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(e prediction of lane-change behavior is a challenging issue in intelligent and connected vehicles (ICVs), which can help vehicles
predict in advance and change lanes safely. In this paper, a novel intelligent approach, which considering both the driving style-
based lane-change environment and the driving trajectory-related parameters of the ICV and surrounding vehicles, is proposed to
predict the lane-change behaviors for ICVs. By analyzing the characteristics of the lane-change behavior of the vehicle, a modified
dataset for the prediction of lane-change behavior was established based on the Next-Generation Simulation (NGSIM) dataset,
which is made up of real vehicle trajectories collected by camera. In the proposed approach, the hidden Markov model (HMM)-
based model is designed to judge whether the current environment is suitable for lane change according to the driving envi-
ronment parameters around the vehicle; then according to the driving state of the vehicle, a learning-based prediction-then-
judgment model is proposed and designed to realize the prediction of the ICV’s lane-change behavior. Experiments are
implemented by using the modified dataset. From the experimental results, the lane-change probability value on the target lane in
the truth of the lane-change behavior calculated by the designed HMM-based model is basically above 0.5, indicating that the
model can make a more accurate judgment on the surrounding lane-change environment. (e proposed learning-based pre-
diction-then-judgment model has an accuracy of 99.32% for the prediction of lane-change behavior, and the accuracy of the lane-
change detection algorithm in the model is 99.56%. (e experimental results show that the proposed approach has a good
performance in the prediction of lane-change behavior, which could effectively assist ICVs to change lanes safely.

1. Introduction

(e intelligent and connected vehicle (ICV) [1] integrates
modern communication and network technology and has
environment perception, intelligent decision-making, and
collaborative control functions. It can achieve safe, efficient,
comfortable, and energy-saving driving and realize a new
generation of vehicle that replaces humans [2].

Lane-change behavior detection and prediction plays an
important role in the ICV technology. During the driving of
the vehicle, the current driving environment may be mis-
judged due to the occlusion of surrounding vehicles or the
driver’s inattention, resulting in greater safety hazards.

(erefore, the sensor and communication technology can
assist the ICV to perceive and judge the surrounding en-
vironment and the state of the vehicle and combined with
artificial intelligence technology can predict the lane-
changing behavior, thereby improving the driving safety.

Many methods have been proposed for lane-change
detection and prediction, in which the main technical means
and data sources used can be summarized as trajectories,
steering wheel, surrounding environment, driving style,
computer vision and roadside LiDAR, etc., as shown in
Table 1. Lane-change behavior detection methods based on
trajectory data are proposed in Refs. [3–8], such as fuzzy
logic [3], support vector machine (SVM) [4], long short-
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term memory network and convolutional neural network
(LSTM-CNN) [5], maneuver classification [6], and hidden
Markov model [7, 8]. Panichpapiboon and Leakkaw explore
an approach to detect lane-change behavior using steering
wheel angles extracted from the smart phone [9]. Zheng and
Hansen propose an approach to detect lane-change behavior
using the steering angle signal from CAN-bus [10]. Ali et al.
propose a wavelet transform (WT)-based method to detect
failed lane-changing attempts and used the random pa-
rameter binary logic model to study how the connected
environment affects related parameters [11]. Woo et al.
present a method to determine the driving styles and use the
result to detect the lane-change behavior [12]. Nguyen et al.
introduce a vision-based lane and vehicle detection ap-
proach for the lane-change assistant system [13]. Wang et al.
present a method to detect lane-change behavior based on
candidate lane markings [14]. Wei et al. develop a computer
vision system to detect the lane-change behavior [15]. Cui
et al. develop the methods to detect and predict lane-change
behavior using vehicle trajectories from roadside LiDAR
data [17]. Xu et al. present a V2X-based lane-change pre-
diction model using vehicle trajectories [18]. Zhang and Fu
present a lane-change intention detection method using
motion parameters of the vehicle and surrounding vehicles
[19]. Gao et al. introduce a lane-change behavior detection
approach using multiple differing modality data [20]. Jin
et al. present an optimal lane-change timing prediction
model based on the driver’s habits [21]. Huang et al. present
a trajectory planning and control approach based on user
preferences [22]. Xing et al. propose a driving pattern
analysis and motion prediction system that determines the
trajectory according to user’s preference [23]. Xing et al.
develop a driver intention inference system for highway
lane-change maneuvers [16]. Xing et al. present a leading
vehicle trajectory prediction approach that considers dif-
ferent driving styles [24].

In the above studies, different methods andmodels using
different technical means and considering the influence of
different characteristic parameters have been designed and
proposed, fully verified, and achieved great results. However,
few studies have simultaneously considered the effects of the
vehicle, environment and driver, and the relationship be-
tween them when the ICV changes lanes. In this paper, a
novel intelligent approach combines the driving state of the
vehicle, the surrounding driving environment, and the

driving style is proposed to predict the lane-change be-
haviors for ICVs. First, based on the learning of the driving
habits of manual drivers, the current lane-change envi-
ronment is judged according to the driving state of sur-
rounding vehicles. If the current environment is suitable for
lane change, then the vehicle driving state parameters are
predicted, and the lane-change behavior detection method is
proposed to judge the predicted value, so as to predict the
lane-change behavior. (e main contributions can be
summarized as follows.

(i) According to the relevant characteristic parameters
of the vehicle lane change, the NGSIM dataset is
processed and analyzed, so that amodified dataset for
the lane-change behavior prediction is established

(ii) Based on the driving habits of manual drivers, a
HMM-based model is designed to judge whether
the current surrounding environment of the vehicle
is suitable for the lane change

(iii) Based on the analysis of lane-change behavior
characteristics, a prediction model based on LSTM
and lane-change feature judgment method is pro-
posed to predict the state parameters of the vehicle
and determine whether it will change lanes

(iv) A novel approach based on intelligent and con-
nected technology, which in combination with the
driving style-based lane-change environment and
the driving trajectory-related parameters of the
vehicle and surrounding vehicles, is proposed and
performed on the established dataset to predict the
lane-change behavior of vehicles

(e rest of the paper is organized as follows. In Section 2,
the establishment process of the dataset is described. In
Section 3, on the basis of fully analyzing the characteristics of
lane-change behavior, the proposed approach to lane-
change behavior prediction is introduced in detail. Section 4
gives the experimental results and analysis of the proposed
approach performed on the modified dataset. Section 5
concludes the research work and presents the future work.

1.1.Dataset Establishment. In this paper, the NGSIM dataset
is processed to obtain the vehicle’s trajectory and sur-
rounding driving environment data, so as to combine the

Table 1: Comparison of lane-change detection or prediction approaches.

Trajectories Steering wheel Surrounding environment Driving style Computer vision Roadside LiDAR
[3–8] √
[9, 10] √
[11] √
[12] √
[13–16] √
[17] √
[18, 19] √ √
[20] √ √
[21] √ √
[22–24] √ √
Proposed approach √ √ √
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driver’s driving style to build and verify the vehicle’s lane-
change prediction model.

1.2. Data Description. (e NGSIM is a dataset of different
sections initiated by the United States Department of
Transportation (US DOT) Federal Highway Administration
(FHWA) [25]. In the NGSIM, I-80 and US-101 are the
datasets collected in highway, which are studied in this
paper. As shown in Figure 1, both I-80 and US-101 consist of
five main lanes, one distribution lane, one on-ramp, and one
off-ramp (the off-ramp of I-80 is not located within the study
area). In I-80, the 1650-foot-long study area is divided into
seven sub-areas by seven cameras to record the relevant data,
while in US-101, the 2100-foot-long study area is divided
into eight sub-areas by eight cameras. (e dataset contains
the trajectory data of all vehicles in the study area during the
recorded time period.

1.3. Data Preprocessing. In order to analyze the character-
istics of the lane-change behavior, characteristic parameters
such as the coordinates and velocity of the vehicles are
extracted from the NGSIM dataset. (e coordinates of the
ramp and the most adjacent lane have a large overlap, which
will cause great interference to the study. (erefore, the data
related to the ramp and the most adjacent lane are elimi-
nated in the study. To further analyze the influence of the
surrounding lane-change environment on lane-change be-
havior and the relationship between them, the distance
between the vehicle and the front and rear vehicles on the
current lane and adjacent lanes is calculated. (e lateral
speed of the vehicle is also calculated in order to predict the
lane-change behavior. (e complete data of 92 lane-
changing vehicles, a total of 92932 frames, are finally
screened out and processed; then a modified dataset is
established.

In the processed data, the surrounding lane-change
environment at the time of a certain vehicle lane-change
frame is shown in Figure 2. (e range of lane coordinates
calculated according to the data in the processed dataset is
shown in Table 2.

2. Methodology

2.1. Analysis of Lane-Change Characteristics. According to
the study of Balal et al. [26], the main characteristics that
affect drivers’ lane change are Dft, Dpft, Dpt, Dpc, and Vc.
Lane-change behaviors can be divided into left-lane
change and right-lane change, so Dft, Dpft, and Dpt can be
divided into Dfl, Dfr, Dpfl, Dpfr, Dpl, and Dpr, which were
defined in Table 3. (e typical lane-change scenario taking
the right-lane change as an example can be described in
Figure 3.

2.2. Intelligent PredictionApproach. Based on the analysis of
lane-change characteristics in real scene dataset, an intel-
ligent prediction approach is proposed and established, in
which the HMM-based model is used to judge the lane-

change conditions, LSTM-based model is used to predict the
current vehicle motion data that are suitable for change
lanes, and then the designed lane-change detection algo-
rithm is performed to complete the lane-change behavior
prediction.

2.2.1. HMM-Based Lane-Change Environment Judgment.
HMM can be used to predict the probability of whether a
vehicle changes lanes [27–29]. (e vehicle and sur-
rounding vehicles’ driving state determines to a large
extent whether the vehicle has the conditions for
changing lanes. In this paper, based on the analysis of
vehicle lane-change characteristics, eight parameters, Dfl,
Dfr, Dpfl, Dpfr, Dpl, Dpr, Dpc, and Vc, are selected as ob-
servations to judge the surrounding lane-change
environment.

As shown in Figure 3, in the HMM model, the eight
continuous observation values, Dfl, Dfr, Dpfl, Dpfr, Dpl, Dpr,
Dpc, and Vc, are used as observation vectors. In order to
simplify the model and facilitate implementation in
practical applications, the continuous values of the ob-
servation vector are divided into eight segments according
to the importance of each observation vector’s influence on
lane-change behavior. (e observation vector can be de-
fined as follows:

VT � OM � DftT, DpftT, DptT, DpcT, VcT , (1)

where V� [V1, V2, . . ., VT] is the observation sequence, T is
the sequence length, O� [O1, O2, . . ., OM] is the observation
state, M is the distribution of the observable state, which is
divided into 8 states according to the value of the observation
vector and its importance [26], and M∈{1, 2, 3, 4, 5, 6, 7, 8}.
(e hidden states are the lane-change behaviors, including
nonlane change, left-lane change, and right-lane change,
which are represented as H1, H2, and H3, respectively.

As shown in Figure 4, the parameters of designed model
can be defined as follows:

λ � (A, B, π), (2)

where A means the state transition probability matrix, in
which aij is the probability of transition to state hj at time
T+ 1 under the condition that time T is in state hi,

A � aij 3×3,

aij � P iT+1 � hj|iT � hi , i � 1, 2, 3; j � 1, 2, 3.
(3)

B represents the observation probability matrix, in which
bj(M) is the probability of generating the observation OM
under the condition that time T is in state hj:

B � bj(M) 3×8,

bj(M) � P VT � OM|iT � hj , M � 1, 2, ..., 8; j � 1, 2, 3.

(4)

π indicates the initial state probability distribution,
in which πi is the probability of being in state hi at time
t � 1:

Computational Intelligence and Neuroscience 3



π � πi( ,

πi � P i1 � hi( , i � 1, 2, 3.
(5)

In this paper, the dataset contains the observation se-
quence and the corresponding state sequence. (erefore, the
supervised learning method can be used to estimate

parameters of HMM. (e maximum likelihood estimation
method is used, and the specific method is as follows:

(1) Estimate the transition probability. Assume that the
frequency of the sample at time t in state i and
transition to state j at time t+1 is Aij, then the esti-
mation of state transition probability aij is as follows:
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Figure 2: Schematic diagram of vehicle lane-changing state frame.

Table 2: (e range of lane coordinates.

Coordinate (feet) Lane ID
Dataset 1 2 3 4
I-80 0.21–12.29 11.90–24.38 23.74–36.10 35.63–48.42
US-101 1.46–13.33 11.51–24.45 23.41–35.68 33.58–46.29
Coordinate (feet) Lane ID
Dataset 5 6 7 8
I-80 47.83–60.42 59.52–82.48 72.65–96.75
US-101 44.99–61.30 57.19–69.60 57.38–72.60 58.04–72.92

Vehicle trajectory study area:
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Figure 1: Study area description of the dataset.
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aij �
Aij


3
j�1 Aij

, i � 1, 2, 3; j � 1, 2, 3. (6)

(2) Estimate the probability of observation. Assume that the
frequency of the sample state is j and the observation is
M isBjM, then the estimation of the probability bj(M) that
the state is j and the observation is M is as follows:

bj(M) �
BjM


8
M�1 BjM

, j � 1, 2, 3; M � 1, 2, ..., 8. (7)

(3) Estimate the initial state probability. (e estimate πi

of the initial state probability πi is the frequency at
which the initial state is hi in the sample.

After the model parameters are determined, using the
forward probability and the backward probability, given the
model λ and the observation O, the probability of being in
the state hi at time t can be obtained:

ct � P it � hi|O, λ(  �
P it � hi, O|λ( 

P(O|λ)
. (8)

From the definition of forward probability αt(i) and
backward probability βt(i),

αt(i)βt(i) � P it � hi, O|λ( . (9)
(en

ct(i) �
αt(i)βt(i)

P(O|λ)
�

αt(i)βt(i)


3
j�1 αt(j)βt(j)

. (10)

2.2.2. LSTM-Based Vehicle Trajectory Prediction. After
judging the surrounding lane-change environment, the data
suitable for lane change would be screened out to predict the
lane-change behavior. An LSTM [30] model is designed to
predict the current vehicle motion data. (e structure of an
LSTM block [31] is shown as Figure 5, in which fi is the input
activation function, fo is the output activation function, and
fg is the gate activation function. At time t, xt is the input, ht
is the hidden layer state, it is the output state of input gate, ft
is the output state of forget gate, and ot is the output state of
output gate, which can be expressed as follows:

it � fg wxi
xt + whi

ht−1 + bi , (11)

f t � fg wxf
xt + whf

ht−1 + bf , (12)

ot � fg wxo
xt + who

ht−1 + bo , (13)

where wxi
, wxf

, and wxo
are the input weight matrices; whi

,
whf

, and who
who are the feedback weight matrices; and bi, bf,

and bo are the bias vectors.

Table 3: Definition of selected parameters.

Parameters Definition
Dfl (e distance between the current vehicle and the following vehicle in the left/right laneDfr
Dpfl (e distance between the preceding vehicle and the following vehicle in the left/right laneDpfr
Dpl (e distance between the current vehicle and the preceding vehicle in the left/right laneDpr
Dpc (e distance between the current vehicle and the preceding vehicle in the current lane

(e velocity of current vehicleVc

Vfc

Vft

Vc

DpcDfc

Vpt

Vpc

Dft
Dpft Dpt

Current lane

Target lane

Figure 3: (e typical lane-change scenario.
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Figure 4: Schematic diagram of designed HMM.
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(e intermediate states at time t are as follows: the
output state Cint

corresponding to the input function, the
output state Ct corresponding to the output function, and
the output state ht corresponding to the hidden layer.

Cint
� fi wxc

xt + whc
ht−1 + bCin

 , (14)

where wxc
, whc

, and bCin
are the input weight matrix and the

corresponding bias vector, respectively. Cint
, as the input

function, the output state at time t will participate in the
overall update of the input state at time t together with the
output state it of the input gate at time t. As the output state
of the input function at time t, Cint

participates in the overall
update of the input state at time t together with the output
state it of the input gate at time t.

At time t, through the new input and state feedback at
previous time, the entire LSTM unit is updated, including
the update of Ct and ht:

Ct � ftCt−1 + itCint
, (15)

ht � otfo Ct( . (16)

In the update process of each gate function and the
output state of the entire unit, the key information in the
input feature is retained and transferred through the forget
gate function and the transfer of the state.

2.2.3. ;e Lane-Change Behavior Prediction Approach.
(e predicted data with conditions for lane change are used
to determine whether the current vehicle will change lanes
through the lane-change detection algorithm, which can be
described as shown in Algorithm 1. An optimal sampling
interval length (δ sampling period) is obtained according to
the data training, and then the velocity data on x-axis are
used as input according to the obtained sampling interval
length. In the process of lane-change detection, first,
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calculate all zero-crossing points in the input data and sort
them by time; then, calculate the lateral velocity integral
between all adjacent zero-crossing points; finally, train the
calculation results based on the KNN [32, 33] method, and
output lane-change detection result (the lane-change be-
havior category) and the start and end time of lane-change
process.

(e structure of proposed multimodel fusion lane-
change behavior prediction approach can be described as
shown in Figure 6. First, the surrounding environment
parameters related to the lane-change condition are used to
judge the current lane-change condition through the HMM-
based model. (en, the vehicle trajectory data which meet
lane-change conditions are predicted by the LSTM-based
model. Finally, the lane-change behavior is predicted by the
proposed lane-change detection algorithm; the predicted
lane-change behavior and the start and end time of lane-
change process are output.

3. Results and Analysis

3.1. Evaluation Metrics. When evaluating the prediction
results, the confusion matrix definition of the prediction
results is shown in Table 4. Accuracy, precision, recall, and
F1 value are usually used as evaluation indicators [34] for
learning-based classification and prediction models. Among
them, the accuracy represents the proportion of the sample
size correctly classified in the total sample size, which can be
defined as follows:

ACC �
TP + TN

TP + TN + FN + FP
. (17)

Precision (P), which indicates the proportion of samples
with the correct class label among the samples of a particular
class found by the classifier, can be defined as follows:

P �
TP

TP + FP
. (18)

(e recall (R) represents the classifier’s ability to find
samples of a certain category, which can be defined as
follows:

R �
TP

TP + FN
. (19)

(e F1 value is a comprehensive index that considers the
balance between precision and recall, which can be defined
as follows:

F1 �
2 × P × R

P + R
. (20)

(e closer the F1 value is to 1, the better the effect.

3.2. Experimental Results. (e proposed prediction ap-
proach, including HMM-based lane-change condition
judgment, LSTM-based vehicle lane change-related pa-
rameter prediction, and lane-change detection algorithm, is
trained and tested on the established modified dataset to
evaluate the performance.

3.2.1. Performance of HMM-Based Model. In order to verify
the judgment performance of the HMM-based model on the
lane-change environment, parameters related to lane
change, including Dfl, Dfr, Dpfl, Dpfr, Dpl, Dpr, Dpc, and Vc, are
processed and then trained and tested. (e results show that
at all lane-change times, the lane-change probability of target
lane is basically above 0.5. At the moment when the vehicle
does not change lanes, some lane-change environments
meet the lane-change conditions, and some do not.
(erefore, the designed model can screen out the moments
that do not meet the lane-change conditions and improve
the prediction accuracy.

(e schematic fragment of the designed HMM-based
judgment result of lane-change condition is shown in Fig-
ure 7. In the figure, the data of the green line represent the
truth of the lane-change behavior (1 means right-lane
change, −1 means left-lane change, 0 means nonlane
change), the data of the red line indicate the probability of
the right-lane change calculated by the designed model,
while the data of the blue line denote the probability of the
left-lane change calculated by the designed model. It can be
seen that the calculated right-lane-change probability at the
time of right-lane change and the left-lane-change proba-
bility at the time of left-lane change in the figure are all
greater than 0.5, which meets the lane-change conditions.

3.2.2. Performance of LSTM-Based Model. In order to
predict the lane-change behavior of the ICV, the LSTM-
based model is designed to predict the lane-change-related
motion data (lateral velocity) at the next moment. (e
dataset is divided into training set and test set at a ratio of 2
to 1 to verify the performance of the designed model. (e
loss curve of the training process is shown in Figure 8, in
which the loss value is stable at around 2.32E-05.

(e prediction result of designed LSTM is shown in
Figure 9, in which the blue line represents original data and
yellow line and green line indicate the prediction result of
the training set and the test set, respectively. (e root mean
square error (RMSE) of the prediction is 0.37m/s for the
training set and 0.68m/s for the test set. From the prediction
results in the figure, it can be found that the overall pre-
diction error of the designed model is small, and the pre-
diction error is greater when the data have large and sudden
changes than when the data are flat. (e maximum pre-
diction error of the dataset is 5.5668m/s (the original data is
50.0055m/s).

3.2.3. Performance of the Detection Algorithm. (e designed
lane-change behavior detection algorithm was performed on
the established dataset to verify its detection effect on lane-
change behavior. (e dataset is divided into training set and
test set at a ratio of 2 to 1, the experimental result of detection
is shown in Table 5, and the confusion matrix of it is shown
in Figure 10.

It can be seen from the experimental result of detection
that the P of left-lane-change detection has reached 100%
and R of it is 83.05%, the P of right-lane-change detection is
90.91% and R of it is 100%, while P and R of nonlane change

Computational Intelligence and Neuroscience 7



are 99.55% and 100%, respectively. (e F1 values of left-lane
change, nonlane change, and right-lane change are 90.74%,
99.77%, and 95.24%, respectively.

From the confusion matrix of detection result, it can be
found that the accuracy of the detection algorithm is 99.56%.
Among them, 10 samples in nonlane change are detected as

left-lane change, and 1 sample is detected as right-lane
change, while no lane-change behavior is detected as non-
lane change and there is no error detection between left-lane
change and right-lane change, which shows that the pro-
posed detection algorithm could accurately detect lane-
change information for the safe lane change of ICV.

Taking entire driving process of vehicle 2458 as an ex-
ample, the detection result is shown in Figure 11. It can be seen
from the figure that vehicle 2458 made a lane change at t� 600
during the whole process, and its lateral velocity has an ob-
vious acceleration process. (e designed detection algorithm
accurately detects the lane-change behavior and calculates the
lane-change process that is between t1� 591 and t2� 641.

Input: (e velocity data on x-axis in δ sampling periods, Vx;
Output:(e predicted lane-change behavior, behavior;(e beginning and ending time of the predicted lane-change behavior, t1,
t2;

(1) for i� 1 to length do
(2) if (Vx(i)≥ 0)&&(Vx(i + 1)< 0) or (Vx(i)≤ 0)&&(Vx(i + 1)> 0) then
(3) c(j) � i; j � j + 1;

(4) end if
(5) end for
(6) for all zero crossing value m� 1 to length do
(7) Vm � 

c(m+1)

c(m)
Vx(i);

(8) end for
(9) for all training object (Vm, behavior) ∈ I and test object z � (Vm,

∧
behavior
∧

) do
(10) Compute distance d �

���������������


n
i�1 (Vmi

∧
− Vmi

)2



between z and every object (Vm, behavior) ∈ I;
(11) Select Iz ⊆ I, the set of k closest training objects to z; return behavior

∧
� argv max(Vmi

,behaviori)∈Iz
F(v � behaviori); t1 � c(m),

t2 � c(m + 1);
(12) end for

ALGORITHM 1: Lane-change detection algorithm.
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Figure 6: (e structure of lane-change behavior prediction approach.

Table 4: Definition of the prediction confusion matrix.

Predicted
Truth Positive Negative
True TP TN
False FP FN
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3.2.4. Performance of the Lane-Change Behavior Prediction
Approach. Finally, the proposed prediction approach is
performed on the established dataset to verify the effect of
the approach. (e proposed lane-change behavior detection
algorithm is performed on the filtered prediction data that
meets the lane-change conditions.(e dataset is also divided
into training set and test set at a ratio of 2 to 1, the

experimental result of prediction is shown in Table 6, and the
confusion matrix of prediction result is shown in Figure 12.

From the experimental result of prediction, it can be seen
that P of left-lane-change detection is 89.36% and R of it is
95.45%, the P of right-lane-change detection is 90.00% and R
of it is 81.82%, while P and R of nonlane change are 99.72%
and 99.65%, respectively. (e F1 values of left-lane change,
nonlane change and right-lane change are 92.31%, 99.65%,
and 85.71%, respectively.

It can be found from the confusion matrix of prediction
result that the accuracy of the prediction approach is 99.32%.
Among them, 2 samples in nonlane change are predicted as
left-lane change, and 2 samples are predicted as right-lane
change. 5 samples in left-lane change are predicted as
nonlane change, with a precision of 89.36%, and 1 sample in
right-lane change is predicted as nonlane change, with a
precision of 90.00%, while there is no error detection be-
tween left-lane change and right-lane change. (e experi-
mental result shows that the proposed prediction approach
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Figure 7: Schematic fragment of the designed HMM-based judgment result of lane-change condition.

0

9.00 E-04

8.00 E-04

7.00 E-04

6.00 E-04

5.00 E-04

4.00 E-04Lo
ss

3.00 E-04

2.00 E-04

1.00 E-04

0.00 E+00
20 40 60

Epoch

80 100 120

Figure 8: (e loss curve of LSTM.

20

10

0

–10

–20

–30

V
x 

(m
/s

)

–40

–50

0 20000 40000
Epoch

original
train
test

60000 80000

Figure 9: (e prediction result of designed LSTM.

Table 5: Experimental result of detection algorithm.

Metrics
Category P (%) R (%) F1 (%)
Left-lane change 100 83.05 90.74
Nonlane change 99.55 100 99.77
Right-lane change 90.91 100 95.24
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could effectively provide vehicle lane-change information to
assist the ICV in safe lane change.

Taking the entire driving process of vehicle 2458 as an
example, the prediction result is shown in Figure 13. It can
be seen that the predicted lateral velocity and the truth of
lateral velocity are basically consistent in value and trend.
(e designed prediction approach accurately predicts the
lane-change behavior and calculates the lane-change

process that is between t1 � 590 and t2 � 776. (e predicted
time interval of the lane-change process is longer than that
calculated by the detection algorithm, which is because
that when the lateral velocity value fluctuates around 0, the
predicted lateral velocity value fluctuates slightly and is
less than 0. (e prediction approach can still accurately
predict the lane-change behavior and the time interval of
lane change.
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Figure 10: (e confusion matrix of detection result.
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Figure 11: (e detection result of vehicle 2458.

Table 6: Experimental result of prediction approach.

Metrics
Category P (%) R (%) F1 (%)
Left-lane change 89.36 95.45 92.31
Nonlane change 99.72 99.58 99.65
Right-lane change 90.00 81.82 85.71
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4. Conclusions

(e paper proposed a novel intelligent approach to lane-
change behavior prediction for ICVs, which combines the
surrounding lane-change environment and the vehicle’s
own motion parameters. A modified dataset is established
based on the NGSIM dataset, and then the proposed ap-
proach is trained and tested. From the experimental results,
the HMM-based model can make relatively accurate judg-
ments on the lane-change environment, and its calculated
lane-change probability at the time of lane change is above
0.5. (e prediction RMSE of the vehicle lateral speed by the
LSTM-based model is 0.37m/s for the training set and
0.68m/s for the test set. (e proposed lane-change detection

algorithm has an accuracy of 99.56% on the established
dataset and can accurately calculate the time interval of the
vehicle lane change. On the basis of the fusion of the above
models and algorithm, the proposed intelligent prediction
approach is completed, result shows that the accuracy of the
prediction approach on the established dataset is 99.32%,
and the time interval of the vehicle lane change can be
calculated accurately. (e experimental result indicates that
the proposed prediction approach could effectively provide
vehicle lane-change information to assist the ICV in safe
lane-change and has the potentials for application in actual
intelligent and connected environment for ICVs.

Since the proposed approach is postprocessing with
measured data, its real-time performance in practical
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Figure 12: (e confusion matrix of prediction result.
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applications needs to be further verified. In future work, the
proposed approach can be deployed on mobile terminals for
real-time testing, and its accuracy and real-time perfor-
mance can be further improved.
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