll this gap. Speci�cally, we provide a task model composition to
allow task creation on demand, while collaborating on tasks in a tree structure to adapt to the dynamic execution. Moreover, we
introduce a set of message communication modes to support data exchange among tasks. Finally, we construct a framework
named CrowdModeller to embody this approach. �rough two evaluations, we demonstrate its e�ectiveness.

1. Introduction

Crowdsourcing is becoming a new online business model
that allows requesters (employers) and crowdsourcing
workers (employees) to solve problems through network
interaction and collaboration [1]. Many problems are solved
as a series of simple tasks (e.g., microtasks) [2], such as
labeling an image, checking the accuracy of a set of data, and
processing a natural language text segment. Furthermore, to
complete more complex crowdsourcing work (e.g., creative
software design and article writing), the requester usually
needs to link multiple tasks to a crowdsourcing process [3].
Such a process, regarded as a distributed paradigm, can
decompose large and complex tasks into small and simple
subtasks and then recombine subtask solutions into a whole
work product [4]. In this context, it is important to provide
e�ective support for crowdsourcing process design and
implementation.

In early work, a number of crowdsourcing toolkits have
been created to programmatically support crowdsourcing
processes. �ese toolkits are mostly oriented to speci�c

programming languages (e.g., JavaScript [5, 6], Dog [7],
Scala [8], and Python [9–11]), helping requesters to quickly
customize crowdsourcing processes. Unfortunately, this
kind of toolkit is not friendly enough for requesters, espe-
cially those without speci�c programming background and
skills, so that they either rely on professional developers or
have to master speci�c programming methods.

Currently, many studies (e.g., [12–18]) try to provide fast
and convenient solutions for crowdsourcing process with
the help of low-code technology [19], especially employing
business process modeling [20] to reduce the dependence on
programming skills. �ese modeling approaches provide
graphical modeling tools to visualize the design, imple-
mentation, and maintenance of crowdsourcing processes.
�ey enable requesters to focus more on the formulation and
improvement of crowdsourcing processes (design and ad-
justment of process models), rather than software devel-
opment (large amount of program hard coding).

However, the above crowdsourcing modeling ap-
proaches mainly focus on the static control ¤ow perspective
that prede�nes all tasks in a single �xed model and
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coordinates tasks in an assembly line-like structure. Less
attention has been paid to formal modeling that can directly
support complex crowdsourcing work (i.e., creative and
open-ended work). In fact, supporting more creative and
valuable open-ended work is becoming a research trend in
crowdsourcing community [21]. 'is type of work has a
wide range of applications, e.g., article writing, software
design, and creative design, attracting more and more in-
terest [22]. Its key feature is that there is often no clearly
defined solution, allowing workers to participate in task
partition or self-coordination [21]. 'us, the crowdsourcing
process for such work usually has a dynamic execution, in
which the type, number, and order of tasks and subtasks are
often unknown in advance but are determined dynamically
by workers at runtime. For example, the requester may not
be able to specify all sections of an article beforehand but
allows workers to participate in task partition according to a
brief outline. In particular, when a section task in an article
writing case is unclear or too complex at runtime, it is
further refined and decomposed into sub-section tasks until
they are executable. As a result, how to model, coordinate,
and manage tasks to adapt to this dynamic execution is a key
challenge for crowdsourcing process modeling.

In this paper, we fill this gap by providing a formal
modeling approach and a web-based support framework. Its
core is to construct a task model composition to allow task
creation and data exchange on demand, while managing
tasks (instances) in a tree structure to adapt to the dynamic
execution. Specifically, a crowdsourcing process is charac-
terized by a task model composition containing multiple task
models. 'e task model describes the state change of task
from beginning to end, driving task partition, execution, and
routing. Meanwhile, we introduce instance tree to facilitate
the task collaboration and management. 'e instance tree is
not static but is dynamically generated during runtime, in
which the nodes represent tasks created by task models and
the arrows represent task dependencies (parent-child cre-
ation relationships). Furthermore, we provide a set of
message communication modes to support task coordination,
so that the data exchange can be performed accurately
among tasks. Tasks do not exist in isolation but are managed
by instance tree to meet the needs of dynamic execution.

'is paper extends our previous work [23] in the fol-
lowing five aspects: we introduced the model composition to
represent the crowdsourcing process, rather than a single
specific model; we gave the formal definition of task model
composition and instance tree, rather than the text de-
scription of a single model; we improved the framework
structure, model design, and implementation interfaces; we
provided a more comprehensive comparison of the existing
crowdsourcing modeling approaches; and we conducted a
set of more extensive experiments.

In summary, we make the following main contributions
in this paper:

(1) A crowdsourcing process modeling approach, which
combines task model composition, instance tree, and
message communication modes to handle task
modeling, collaboration, and data exchange.

(2) An automated execution framework named
CrowdModeller, which enables the requesters to
graphically model (design), implement, and manage
crowdsourcing processes.

(3) Two evaluations, which show that CrowdModeller
can accommodate the needs of complex crowd-
sourcing work, especially creative and open-ended
work.

'e rest of this paper is organized as follows. Section 2
gives an overview of related work. Section 3 describes the
approach and execution framework in detail. Section 4
reports two evaluations based on article writing example.
Section 5 discusses the strengths and shortcomings of the
approach. Section 6 summarizes the paper and suggests
future work.

2. Related Work

In this section, we firstly summarize the existing crowd-
sourcing approaches from multiple dimensions, including
process definition language, control flow, data management,
as shown in Table 1. 'en, we take the “process definition
language” as the benchmark to classify existing work into
two categories, language-specific programming and process
modeling (low code), and analyze them separately. Finally,
we discuss the latest research on the complex and open-
ended work, which is also closely related to our work.

Both language-specific programming [5–11] and process
modeling [12–18,24] support crowdsourcing processes
through different strategies. 'e former integrates program
scripts, task templates, and advanced algorithms to facilitate
rapid process development, while the latter employs custom
modeling and extended standard modeling languages (e.g.,
BPEL and BPMN), to enable requesters to focus more on
visual design and management of crowdsourcing processes,
rather than heavy program coding. With respect to control
flow mechanism and data management, both of these ap-
proaches can provide good support in crowdsourcing
processes. However, existing process modeling mainly fo-
cuses on static control flow when considering process exe-
cution, i.e., prespecified task partition and fixed execution, so
that it is hard to provide support for dynamic execution.

2.1. Language-Specific Programming. Early work has pro-
posed many language-specific programming approaches.
TurKit [6] provides a JavaScript-oriented programming
toolkit to quickly deploy tasks in an iterative manner.
Soylent [5] introduces “find-fix-verify” crowd programming
paradigm to divide and execute tasks on the basis of TurKit,
so as to improve the quality of text editing. Jabberwocky [7]
develops a high-level programming language called Dog and
uses it to support cross-platform crowdsourcing processes.
Moreover, AutoMan [8] is a crowdsourcing programming
framework that integrates human-based and digital com-
puting. It uses Scala language and algorithms based on
quality control, scheduling, and budget to automate process
implementation. Different from the above, CrowdForge [9]
and Turkomatic [10] both adopt a divide-and-conquer
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strategy to solve crowdsourcing problems. 'e former
proposes a multilevel partition structure based on Map-
Reduce paradigm and combines Python and task template to
create tasks, while the latter introduces price-divide-solve
algorithm based on task price to achieve crowdsourcing
goals. In addition, Cascade [11] uses an iterative algorithm to
solve the classification work, which supports parallel task
execution. 'e above approaches enable the requesters to
customize and deploy crowdsourcing applications pro-
grammatically. Unfortunately, they are not friendly enough
for requesters, such as business experts and analysts, who
often lack specialized programming background and skills
[18, 24].

2.2. Process Modeling. In order to further reduce the de-
velopment workload, as well as the dependence on pro-
gramming skills, many studies attempt to evolve from
programming approaches to crowdsourcing process mod-
eling. As one of the classic low-code solutions, the process
modeling provides a graphical way to quickly implement
crowdsourcing process. In earlier work, CrowdLang [12]
describes a process-driven modeling language. It imple-
ments crowdsourcing processes by customizing a set of
operators, including Reduce, Aggregate, and Multiply.
CrowdWeaver [13] provides a graphical modeling tool to
configure crowdsourcing tasks, including human and ma-
chine tasks, and to manage data flows visually.

Recently, the main work of [17] is to employ the
BPEL4People, an extension of the web service orchestration
language BPEL, to model and implement crowdsourcing
processes. Unlike our work, it focuses on assigning tasks to
appropriate workers according to nonfunctional attributes,
such as worker’s ability and skill level. CrowdSearcher [14]
introduces the concept of modeling and defines a set of task
types (such as Tag, Like, Order, Classify, and Group) and
patterns to organize crowdsourcing processes. Unfortu-
nately, its modeling notations and semantics are customized,
not from the standard modeling languages. To fill this gap,
Crowd Computer [18] extends the standard BPMN to
customize crowdsourcing tactics, including contest and
auction. It uses an open source execution engine to separate
business process logic from implementation logic and
supports multiple control flow mechanisms to implement
tasks. Overall, it focuses on modeling and integration of
static crowdsourcing processes without considering open-
ended work that has no clearly defined solution. Similar
work can be found in [15, 16]. 'ey provide a web-based

framework to support hybrid human-computer computing,
emphasizing task scheduling. Furthermore, Service4Crowd
[24] introduces a service-oriented crowdsourcing platform
to develop and manage service compositions. Each service
represents an activity (task) of the crowdsourcing process,
which is parsed and scheduled by an open source BPMN
engine. Although its service composition can flexibly meet
the definition and execution of the crowdsourcing tasks, it is
still limited to a single fixed process model and does not
consider the dynamic execution.

2.3. /e Researches on Complex and Open-Ended Work.
Another noteworthy related work is the researches and
discussions on complex and open-ended work, which in-
spired our work. Kittur [21] discusses complex crowd-
sourcing processes with the help of organizational behavior
and distributed computing. 'e researcher points out that
the open-ended work consists of interdependent tasks that
require continuous collaboration (dynamic execution) to
achieve business goals. In particular, there are a number of
interdependencies that need to be addressed, including
shared human resources, input/output data dependencies,
and task/subtask dependencies. Furthermore, Retelny et al.
[25] argue that the current crowdsourcing approaches focus
mainly on static execution process and lack the necessary
adaptability to changing requirements, such as upstream and
downstream task collaboration and changing goals. 'ese
characteristics pose new challenges to the crowdsourcing
process modeling. Similarly, Vaish et al. [26] analyze task
dependencies based on data view, indicating that complex
work may achieve global goals through a large number of
local (individual) efforts. Inspired by these, we explore
combining business process modeling techniques to cover
the dynamic execution features of complex crowdsourcing
processes, especially when considering open-ended work.

3. CrowdModeller

In this section, we first introduce themodeling approach and
then describe the corresponding support framework named
CrowdModeller.

3.1. Modeling Approach. To accommodate the features of
complex crowdsourcing processes, our approach mainly
considers three aspects, i.e., task modeling, task collabora-
tion, and data exchange. Figure 1 shows the metamodel of
the approach. A crowdsourcing process is associated with a

Table 1: An overview of existing approaches from multiple dimensions.

Dimensions Approaches
Process definition
language JavaScript [5, 6], Dog [7], Scala [8], Python [9–11], custom modeling [12–16], BPEL [17], BPMN [18, 24]

Control flow mechanism Iterative [5–7, 11, 12] [14–18, 24], recursive [9, 10], parallel [7–9, 11, 13–18, 24] approach
Data management Data flow [5–18, 24]

Process development Text + script [5–8, 10, 11], task template + script [9], editor [10], custom model + configuration [12–16],
extended standard model + configuration [17, 18, 24]

Process execution Static control flow [5–7, 9, 11–18, 24], algorithms based on budget or price [8, 10]
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task model composition, in which each task model is rep-
resented using a state machine. 'e state machine not only
represents the state change of task, but also binds several
service interfaces to perform specific operations, e.g., pub-
lishing microtasks, enabling communication, and storing
data. It especially supports invoking any model that belongs
to the model composition to create subtasks, including itself
or other task models. At runtime, each task is instantiated by
invoking the task model from the composition, while tasks
can interact with each other through message communi-
cation modes. Furthermore, all tasks gradually form an
instance tree, in which the nodes represent tasks created by
task models and the arrows represent task dependencies
(parent-child creation relationships).

Level 1 and level 2 represent different layers of the
instance tree. Usually, the instance in level 1 is created first,
and then the instance of level 2 is triggered by the instance
of level 1. In short, the model composition represents the
static perspective of crowdsourcing process, while the in-
stance tree shows the dynamic execution of crowdsourcing
process. 'ey work together with message communication
modes to achieve task modeling, coordination, and data
exchange.

3.1.1. Task Model. 'e state machine is extended to describe
task model, where action encapsulates a set of service in-
terfaces to support data manipulation and external inter-
actions, as shown in Figure 2. Formally, the task model is
defined as follows.

Definition 1 (task model, TM). A task model is an 8-tuple
based on state machine TM (S, s0, F, C, E, A, L, T), where the
following notations are used:

(1) S is a finite set of task states, s0 ∈ S is the initial state,
and F⊆ S is the set of final states.

(2) C is a set of Boolean conditions: T (true) and F
(false) ∈C. Let Ci be a set of primitive conditions; if
c ∈Ci, then c ∈C; if c1 ∈Ci, c2 ∈Ci, op ∈
{�,<,>,≠,≤,≥}, then c1 op c2 ∈C; c1 ∨ c2, c1 ∧ c2, and
∼ c1 ∈C.

(3) E is a set of events. If c ∈C and e ∈E, then e[c] ∈E.

(4) A is a set of actions. If vx ∈V, then v1:� v2 ∈A, and V
is a set of expressions. Besides expressions, actions
are bound to a set of interface templates it (type,
template), where type denotes the types of interfaces,
and template is a series interface parameters.

(5) L⊆E×C×A is a set of labels. It is written as e[c]/a,
where e ∈E, c ∈C, a ∈A.

(6) T⊆ 2S × L× 2S is a set of transitions. For a transition
t� (s1, l, s2), s1 is the source state and s2 is the target
state; l ∈ L is a label. A transition t is triggered if s1 is
enabled and e ∈E is activated with c ∈C being true,
causing a ∈ A to be taken.

In Definition 1, (1) defines the execution states of the task
model. (2), (3), and (4) together form a set of labels (i.e., (5)),
driving the migration of task state. When a transition in (6)
is triggered, the task state transfers from the source state to
the target state. In particular, (4) provides a set of interface
templates through actions, including the following: Data-
Object is used to read/write data;Microtask is responsible for
publishing a simple microtask; Communication allows in-
voking a message communication mode to send messages to
other tasks; SubStateMachine invokes a task model to create
a new task instance, as shown in Figure 2.

Definition 2 (task model composition, TMC). Let TM1,
TM2,. . ., TMn be a set of task models that participate in the
crowdsourcing process. A TMC is defined as
TMC�TM1||. . .||TMn, where || is a parallel operator.

Note that Definition 2 is only a structure definition that
defines a parallel relationship between task models, while the

Data object
Id; 
Name;

Microtask
Id; 
Name;
State;

Task model
Id; 
Name;

Crowdsourcing process
Id; 
Name;
Task;

State machine
Id; 
State;
Transition;
Event;
Condtion;
Action

1 n

Interact

Bind toLevel 1

Level 2

Level n
……

……

……

Instance
tree

Model composition
Id; 
Task model id;

1
n

1 1

Task 
Id; 
Name;
Task_type;

Communication
Id;
Name;

Figure 1: Metamodel of the approach.
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Figure 2: 'e class diagram of extended state machine.
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coordination and interaction between TMi rely on message
communication modes (see Definition 4). 'e task models
in the model composition can establish a variety of coor-
dination and interaction mechanisms with each other by
combining the communication modes and instance tree. In
this way, it can adapt to the dynamic execution in complex
crowdsourcing process.

3.1.2. Instance Tree. 'e instance tree is introduced to co-
ordinate and manage tasks during dynamic execution. A
form of the instance tree is shown in Figure 3.

Definition 3 (instance tree, IR). An instance tree is a 2-tuple
IR (N, R), where N is a set of nodes created by task model
TMi, where TMi ∈TMC, 1 ≤ i≤ n.

(1) R ⊆ N × N is the set of edges (parent-child creation
relationships) formed by the ordered pairs (np, nc),
where np as the parent node calls a task model to
create its subtask nc.

(2) nroot ∈N, ∀ (n, nroot) ∈R: nroot is a root.
(3) nleaf ∈N, ∀ (nleaf, n) ∈R: nleaf is a leaf.

It should be noted that the instance tree is not fixed
because it is generated dynamically at runtime; that is,
dynamic execution may result in different forms of instance
tree. As a result, we can observe that TMs and TMC are static
models that are designed by the requesters, while IR de-
scribes dynamic execution under TMC constraints.

3.1.3. Message Communication Mode. A common set of
message communication modes are provided to facilitate
collaboration and data exchange between tasks. To ensure
that the message is delivered to the receiver accurately, the
message communication modes rely on the instance tree to
provide the task context, e.g., task id, state, and location. In
more detail, we provide a sequence diagram to show how the
message communication modes work (see Figure 4 in
Section 3.2).

Tree structure itself is a simple and flexible mechanism.
In theory, communication can be established between any
nodes based on instance tree. In practice, we provide three
common message communication modes: ToParent,
ToChild, and ToDescendant, as shown in Figure 5. If nec-
essary, more modes can be obtained based on the instance
tree. Note that in order to simplify the definition and clearly
show the message interaction between task models, we as-
sume that the message name is unique.

Definition 4 (ToParent message communication mode).
ToParent means that a child task sends a message to its
parent task. Formally, ToParent� (ni ×m× nj), where (nj,
ni)⊆R, ni ∈N represents a sender in state i,m ∈M represents
a message, and nj ∈N represents a receiver in state j.

'e ToParent is a common point-to-point mode that has
only one receiver and sends only one message at a time. It is
often used by subtasks to return results to the parent task.

Definition 5 (ToChild message communication mode).
ToChild means that a parent task sends messages to its child
tasks. Formally, ToChild� (ni ×m× nj), where (ni, nj)⊆R,
ni ∈N represents a sender in state i, m⊆M is a set of
messages, and nj⊆N represents a set of receivers in state j.

'e ToChild allows the sender to send messages to its
child tasks. It is often used by the parent task to send task
information to the child tasks.

Definition 6 (ToDescendantmessage communicationmode).
ToDescendant means that a sender sends messages to all its
descendants. Formally, ToDescendant� (ni ×m× nj), where
ni ∈N represents a sender in state i,m⊆M is a set of messages,
and nj⊆N is a set of descendant nodes of ni in state j.

'e ToDescendant is an extension of ToChild. When
applied to the root node, it affects the entire instance tree.
For example, before the end, the process will use this mode
in the root node to send messages to all descendant tasks to
query whether they are completed.

3.2. Implementation. At present, state machine and its
variants have become mature graphical modeling tools
for describing complex systems [27]. More importantly,
the World Wide Web Consortium (W3C) combines
the semantics of statechart [28] (a variant of state machine)
with XML grammar to propose a general state machine

Figure 3: A form of instance tree. Each node represents a task
created by a task model.

6.transfer message

Sender Event
dispatcher

Instance
tree Receiver

1.request the context of Sender

2.return info
3.send message

4.get node info

Loop:transfer event

[nodes]

5.return info

[Message 
commnunication 
mode]

Choose:request the
context of Receiver

Figure 4: Sequence diagram of message communication modes.
First, the sender obtains its own context (e.g., ID, state and lo-
cation) from the instance tree as a preset condition. 'en, the event
dispatcher obtains the context of the receiver according to the
sender instruction and the selected message communication mode.
Finally, it passes the message to the corresponding receiver.
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language called SCXML. It has normative executable se-
mantics and has received positive response and support
from academia and industry [29, 30]. In particular, Apache
Commons project (http://www.apache.org) has developed
an open source engine called Commons SCXML to parse
and execute state machine models defined using SCXML,
providing rich advanced APIs to extend custom operations
and semantics. 'ese existing foundations facilitate the
implementation of modeling approach and framework in
this paper.

We build an automated execution framework, Crowd-
Modeller, to embody the modeling approach. Figure 6 shows
its high-level architecture.

Model editor is a web-based graphical design tool that
allows the requester to design task models and associate
them to a model composition. Figure 7 shows a TMC of an
article writing case that will be used in Section 4. Region B is
a modeling whiteboard where a model composition with two
task models has been constructed, i.e., article version and
section task model. 'e dotted arrows inside the models
represent the data flow, while the dashed line hollow arrows
between the two models represent the message flow. 'e
black envelope indicates that the state can invoke message
communication modes to send messages, while the white
envelope indicates that the state can receive messages sent by
the external model. A human shape indicates that the state
can publish microtasks, and the number in bracket indicates
the number of microtasks. Region A is the Model Notation
Panel. 'e Property Panel and Data Panel in Region C are
used to configure task properties and data object parameters
in model composition.

Commons SCXML is a Java-based open source
workflow engine for performing task model composition
defined by the model editor. Specifically, the engine parses
the model into the process repository and Datastore and
drives the task execution. Event dispatcher works with the
instance tree to pass messages between tasks, as shown in
Figure 4. 'e task dispatcher is responsible for creating
and scheduling tasks. 'e interface layer provides a set of
service interfaces connected to external services. In par-
ticular, it integrates ParlAI [31] for publishing microtasks
to other crowdsourcing markets, e.g., MTurk (https://
www.mturk.com), and manages data interaction with
the front-end UI.

4. Evaluation

In this section, we conduct two evaluations to illustrate the
effectiveness of CrowdModeller. 'e first evaluation, as a
benchmark study, uses an article writing case to illustrate
how CrowdModeller coordinates task models, instance tree,
and message communication modes to efficiently adapt the
complex crowdsourcing processes.'e second evaluation, as
a comparative study, compares CrowdModeller with the
latest crowdsourcing process modeling approach based on
the same experimental conditions. A group of 20 graduate
students were invited to participate in the experiment as
crowdsourcing workers.'ey were free to choosemicrotasks
and complete them according to the prompts.

4.1. Benchmark Study. 'e selected article writing case is
derived from the literature [22], whose goal is to obtain a
high-quality article based on a brief prompt provided by the
requester. 'e reason for choosing article writing is that it is
a typical open-ended work without a well-defined solution
[21]. Although this case has been explored programmati-
cally, it is still out of reach for crowdsourcing process
modeling approaches.

Specifically, the article writing case obtains articles by
constantly updating the global goal and executing the local
goals with workers, rather than simply requiring workers to
execute a static goal. 'e global goal represents the writing
direction and requirements of the whole article, while the
local goals are decomposed from the global goal, corre-
sponding to the sections of an article. In particular, due to
the complexity of requirements, each section may be further
decomposed into subsections at runtime until they are
executable.

In order to adapt to the dynamic execution, especially the
uncertainty of section tasks, we design a model composition,
which contains two task models (i.e., article version task
model (AVTM) and section task model (STM)) to achieve
global and local goals respectively, as shown in Region B of
Figure 7. Note that a human shape indicates that the state
can post microtasks to workers, the number in bracket
indicates the number of microtasks, and the “(auto)” means
that it is an automatic operation.

'e AVTM is responsible for managing the whole
writing process, including choosing the global goal,

R: receiver

S: sender

message

S

R

(a)

R: receiver

S: sender

messagemessage
S

R R

(b)

R: receiver

S: sender

S
message

message message

message message

R R

R R
R

(c)

Figure 5: 'ree types of message communication modes based on instance tree. (a) ToParent. (b) ToChild. (c) ToDescendant.
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decomposing the goal into specific sections, receiving the
results of the section tasks, and evaluating the new article
version. On the other hand, the SAM is in charge of section
editing. In particular, it contains data-based routing to assist
the worker decides whether the current section needs further
decomposition. Moreover, the task models also have the
following main characteristics.

AVTM and SAM interact and exchange data through
message communication modes. In state creating sections to
edit, the AVTM enables actions SubStateMachine and
Communication, that is, it sets up SAM to create section
tasks and ToChild mode to interact with the section tasks it
creates. Meanwhile, it receives the feedback in the next state
(receiving section results). Accordingly, SAM has a corre-
sponding state to receive messages or send feedback mes-
sages; e.g., in state sending feedback, it sets up ToParentmode
to return the feedback to its parent task.

Note that tasks belonging to SAM can also interact and
exchange data with each other. In state creating subSections
to edit, it enables actions SubStateMachine and Communi-
cation too. 'at is, it calls SAM to create sub-section tasks
and ToChild mode to interact with its sub-section tasks.

4.1.1. Experimentation Results and Analysis. We use two
snapshots to illustrate the experiment process and give an
analysis and summary.

Initially, we give a brief prompt, i.e., “please write an
article about crowdsourcing,” as input to the experiment. In
state writing first draft, a worker is asked to complete the first
draft based on this prompt. After that, Figure 8 shows the
current execution snapshot. Region A at the lower left
represents the instance tree, showing that only one article
version task (for short AVTM task) is currently running.
Region B displays the execution state of the task in real time.
At this point, a circularmarking 1 represents the AVTM task
1, indicating that it is moving from the statewriting first draft
to the next state. During execution, each task is represented
by a specificmarking. Region C shows themain runtime data
of task 1, including the first draft and title.

Figure 9 provides an execution snapshot showing that an
article version task and multiple section tasks (SAM) are
running. Region A shows the real-time situation of the
instance tree. Compared with Figure 8, it adds multiple task
instances. Specifically, the AVTM task 1 creates SAM tasks 2,
3, and 4, while task 3 continues to be decomposed into sub-

Commons
SCXML Task

instance tree

Event
dispatcher 

Task
dispatcher

Process
repository

Model editor

Datastore

Connected
to MTurk

Front-end
UI 

In
te

rfa
ce

 la
ye

r

Figure 6: High-level architecture of CrowdModeller. Two-way arrows indicate that these components can interact with each other. 'e
source code of the framework has been uploaded to GitHub (https://github.com/xthHub/RenWFMS).

Figure 7: 'e model editor in CrowdModeller. Region B is a modeling whiteboard, while Region A is the Model Notation Panel. Region C
contains the Property Panel and Data Panel.
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SAM tasks 5 and 6. Region B shows that AVTM task 1 (red
marking 1) is waiting for feedback from other tasks in state
receiving section results. On the one hand, SAM tasks 2 and 4
(yellowmarkings 2 and 4) are entering the end state, and they
are feeding back the results to the AVTM task 1 through
messages (a pale yellowmarking 2 indicates the message sent
by task 2). On the other hand, SAM tasks 5 and 6 (yellow
markings 5 and 6) are entering the sending feedback state,
indicating that they are ready to feed back the results to their
parent task (i.e., task 3). Region C displays the runtime data
for each task.

Here, limited to the interface layout, Region C only
shows the main task data, while more detailed information
including microtask data is displayed in the built-in front-
end interfaces, as shown in Figure 10. 'e final outputs are
shown in the appendix.

'is evaluation shows that CrowdModeller integrates
task model composition, instance tree, and message com-
munication modes to effectively adapt to the complex
crowdsourcing processes. Specifically, it introduces two task
models to constitute a model composition, adapting to
different levels of goals in the article writing case. 'e tasks
can flexibly invoke the other model or their own model to
create subtasks during execution. Moreover, CrowdMod-
eller establishes a “communication bridge” between tasks
through instance tree and message communication modes.
Finally, it clearly shows the dynamic execution of the whole
crowdsourcing process, helping the requester to intuitively
monitor and understand the crowdsourcing process. In
summary, CrowdModeller can visualize the design, execu-
tion, and management of the entire crowdsourcing process,

Figure 8: An execution snapshot with only one article version task currently running.

Figure 9: An execution snapshot showing that an article version task and five section tasks are running, while section task 3 is decomposed
into two sub-section tasks 5 and 6.
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supporting complex task modeling, collaboration, and data
exchange requirements for dynamic execution.

4.2. Comparative Study. In this evaluation, we use the same
article writing case to compare CrowdModeller with the
latest process modeling approach, namely, Service4Crowd.
Specifically, based on the same experimental conditions, we
conduct a two-round comparative experiment.

Service4Crowd provides visual modeling based on
BPMN to design the crowdsourcing process, as shown in
Figure 11. It is a single fixed model that predefines all tasks,
including setting a global goal, breaking down sections, and
editing sections. 'e requester uses graphical symbols to
describe the process model of the whole article writing, such
as writing a first draft and setting a global goal. In particular,
the model contains a pair of parallel gateways to divide the
article into three sections. All section tasks are linked to-
gether in a linear structure because all tasks are specified in
advance by the requester. Furthermore, since the number of
sections is fixed and cannot be modified during execution,
when entering the second round, the new version of the
article is still divided into three sections to be revised, re-
gardless of the quality of the first round. As a result, this may
cause it to lack the necessary support in the face of changing
requirements (dynamic execution). For example, in the
second round, some sections need no modification, but
modifications are enforced, while some sections need to be
further decomposed, but this cannot be implemented.

Instead, CrowdModeller provides a model composition
to coordinate multiple task models (including AVTM and
SAM) to collaborate and interact. In the first round, one
AVTM task and five SAM tasks are created (see Figure 9).
Especially in the second round, the worker evaluates the
article obtained from the first round and chooses the new
global goal: the entire article (5 sections) does not need to be
fully revised; only three sections need to be revised. As a
result, three new section tasks are created in the second
round, instead of the same five section tasks as in the first
round. Detailed comparison statistics are shown in Table 2.

'e experimental results show that although both
CrowdModeller and Service4Crowd can design the article
writing process by visual modeling, the former is better able
to adapt to changing requirements than the latter. 'at is,
the way of model composition provided by CrowdModeller
is more flexible in dynamic execution than a single fixed
model.

5. Discussion

5.1. ComparativeAnalysis. To further illustrate the strengths
and shortcomings of CrowdModeller, we qualitatively
compare it with other process modeling approaches from
multiple dimensions. 'is is a further refinement based on
Table 1. 'e reasons for choosing these approaches are as
follows: On the one hand, available source code or online
resources can provide sufficient information for analysis. On
the other hand, they represent the state of the art for
crowdsourcing process modeling. According to the di-
mension of process definition language, we divide the existing
process modeling approaches into two categories: custom
modeling and extended standard modeling, as shown in
Figure 12.

At present, when considering process definition language,
many researches have gradually evolved from custom
modeling to extended standard modeling, because the widely
used standard modeling specifications can provide more
theoretical and practical support, facilitating the design and
implementation of crowdsourcing processes, such as in
process development, data management, and process
management.

Specifically, in process development, CrowdModeller
develops crowdsourcing process in the way of task model
composition, which creates tasks on demand in dynamic
execution. Task models collaborate and interact with each
other through message communication modes. 'e re-
questers can customize model constructs and configurations
through graphical state machine symbols and rich service
interfaces, including specifying microtasks and setting up

(a)

(b)

Figure 10: Management interface. (a) Basic operations to adjust task instructions, such as modifying task descriptions or deleting tasks
when the quality of tasks is too low or for other reasons. (b) Detailed instructions and results of tasks.
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automated tasks handled by the system (e.g., calling task
models to create task instances and sending/receiving
messages). Moreover, the task models conform to the
standard SCXML specification and have a solid theory and

application foundation compared with the custom modeling.
In particular, CrowdModeller supports models with arbi-
trary topologies and has no inherent limitations similar to
those in other approaches, such as specific crowdsourcing

Table 2: Main statistics of the comparative evaluation. 'e final outputs are shown in the appendix.

Item CrowdModeller Service4Crowd
Task model 2, namely, 1 AVTM and 1 SAM 1
Task instances created by
model (round 1) 6, namely, 1 AVTM task and 5 SAM tasks 1

Task instances created by
model (round 2) 3, creating 3 new SAM tasks 0

Microtasks performed by
workers (round 1) 14 8

Microtasks performed by
workers (round 2) 10 7

Task management Tree structure, that is, an instance tree supporting flexible
task decomposition and any number of tasks

Linear structure, that is, a linear stream with fixed
task decomposition and task quantity

Write first
dra�
(1)

Critique and
give global

goal (1)

Edit
Section1

(1)
Edit

Section2
(1)

Edit
Section3

(1)

Evaluate
(3)

Repeat

End

Fixed 3
sections

Please write an
article about

crowdsourcing
Parallel

Gateway
Exclusive
Gateway

Activity

Figure 11: 'e article writing model based on Service4Crowd.

Dimension Feature CrowdLang CrowdWeaver CrowdSearcher CrowdComputer Service4crowd CrowdModeller

Process
Definition
Language

Notation Custom modeling Custom modeling Custom modeling BPMN4Crowd BPMN State machine

Task design Visual model+Wizard Visual model+Wizard Visual model+ Pattern BPMN model+ Tactics
BPMN model+ Service

composition

State machine model+
message communication

mode
Task
deployment

Automatic Automatic Automatic Automatic+Manual Automatic Automatic

Task
implementation

Custom model
execution engine

Custom model
execution engine

Custom model
execution engine

BPMN extension
engine for

BPMN4Crowd
Activiti engine SCXML Common engine

Data interaction Data flow Data flow Data flow Data flow Data flow Data flow + Message
flow

Data splitting &
aggregating

Custom notation Custom notation Custom pattern BPMN4Crowd notation BPMN notation State machine notation

Execution Static control flow Static control flow Static control flow Static control flow Static control flow Model composition
+Instance tree

Upgrading Reconfiguration model Reconfiguration model Reconfiguration pattern Reconfiguration model Reconfiguration model Reconfiguration model

Sequence + + + + + +
Loop/Iteration + _ + + + +
Parallelism + + + + + +
Recursion _ _ _ _ _ +

Process modeling

Custom modeling Extended standard modeling

Control Flow
Mechanism

Data
Management

Process
Management

Process
Development

Taxonomy

Figure 12: Comparing CrowdModeller with other modeling approaches from multiple dimensions, especially in task design, data in-
teraction, and process execution.
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patterns in CrowdSearcher and crowdsourcing tactics in
Crowd Computer.

With respect to data management, CrowdModeller
achieves data exchange by combining data flow (object) and
message flow. In particular, based on instance tree, it pro-
vides a set of message communication modes to support
sending and receiving messages, so that the data can be
transmitted accurately between tasks. 'e execution data of
each task, such as task status, task data, and relationship
between tasks, can be shown in CrowdModeller (Figures 8
and 9). Note that more detailed microtask data is shown on
the built-in front-end UIs (Figure 10). 'ese features enable
the requester to monitor and manage data in real time
during execution.

In process management, CrowdModeller provides model
composition to model crowdsourcing process statically and
introduces instance tree in dynamic execution. 'e former
allows the requester to flexibly configure the model, while
the latter clearly shows the running task context.

5.2. Limitations. We observe some shortcomings in
CrowdModeller in the evaluations. On the one hand, for
some specific crowdsourcing work, such as classification and
labeling [9], CrowdModeller has no special advantages over
other approaches, with even more complexity; because this
type of work is usually non-open-ended, the design and
implementation of task model composition may lead to
unnecessary complexity. From this point of view, Crowd-
Modeller focuses on the dynamic execution required for
open-ended work, which may be an effective complement to
existing crowdsourcing process modeling.

On the other hand, quality control is not highlighted in
the task models, such as by worker voting. Here, we do not
analyze the output quality of different approaches in the

evaluations. 'is is because the core of this paper is to
explore whether CrowdModeller can provide the necessary
support for the dynamic execution required by open-ended
crowdsourcing work compared with other process modeling
approaches. 'erefore, in order to simplify the task models,
we deliberately ignore the quality control. In fact, we believe
that quality control is an important aspect of crowdsourcing
research. We are planning to add appropriate quality control
mechanisms (e.g., worker voting or machine algorithm [1])
to the task models to explore the differences between
CrowdModeller and more different approaches.

Furthermore, we believe that the dynamic execution
addressed in this paper is just one aspect of complex
crowdsourcing processes. Indeed, resource dependencies
and exception handling (or contingencies) are also impor-
tant aspects needing to adapt to complex crowdsourcing
processes [3, 4, 21, 25]. As a kind of resource dependencies,
reasonable task allocation concerns assigning tasks to
workers with appropriate skills. According to different
factors (e.g., worker skills, demographics, compensation,
and availability), many studies propose adaptive algorithms
or skill models to achieve better task quality [1, 32–35].
Similarly, when considering exception handling, such as
worker exit and dismissal, some researchers try to establish
flexible organizational management mechanisms, such as
Flash Team [25, 36], to adapt to these changing
requirements.

How might CrowdModeller further improve its abilities
to support complex crowdsourcing processes? Wemay draw
on mature theory and technology of business process
management (BPM) [20]. In fact, BPM is closely related to
organizational behavior and process modeling. It is often
used to optimize human resources, task allocation, and role-
based team building to improve organization efficiency.
With this in mind, CrowdModeller may enhance

Figure 13: 'e experimental result of the article writing case based on CrowdModeller (round 1).
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adaptability by utilizing the concepts of resource manage-
ment and skill/role-based task allocation in BPM, which will
be one of the directions of our follow-up research.

6. Conclusions

In this paper, we propose a crowdsourcing modeling ap-
proach for complex and open-ended work. It integrates task
model composition, instance tree, and message communi-
cationmodes to handle task creation, collaboration, and data
exchange. Furthermore, we provide an automated execution
framework called CrowdModeller, using graphical interfaces
to define and monitor the crowdsourcing processes in real
time. Finally, through two evaluations, we show that
CrowdModeller can effectively support the dynamic exe-
cution of complex crowdsourcing processes. More specifi-
cally, the first evaluation, as a benchmark study based on
article writing, shows that CrowdModeller can visualize the
design, execution, and management of the whole crowd-
sourcing process, supporting the complex task modeling,
collaboration, and data exchange requirements for dynamic
execution. 'e second evaluation analyzes the difference
between our approach and the state of the art for crowd-
sourcing process modeling. 'e results show that compared
with the single fixed crowdsourcing model which tends to
static control flow, CrowdModeller can coordinate multiple
task models to match changing requirements, allowing
flexible creation of task instances. Moreover, CrowdMod-
eller provides user-friendly modeling tools and data display
interfaces based on process modeling, which enables users to
quickly design, implement, and manage crowdsourcing

processes. 'is low-code user-friendly framework is con-
ducive to reducing the programming workload and lowering
the threshold of crowdsourcing network research.

In the future, we are planning to draw on the theory and
technology of BPM to enhance the ability of CrowdModeller
in terms of resource dependencies and exception handling.
In addition, we are interested in exploring more crowd-
sourcing scenarios to further improve CrowdModeller.

Appendix

'e experimental results of the article writing case are shown
in Figures 13 and 14.

Data Availability

'e source code of the framework has been uploaded to
GitHub (https://github.com/xthHub/RenWFMS).
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Weaver: visually managing complex crowd work,” in Pro-
ceedings of the ACM 2012 conference on Computer Supported
CooperativeWork, pp. 1033–1036, ACM: Seattle, Washington,
USA, February 11-15, 2012.

[14] A. Bozzon, M. Brambilla, and A. Mauri, “Designing complex
crowdsourcing applications covering multiple platforms and
tasks,” Journal of Web Engineering, vol. 14, no. 5-6,
pp. 443–473, 2015.

[15] O. Scekic, D. Miorandi, T. Schiavinotto, D. I. Diochnos, and
A. Hume, “SmartSociety--A platform for collaborative peo-
ple-machine computation,” in Proceedings of the 2015 IEEE

8th International Conference on Service-Oriented Computing
and Applications (SOCA), 19-21 Oct. 2015.

[16] M. Rovatsos, D. I. Diochnos, Z. Wen, S. Ceppi, and
P. Andreadis, “Smartorch: an adaptive orchestration system
for human-machine collectives,” in Proceedings of the Sym-
posium on Applied Computing, ACM, Marrakech, Morocco,
2017.

[17] D. Schall, B. Satzger, and H. Psaier, “Crowdsourcing tasks to
social networks in BPEL4People,” World Wide Web, vol. 17,
no. 1, pp. 1–32, 2014.

[18] S. Tranquillini and F. P. F. Daniel, “Modeling, enacting, and
integrating custom crowdsourcing processes,” ACM Trans-
actions on the Web, vol. 9, no. 2, pp. 1–43, 2015.

[19] M. Woo, “'e rise of No/low code software development-No
experience needed?” Engineering, vol. 6, no. 9, pp. 960-961,
2020.

[20] W. Van Der Aalst, K. M. Van Hee, and K. van Hee,Workflow
Management: Models, Methods, and Systems, MIT press,
Cambridge, Massachusetts, United States, 2004.

[21] A. Kittur, “'e future of crowd work,” in Proceedings of the
2013 conference on Computer supported cooperative work,
pp. 1301–1318, ACM, San Antonio, Texas, USA, February 23 -
27, 2013.

[22] J. Kim et al., “Mechanical novel: crowdsourcing complex work
through reflection and revision,” in Proceedings of the 2017
ACM Conference on Computer Supported Cooperative Work
and Social Computing, ACM, Portland, Oregon, USA, Feb-
ruary 2017.

[23] T. Xiong et al., “SmartCrowd: a workflow framework for
complex crowdsourcing tasks,” in Proceedings of the Inter-
national conference on business process management;Inter-
national workshop on business process intellignece;Workshop
on social and human aspects of business process manatement,
Sydney, NSW, Australia, September 9-14, 2018.

[24] S. Wu, H. Sun, P. Chen, and X. Liu, “Service4Crowd: a service
oriented process management platform for crowdsourcing,”
in Proceedings of the Companion of the 2018 ACM Conference
on Computer Supported Cooperative Work and Social Com-
puting, ACM, Jersey City NJ USA, November 3 - 7, 2018.

[25] D. Retelny, M. S. Bernstein, and M. A. Valentine, “No
workflow can ever Be enough,” in Proceedings of the ACM on
Human-Computer Interaction 1(CSCW), pp. 1–23, Portland,
Oregon, USA, 2017.

[26] R. Vaish, S. Goyal, A. Saberi, and S. Goel, “Creating
crowdsourced research talks at scale,” in Proceedings of the
2018 World Wide Web Conference, pp. 1–11, International
World Wide Web Conferences Steering Committee, Lyon,
France, April 23 - 27, 2018.

[27] F. Wagner, Modeling Software with Finite State Machines,
CRC Press, Boca Raton, Florida, United States, 2006.

[28] D. Harel, “Statecharts: a visual formalism for complex sys-
tems,” Science of Computer Programming, vol. 8, no. 3,
pp. 231–274, 1987.

[29] F. Barbier and E. O. L. S. Cariou, “Software adaptation:
classification and a case study with state chart xml,” IEEE
Software, vol. 32, no. 5, pp. 68–76, 2015.

[30] E. Domı́nguez and J. Lioret, “A survey of UML models to
XML schemas transformations,” in Proceedings of the Inter-
national Conference onWeb Information Systems Engineering,
Springer, Amsterdam, 'e Netherlands, October 26-29.

[31] A. H. Miller, Parlai: A Dialog Research Software Platform,
https://arxiv/abs.org/1705.06476, 2017.

[32] P. Mavridis, D. Gross-Amblard, and Z. Miklós, “Using hi-
erarchical skills for optimized task assignment in knowledge-

Computational Intelligence and Neuroscience 13

https://arxiv/abs.org/1705.06476


intensive crowdsourcing,” in Proceedings of the 25th Inter-
national Conference on World Wide Web, April 11 - 15, 2016.

[33] S. Basu Roy and I. S. S. G. Lykourentzou, “Task assignment
optimization in knowledge-intensive crowdsourcing,” /e
VLDB Journal, vol. 24, no. 4, pp. 467–491, 2015.

[34] N. M. Barbosa and M. Chen, “Rehumanized crowdsourcing: a
labeling framework addressing bias and ethics in machine
learning,” in Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, pp. 1–12, ACM,
Glasgow, Scotland Uk, May 4 - 9, 2019.

[35] F. Tang and H. Zhang, “Spatial task assignment based on
information gain in crowdsourcing,” IEEE Transactions on
Network Science and Engineering, vol. 7, no. 1, pp. 139–152,
2020.

[36] D. Retelny, S. Robaszkiewicz, A. To, W. Lasecki, and J. Pate,
“Expert crowdsourcing with flash teams,” in Proceedings of the
27th Annual ACM Symposium on User Interface Software and
Technology, October 5 - 8, 2014.

14 Computational Intelligence and Neuroscience


