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Trace inspection is a key technology for collecting crime scenes in the criminal investigation department. A lot of information can
be obtained by restoring and analyzing the remaining traces on the scene. However, with the development of digital technology,
digital trace inspection has becomemore andmore popular. So, the main research of this article is the design and realization of the
trace inspection system based on hyperspectral imaging technology. �is article proposes nondestructive testing technology in
hyperspectral imaging technology. Combining basic principles of spectroscopy and the image of residual traces such as car tires,
shoe soles, and blood stains, it can identify the key traces. �en, based on the image denoising and least squares support vector
machine method, this study improves the accuracy and restoration of the image. �erefore, this study designs a test for the trace
inspection system for testing hyperspectral imaging technology. �e test items include the performance of the trace inspection
system, the noise reduction of the trace inspection system, and the ability of the trace inspection system to inspect blood stains.�e
�nal collected data are improved to get the trace inspection system based on hyperspectral imaging technology proposed in this
study. Compared with the traditional trace inspection system, the experimental results show that the trace inspection system based
on hyperspectral imaging technology can improve the accuracy by 5%–28%, compared with the traditional trace inspection
system. �e image restoration degree of the hyperspectral imaging technology trace inspection system can be improved by 1%–
19%, compared with the traditional trace inspection system.

1. Introduction

�e universality of traces at the crime scene, material
objectivity, close correlation with criminal behavior, and
obvious intuition play an important role in criminal ac-
tivities. �rough the analysis and investigation of traces,
we can judge the implementation process and speci�c
circumstances of the crime and provide the direction and
clues of the investigation. It provides a reliable basis for
compound investigations and important physical evi-
dence to prove facts. �e last trace may be �le storage to
provide clues and evidence for investigating the current
incident. Traditional trace inspection technology cannot

adapt to the current complex and intelligent crime situ-
ation due to its low accuracy and inspection e�ciency.
�erefore, it is necessary to reform the past trace in-
spection technology.

With the maturity of hyperspectral imaging technology,
it has been applied to many �elds such as aerospace tongue
coating imaging and pork detection. Its powerful functions
are gradually brought into play and have attracted the at-
tention of various countries. �e research of tracking de-
tection system based on hyperspectral imaging technology
has a wide range of research space and application prospects.
So, this study designs a trace inspection system based on
hyperspectral imaging technology.
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Saliency detection is a hot topic in recent years, and the
results of saliency detection are difficult to use in general
applications. Wang et al. believed that the main reason is the
unclear definition of salient objects. In order to solve this
problem, he claimed that the saliency should be defined in
the context and took the saliency band selection in the
hyperspectral image (HSI) as an example [1]. He studied the
application of hyperspectral images in saliency detection,
and this article mainly studies the application of hyper-
spectral images in trace inspection. Deep learning that
represents data through hierarchical networks has been
proven effective in computer vision. In order to study the
role of depth features in hyperspectral image (HSI) classi-
fication, Ma et al. focused on how to extract and use depth
features in the HSI classification framework [2]. Ma et al.
studied the results of hyperspectral images in deep learning.
If trace detection can be analyzed, it will be more in line with
the purpose of this article. In order to study the application
of hyperspectral images in SAJSRC, Fu et al. proposed a new
shape-adaptive joint sparse representation classification
(SAJSRC) method for hyperspectral image (HSI) classifi-
cation. )e method he proposed adaptively explores spatial
information and incorporates it into a joint sparse repre-
sentation classifier [3]. He is studying the application of
hyperspectral images in adaptive joint sparse representation
classification, and this article mainly focuses on trace in-
spection.)e objective function of the classical non-negative
matrix factorization (NMF) is nonconvex, which affects the
obtaining of the optimal solution. Yan et al. proposed an
NMF algorithm, which is based on the constraints of
minimizing endmember spectral correlation and maxi-
mizing endmember spectral difference [4]. )e method he
proposed is based on the endmember spectrum, and this
article studies hyperspectral images. Although there is little
correlation, it still has a certain reference value. Shao et al.
introduced an effective method for estimating the structure
of probability classes. )e SSL graph based on sparse rep-
resentation adopts a method based on edge weighting,
adding probability structure information to the sparse
representation model. )e graph construction method he
proposed is superior to several traditional methods [5]. In
September 1991, while hiking in the mountains of southern
Austria, very close to northern Italy, Erika, and Helmut
Simon stumbled upon the upper part of a human corpse
protruding from a glacier. Larcher judged by the method of
trace inspection that this was a hiker who disappeared in the
area a few years ago [6]. He used the method of trace in-
spection to determine the identity of the corpse, which has a
certain reference value for this article, but it is not great. In
the oxygen minimum zone (OMZ), the oxygen concen-
tration is at the limit of analytical detection. However, it does
not undergo sulfate reduction, which is called hypoxia.
Nitrate is usually used as the terminal electron acceptor for
heterotrophic respiration.)is respiration is highest near the
top of the OMZ, where Cutter et al. observed the maximum
of nitrite and other redox-active substances [7]. Its research
is to detect the lowest area of oxygen, and this article mainly
studies trace inspection. Hyperspectral images provide a
wealth of spectral information for remotely distinguishing

subtle differences in ground cover plants. )e ever-in-
creasing spectral dimensions and information redundancy
make the analysis and interpretation of hyperspectral images
a challenge. Zhao et al. proposed a new nonlinear feature
extraction method for hyperspectral images [8]. )e non-
linear feature extraction method of hyperspectral image
proposed by Zhao et al. mainly studies feature extraction,
while this article mainly studies trace inspection. Most of the
documents cited in this article are about hyperspectral
images, and trace inspection is rare, so this article needs to
study the related knowledge of trace inspection in depth.

)e innovation of this study is to combine the nonde-
structive testing technology with the hyperspectral imaging
technology to analyze residual traces such as car tires, shoe
soles, and blood stains. )rough the method of image
denoising and least square support vector machine, this
study further refines and restores the trace image. Compared
with the traditional trace inspection system based on
hyperspectral imaging technology, the trace inspection
system has the characteristics of high accuracy and high
image recovery ability. )is study also designed experiments
to verify the performance of the trace inspection system, the
noise reduction of the trace inspection system, and the
ability of the trace inspection system to inspect blood stains.

2. Combined with the Application Method of
Hyperspectral Imaging Technology in
Trace Inspection

2.1. Hyperspectral Image Acquisition Method.
Hyperspectral imaging technology [9] uses an imaging
spectrometer with a spectral range from ultraviolet to near
infrared (200–2500 nm). Tens or hundreds of spectral bands
are continuously imaged within the spectral coverage of the
target object. While acquiring the spatial feature image of the
object, it also acquires the spectral information of the
measured object [10]. It includes comprehensive technol-
ogies including precision optical technology, detector
technology, mechanics, computer technology, signal de-
tection technology, and information analysis technology
knowledge. Its application area is shown in Figure 1.

Hyperspectral imaging technology can not only obtain
the spatial information of the object but also obtain the
spectral information of the object. Hyperspectral imaging
technology can obtain continuous spectral bands of objects
[11], and the number of bands reaches hundreds. Each pixel
of the collected hyperspectral image has a complete re-
flectance spectrum curve. Compared with multispectral
imaging technology, hyperspectral imaging technology can
obtain more information in a narrower frequency band, and
the spectral resolution can be accurate to a few nanometers.

2.1.1. Nondestructive Testing Technology. Nondestructive
testing technology [12] is a comprehensive application
discipline developed with modern physics, material science,
electronic science, and computer science. According to
different measurement principles and information pro-
cessing methods, there are more than 70 types of
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nondestructive testing, covering all branches of modern
physics. )e basic measurement principle is shown in
Figure 2. According to the different responses of the test
object to external stimulation, the output information of the
test object is collected, the correlation relationship with the
input information is established, and then the physical and
chemical properties of the test object can be diagnosed.

2.1.2. Basic Principles of Spectroscopy. )e matter is always
in motion, and the atoms and molecules that makeup matter
are also in motion. )e rotation of electrons in molecules
around atoms is called electronic movement. )e vibration
of atoms in a molecule is called molecular vibration. )e
rotation of the molecule itself is called molecular rotation
[13]. Different exercise methods have different energies,
divided by energy level, that is, electronic energy level, vi-
bration energy level, and rotational energy level. When a
substance is stimulated by a specific external energy, the state
of molecular motion will change, and the energy level will
also change accordingly. )is form of change is achieved
through the absorption or divergence of energy photons, as
shown in Figure 3. Particles absorb energy photons and then
transit from the ground state to the excited state, and from
the excited state back to the ground state, and they emit
energy photons. )is form of energy is electromagnetic
radiation, commonly known as light. Arranging electro-
magnetic radiation according to a certain energy level or
frequency order is the electromagnetic radiation spectrum
or spectrum [14]. As shown in Figure 4, according to the
difference between absorption and divergence energy, it is
divided into absorption spectrum and divergence spectrum.

Near-infrared spectroscopy [11] (780–2526 nm) is the
earliest nonvisible spectrum discovered by mankind, and it
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Figure 1: Application of hyperspectral imaging technology.
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is also one of the earliest researched spectra. )e generation
of near-infrared light is mainly caused by the internal vi-
bration of polyatomic molecules. It contains a wealth of
chemical bond information, such as hydrogen bond, bond
strength, chemical species, and dielectric properties.

2.2. Trace Inspection. Trace inspection [15] is the analysis,
identification, and judgment of various characteristics of the
formation and change characteristics of criminal traces and
the object of trace creation [16]. )erefore, in the process of
trace inspection, the collection of traces is very important.
)e main method is shown in Figure 5.

In the process of trace inspection, any on-site traces need
to be used as evidence and should be extracted from the site
and preserved in their original form for use by inspectors.
)e main methods of extracting traces are as follows:
transfer method, such as transferring trace materials to a
specific carrier by a specific method; molding methods, such
as using silicone rubber or plaster liquid to make trace
models for three-dimensional traces; photocopying
methods, such as the use of electrostatic adsorption to ex-
tract traces of dust; the original extraction method, such as
direct collection and extraction of small-volume trace ob-
jects and trace-bearing objects. )e photographic method is
a method that can be used for all kinds of trace extraction in
the process of trace collection. It can not only achieve lossless
acquisition [17] but also perform multiple acquisition
processes. Moreover, the photographic method is also a
work step that must be carried out before trace extraction,
and it is a necessary means to ensure the originality of traces.

)e collection of traces includes the collection of pictures
and text. It is a highly professional work. Only compre-
hensive and correct collection can reflect the actual work
situation of on-site investigation and trace inspection, and
the basic role of traces can be brought into play.

Image [18] has been used in forensics since it was
invented in 1839. After entering the digital age, the fre-
quency of use of images has become higher, an alternative to

analog images—digital images have the advantages of en-
vironmental protection, low collection error rate, and
convenient use, and it plays an increasingly important role in
the process of trace inspection.

In the digitization of trace inspection, the collection of
digital images is one of the important methods of trace
collection. It mainly refers to the process of receiving light
waves reflected or emitted by objects in the scene, recording
and storing them, or obtaining image data through other
scientific and technological equipment.

)ere are many ways to collect images. At present, there
are four most commonly used collection methods in this
article: using a digital camera to take photos directly, using a
scanner to scan analog images, capturing video frames, and
creating using drawing software. In the trace inspection, the
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collection of traces must be a true and objective reflection, so
the image collection of traces mainly uses the first three
methods.

2.2.1. Tire Tracks on the Road. As the main component of
the vehicle, tires play a role in supporting the weight of the
vehicle, changing the direction of travel, transmitting
braking and driving force, and alleviating road impact.
Carbon black, which is a compounding agent for tire rubber
materials, adheres to the road surface and leaves marks. In
the case of high friction between the mud and the road, the
heat release rate is lower than that of the mud of the tire, and
the melting point of the tire and the road is relatively low, so
the mud rubber becomes soft, black, peeling, and black when
attached to the road. )e tire traces on the road, such traces
can be extracted from the debris of mud rubber [19], and the
principle is shown in Figure 6.

In the process of collecting tire traces at the accident site,
the tire traces of vehicles related to the accident can be
judged according to the new degree of tire traces. )e tire
marks of a puncture on the road are flat sandwich marks
with dust marks and rubber particle marks. Dust traces are
usually only displayed on newly repaired roads. In most
cases, those are potential traces. In contrast, the rubber
particles of cement are easier to observe on the road track
(usually displayed when the mud and the road slide against
each other).)e new tire truck leaves a lot of rubber particles
on the road, and the color becomes darker. If the tire of the
vehicle involved in the accident slips, then there will be
obvious scars on the road surface. Old tire trucks generally
have no particles of tire marks. Generally speaking, the new
tire tracks are the tire tracks of the vehicles involved in the
accident.

2.2.2. On-Site Shoe Sole Trace Pattern Image Extraction
Method. )ere are various methods for extracting pattern
images of shoe sole traces on-site [20], but the determination
of the extraction method is mainly based on various con-
ditions such as the trace-bearing object of sole traces and the
complexity of the site.

)e photographic extraction method is the most fre-
quently used method of fixing and extracting on-site traces
without damage. Physical evidence photography is mainly
used to take photos of shoe sole traces at the scene. )is is
also an effective way to faithfully record the original state,
location, and surrounding relationships of the sole trace
pattern image. However, the use of photography to extract
images of shoe sole traces will also encounter some prob-
lems. If the scale bar and the sole trace surface are not in the
same plane, and the height difference is still relatively large,
then this will cause the measurement error to become larger
due to the perspective deformation of the near and far. )e
requirements for photographing conditions are relatively
strict, so when using photographing methods to extract the
image of shoe sole trace patterns, it must be strictly in ac-
cordance with the specifications.

)e photocopy extraction method is mainly aimed at flat
footprints, especially flat dust footprints. )e photocopy

extraction method transfers the sole traces from the trace-
bearing object to other objects with larger color contrast,
which is convenient for observation and photo fixation.
Copy extraction methods include the electrostatic copy
method and paste copy method. Among them, the elec-
trostatic photocopying method is mainly to add or subtract
layers of dust sole traces left on the surface of relatively flat
and dry objects such as cement floors, terrazzo floors,
wooden surfaces, floors, towels, and textiles. )e paste
copying method is to use relatively a wide palm print tape or
sole trace special tape to attach clear dust flat sole traces or
sole traces after powder brushing and stained fixed sole
traces, etc.

)e mold extraction method is mainly aimed at the
three-dimensional sole traces. After taking photos of the
three-dimensional sole traces, a model of the sole traces
must be made. Molding methods include the plaster
molding method and cassia gum molding method. Molding
methods are also different for different mark-bearing ob-
jects. For example, mold making on snow cannot use water
at room temperature to prepare plaster liquid. It is necessary
to use water temperature close to snow to mold, or use snow
trace wax, snow sole trace fixative, etc. to fix the snow sole
traces before molding. )e cost of cassia glue molding is
higher, but in major cases, the cassia glue molding method
can be used for local small sole traces. )e model made of
cassia glue is elastic, not easy to break or break, and the shape
is delicate, which can better reflect the characteristics of the
traces of the sole.

For the visualization of potential footprints at the crime
scene, powder and chemical visualization methods are often
used. )e chemical display method also includes the red
blood salt color method of dust sole traces, the value in-
dicator method of dust sole traces, the “502” glue display
method, and the tetramethylaniline solution method of
blood footprints.

No matter which extraction method is used, the ex-
traction must be performed in accordance with the speci-
fications; otherwise, the extracted sole trace pattern image
will lack information and affect the subsequent processing
work.
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Figure 6: )e formation mechanism of tire marks.
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2.2.3. Footprint Detection Research Technology

(1) Height Identification. Most surveys and statistics show
that there are many types, many patterns, and high over-
lapping characteristics of footprints left on crime scenes. To
a certain extent, it affects the reflection of traditional
footprint features, such as the interaction between legs and
bearing objects during walking. At the same time, the ex-
traction method of on-site footprints is also one of the
important factors affecting the inspection results [21]. First
of all, in order to improve the accuracy of the inspection,
before analyzing and inspecting the footprints, it is necessary
to determine the symptom extraction method to be used
based on various footprints and various on-site
environments.

(2) Age Analysis. In the past, in some films and TV works, it
was often seen that the police judged the age of the char-
acters left by the footprints left at the crime scene. Judging
their age through footprints is very helpful in investigating
criminal cases.

Age is the length of time from birth to death, usually
expressed in “years.” Age is not only a natural sign based on
biology but also an important time sign in physiological
processes. )e characteristics of human footwork are also
closely related to age.)e characteristics of footwork reflect a
person’s physiological state and can correctly reflect person’s
various physiological states.

2.3. Image Denoising. At present, many methods have been
proposed to filter out the noise in the image. )e smoothing
of images is generally divided into two categories: global
processing and local processing. Global processing is to
correct the entire image or most of the image.)is method is
relatively computationally expensive. Local processing is the
use of local operators on the image. Calculating the
neighborhood of a specific pixel greatly reduces the amount
of calculation.

)e following sections describe several commonly used
image denoising methods:

2.3.1. Neighborhood Average Method. )e neighborhood
average method [22], called the average filtering method, is a
simple spatial region processing method. )e basic idea is to
replace the gray value of each pixel with the average value of
the gray values of several pixels. f(a, b) is a noisy specific
K×K image. After the neighborhood averaging process, the
image h(a, b) is obtained. h(a, b) is determined by the
following formula:

h(a, b) �
1
j


(i,j)∈D

f(i, j). (1)

2.3.2. Median Filtering Method. )e median filter method
[23] is the most widely used statistical filter in image pro-
cessing, and it is also the most famous sequential statistical
filter. )e neighborhood averaging method blurs the edges

of the image while removing noise. In contrast, the middle
finger filtering is better than neighborhood averaging.

Median filtering is done on the one-dimensional se-
quence f1, f2, f3, . . . , fk. )e length of the window is taken
as j, and the number of j from the sequence
fx− v, . . . , fx− 1, fx, fx+1, . . . , fx+v is extracted as the center
point of the window, where

v �
(j − 1)

2
. (2)

)e number of j is arranged by size at a time, and the
middle value is taken as the output value:

bx � med fx− v, . . . , fx− 1, fx, fx+1, . . . , fx+v x ∈ k. (3)

)e two-dimensional median filter is represented by the
following formula:

bx � med fxy . (4)

2.3.3. Low-Pass Filtering Method. Both the neighborhood
averaging method and the median filtering method process
the image in the spatial domain. )e low-pass filtering
method [24] is a method of processing images in the fre-
quency domain.

)e mathematical expression of the filter is as follows:

H(a, b) � G(a, b)F(a, b). (5)

Among them, F(a, b) is the Fourier transform of the
original image, H(a, b) is the Fourier transform of the image
smoothed by the filter, and G(a, b) is the transfer function of
the filter.

)e edges, jumps, and grain noise of the image are the
high-frequency components of the image. )e background
area represents the low-frequency components, so the
simplest low-frequency filter is to obtain the high-frequency
components in the Fourier transform of the image. )e
corresponding filter is called a two-dimensional ideal low-
pass filter (ILPF), and its transfer function is as follows:

G(a, b) �
1, S(a, b)≤ S0,

0, S(a, b)> S0.
 (6)

Among them, S0 is the designated non-negative value,
and S(a, b) is the distance between point (a, b) and the
origin of the frequency rectangle. In addition to ideal low-
pass filters, low-pass filters also include Butterworth low-
pass filters (BLPFs) and Gaussian low-pass filters (GLPFs).
)is article uses the Gaussian slow path filter. )e transfer
function of the Gaussian slow path filter is as follows:

G(a, b) � q
− S2(a,b)/2S20 . (7)

Among them, S(a, b) is the distance from the origin of
the Fourier transform.

)ere are many methods for image sharpening, such as
high-pass filtering, gradient sharpening, and Laplacian
sharpening. )e high-pass filter includes ideal high-pass
filter (IHPF), Butterworth high-pass filter (BHPF), and
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Gaussian high-pass filter (GHPF). )is article only intro-
duces gradient sharpness and Laplacian sharpening.

(1) Gradient Sharpening. Gradient processing is often used in
industrial inspections, auxiliary manual defects, or more
general automatic inspection preprocessing. For image f, the
gradient at point (a, b) is as follows:

H[f(a, b)] �
cf

ca
 

2

+
cf

ca
 

2
⎡⎣ ⎤⎦

1/2

. (8)

For discrete images, the above formula can be approx-
imated by the difference method to obtain the following
equation:

H[f(a, b)] � [f(a, b) − f(a − 1, b)]
2

+[f(a, b) − f(a, b − 1)]
2

 
1/2

.

(9)

In order to facilitate programming and improve calcu-
lations, it can be further simplified as follows:

H[f(a, b)] � |f(a, b) − f(a − 1, b)| +|f(a, b) − f(a, b − 1)|.

(10)

(2) Laplacian Sharpening. Like the gradient, Laplace oper-
ation is also a linear combination of partial differential
operations, which is a linear operation accompanied by
rotation invariance as follows:

∇2f �
c
2
f

c
2
a

+
c
2
f

c
2
a

. (11)

For discrete digital images, the Laplacian operator can be
expressed as follows:

∇2f �
c
2
f

c
2
a

+
c
2
f

c
2
a

� f(a + 1, b) + f(a − 1, b)

+ f(a, b + 1) + f(a, b − 1) − 4f(a, b).

(12)

)e following formula is used to deal with the image blur
caused by the diffusion effect:

h(a, b) � f(a, b) − kθ∇2f(a, b). (13)

Among them, kθ represents the coefficient related to the
diffusion effect. )e value of kθ must be moderate; other-
wise, it will affect the sharpening effect of the image. If kθ � 1
is taken, then the formula is transformed as follows:

h(a, b) � 5f(a, b) − f(a + 1, b) − f(a − 1, b)

− f(a, b + 1) − f(a, b − 1).
(14)

2.4. Least Squares Support Vector Machine. )ere is a
modeling set an, bn 

K

n�1 composed ofK data, where the input
data are an ∈ RK and the output data are bn ∈ R. Using a
nonlinear function c(·), the input data are mapped to a high-
dimensional feature space and a relationship model is
established:

b(a) � w
S
c(a) + y. (15)

In the formula, w ∈ Rk is the weight vector and b is the
bias value. When using least squares support vector machine
to solve, the function fitting problem can be described as the
following optimization problem:

minM(w, q) �
1
2
w

S
w +

1
2
μ 

K

n�1
q
2
n. (16)

)e constraints are as follows:

bn � w
S
c(a) + y + qn, n � 1, . . . , K. (17)

In the formula, Rk⟶ Rkn is the kernel space mapping
function, μ is the penalty coefficient, and qn is the error
variable. According to the formula, the model is transformed
into the dual space to solve it, and the following Lagrange
function is obtained:

L(w, y, q, x) � M(w, q) − 
K

n�1
xn w

S
c an(  + y + qn − bn .

(18)

In the formula, the Lagrange multiplier xn ∈ R is called
the support value. )e partial derivative of each variable is
obtained to get the following conditional equation:

ϕL

ϕw
� 0⟶ w � 

K

n�1
xnc an( ,

ϕL

ϕy
� 0⟶ 

K

n�1
xn � 0,

ϕL

ϕqn

� 0⟶ xn � μqn, n � 1, . . . , K,

ϕL

ϕxn

� 0⟶ w
S
c an(  + y + qn − bn � 0, n � 1, . . . , K.

(19)

After eliminating the variables w and q, the system of
linear equations can be obtained:

0 1
→S

1
→

ρ + μ− 1
I

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

y

x

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �
0

b

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (20)

In the formula,

b � [b1, . . . , bK],

1
→

� [1, . . . , 1],

x � [x1, . . . , xK],

ρ � ρnl|n, l � 1, . . . , K ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

and

ρnm � c(an)Sc(a1) � N(xk, xl), n, l � 1, . . . , K.

N(xk, xl) is the kernel function that must satisfy Massa’s
theorem. )e commonly used kernel functions include
linear kernel functions, polynomial kernel functions, radial
basis kernel functions, and multilayer acceptor kernel
functions. )e kernel function used in this article is a
nonlinear radial basis kernel function:
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N xk, xl(  � exp
− (a − b)

2

2ε2
. (21)

)us, the fittingmodel of the least squares support vector
machine can be obtained as follows:

b(a) � 
K

n�1
xnN a, an(  + y. (22)

3. Test Experiment of Trace Inspection System
Based on Hyperspectral Imaging Technology

3.1. Retrieval Performance Experiment of Trace Inspection
System. In order to verify the retrieval performance of the
imaging spectrum image trace inspection system proposed
in this study, the average retrieval accuracy before and after
feature randomization encryption is compared in the ex-
periment. It also compares the average precision and re-
trieval time of the encryption method in this study and the
order-preserving encryption method in image retrieval. It is
a comparison of the retrieval performance of the imaging
spectral image security retrieval system before and after the
introduction of relevant feedback.

In order to prove the effectiveness of the feature ran-
domization encryption method, this experiment compares
the recall curve and average accuracy of image retrieval
before and after encryption. Figure 7 shows the recall-
precision ratio curve before and after feature encryption. It
can be seen from the figure that the precision and recall rates
after feature encryption have not changed much compared
with that before feature encryption.

In order to visually see the impact of feature encryption
on the retrieval accuracy, Table 1 lists the results of the
average retrieval accuracy before and after encryption.

It can be seen from the table that the average precision
before encryption using feature randomization is 86.10% and
after encryption is 85.25%, and the overall performance of the
image retrieval average precision before and after encryption is
equivalent. )at is, the method in this study has little effect on
the accuracy of the retrieval system. )e method in this study
can effectively protect the image feature information while
ensuring the accurate retrieval of imaging spectral images.

In order to further prove the effectiveness of the feature
randomization encryption method in this study, this ex-
periment compares the exact recall rate and the average
precision rate with order-preserving encryption. Figure 8
shows the recall-precision curve of the two encryption
methods. It can be seen from the figure that the retrieval
performance of the feature randomization encryption
method in this study is better than that of the existing order-
preserving encryption methods in the laboratory.

In order to compare the retrieval performance of the two
methods intuitively, the average precision of image retrieval
of the two methods is given in Table 2.

It can be seen from the table that the average precision of
the randomized encryption method in this study is 85.25%,
and the average precision of the order-preserving encryption
method is 83.26%, which is about 2% higher. It proves the

effectiveness of this method. )e table also lists the com-
parison of encryption time and retrieval time of two different
feature encryption methods. )e feature encryption time of
the method in this study is 5.0×10 − 3 s, the time to retrieve
an image after encryption is 1.0 s, the order-preserving
encryption method requires 1.10 s for feature encryption,
and the time to retrieve an image after encryption is 3.0 s.
Whether in terms of feature encryption or retrieval speed,
the performance of this method is optimal. )e main reason
is that the form of the hash code of the depth spectrum-
spatial feature in this article speeds up the calculation speed.

3.2. Hyperspectral Image Denoising Experiment. If there is a
large amount of hyperspectral image data, then it will affect
the subsequent processing. )erefore, the ENVI software is
used to cut a part of the calibration image without data and
delete redundant data information. Since hyperspectral
technology was originally used in the field of remote sensing,
it was originally used to process hyperspectral remote
sensing images.

)e amount of data in hyperspectral images is very large,
the number of bands is large, and the data and information
between bands are repetitive and redundant. )e original
CCD detection that records the reflection spectrum of each
band is very sensitive, and the existence of dark current has
an impact on the experimental data. )e steps to reduce
hyperspectral image noise are as follows: open the ENVI
software, select the hyperspectral image after the black and
white frame calibration, click [MNF Rotation] under the
[Conversion] function key, select [Forward MNF], and
perform the positive change with minimum noise.

)e spatial subset adjusts the size of the sensing area of
the hyperspectral image, so that the tracking range to be
processed is included in the sensing area, and redundant
background information is suppressed to a minimum. In the
second step, the inverse transformation of the MNF rotation
algorithm is performed. )e noise-free file processed in the
previous step is selected, the image size is set to be the same
as the size of the sensing area in the previous step, and the
noise-reduced file and the noise-removed hyperspectral
image are saved, as shown in Figure 9.

It can be seen from the figure that after the noise re-
duction of the hyperspectral image, the burrs of the re-
flection spectrum curve of the traces are reduced and
become smoother.

3.3. Hyperspectral Image Fusion of Different Bloodstain
Samples. Because the pictures obtained in this experiment
are hyperspectral images of all bands, not all of them are
suitable for image fusion processing. )is article needs to
find images that are valuable for the experiment to be fused.
As far as blood handwriting pictures are concerned, there are
two factors that affect the fusion effect: one is the clarity of
the blood handwriting itself and the other is the clarity of the
background image of the blood handwriting carrier. Gen-
erally speaking, blood writing and carrier background under
different wavebands will not reach the clearest degree at the
same time, because the degree of absorption and response to
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Figure 8: Recall rate-precision rate curve of two different feature encryption methods. (a) Characteristic randomization encryption.
(b) Order-preserving encryption.

Table 2: Comparison of average precision of two different feature encryption methods.

Type Characteristic encryption time Retrieve time after encryption Traditional method
Feature randomization encryption 5.0∗ 10 − 3 s 1.10 s 2.13 s
Order-preserving encryption 1.10 s 3.0 s 5.12 s
Average precision rate (%) 85.25 83.26 —

Table 1: Comparison of average precision before and after feature encryption.

Type Characteristic encryption time Retrieve time after encryption Traditional method
Feature randomization encryption 5.0∗ 10 − 3 s 1.10 s 2.13 s
Order-preserving encryption 1.10 s 3.0 s 5.12 s
Average precision rate (%) 86.10 85.25 —
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Figure 7: Recall rate-precision rate curve before and after feature encryption. (a) Before feature randomization and encryption. (b) After
feature randomization and encryption.
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the same wavelength of light is different between the blood
and the carrier. )erefore, this article needs to select two
types of pictures for fusion: one is the picture with the
clearest blood writing and the clearness of the carrier
background. )e second is the clearest background image of
the carrier, and the clearness of blood handwriting is un-
certain. Combining the two pictures together can get a clear
picture of the blood handwriting image and the carrier
background image. )e experimental results are listed in
Table 3.

)rough the evaluation indicators in the table, it can be
found that after the fusion, the average value of the blood
handwriting image increases, and the visual effect of naked-
eye observation is improved. )e standard deviation of
blood handwriting images increases, and the amount of
information tends to maximize. )e average gradient of the
blood handwriting image increases, and its sharpness in-
creases. )e information entropy increases, and the amount
of information increases. It shows that the image obtained by
wavelet fusion is clearer and more informative than the
blood handwriting image of a single band, which can greatly
improve the ability of hyperspectral bloodstain detection.

Regarding the hyperspectral image fusion of blood
fingerprint samples, 6 images that meet the requirements
were selected for fusion in the experiment. )e selected
images and the fusion results are listed in Table 4.

)rough the evaluation indicators in the table, it can be
found that after the fusion, the average value of the blood
fingerprint image increases, and the visual effect of naked-eye
observation is improved. )e standard deviation of blood
fingerprint images increases, and the amount of information
tends to maximize. )e average gradient of the blood fin-
gerprint image increases, and its sharpness increases. )e
information entropy increases, and the amount of informa-
tion increases. It shows that the image obtained by wavelet
fusion is clearer than a single-band blood fingerprint image
and has a larger amount of information, which can greatly
improve the ability of hyperspectral bloodstain detection.

For the hyperspectral image fusion of conventional
bloodstain samples, three images that meet the requirements
are selected for fusion processing in the experiment. )e
selected images are listed in Table 5.

)rough the evaluation indicators in the table, it can be
found that after fusion, the average value of conventional
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Figure 9: )e difference of the reflectance spectrum curve of the hyperspectral image before and after noise reduction. (a) Reflectance
spectrum curve of original hyperspectral image. (b) Reflectance spectrum curve of hyperspectral image after noise reduction.

Table 3: Related evaluation indexes of blood handwriting wavelet fusion image.

Image Information entropy Average gradient Average value Standard deviation
A 4.26 5.55 26.43 28.94
B 4.82 6.23 30.34 29.65
C 4.51 6.13 25.76 33.21
D 5.35 5.82 27.43 30.84
E 4.36 5.31 29.43 27.65
F 5.21 6.33 32.84 25.64
G 5.56 5.71 23.45 29.34
H 5.04 5.16 28.64 31.54
I 6.21 10.26 55.27 47.68
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Table 4: Related evaluation indexes of blood fingerprint wavelet fusion image.

Image Information entropy Average gradient Average value Standard deviation
A 4.35 5.31 26.41 29.46
B 5.31 6.71 30.54 28.64
C 4.67 6.13 26.64 31.56
D 6.13 6.81 28.64 31.64
E 6.23 6.12 29.64 32.91
F 5.12 8.61 25.31 26.94

Table 5: Related evaluation indexes of conventional bloodstain wavelet fusion image.

Image Information entropy Average gradient Average value Standard deviation
A 4.58 5.39 30.77 22.51
B 4.21 5.67 31.23 25.39
C 5.33 10.37 43.46 40.23
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Figure 10: Comparison result of trace inspection system based on hyperspectral imaging technology and traditional trace inspection system.
(a) Accuracy comparison. (b) Comparison of recovery.
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bloodstain images increases, and the visual effect of naked-
eye observation is improved. )e standard deviation of
conventional bloodstain images increases, and the amount
of information tends to maximize. )e average gradient of
the conventional bloodstain image increases, and its
sharpness increases. )e information entropy increases, and
the amount of information increases. It shows that the image
obtained by wavelet fusion is clearer and more informative
than the conventional bloodstain image of a single band,
which can greatly improve the ability of hyperspectral
bloodstain detection.

4. The Image Trace Inspection Capability of the
Trace Inspection System on Account of
Hyperspectral Imaging Technology

Based on the hyperspectral imaging technology and the
knowledge of trace inspection, this study designs a trace
inspection system based on hyperspectral imaging tech-
nology. )e system can improve the degree of trace recovery
and also improve the accuracy of the image. )e system can
inspect residual traces such as car tires, shoe soles, and blood
stains. In this regard, this study designs a set of controlled
experiments. )ey were compared with a trace inspection
system based on hyperspectral imaging technology and a
traditional trace inspection system. )ere are 10 sets of
pictures in each group, and the detection accuracy and
recovery degree are compared respectively. )e experi-
mental results are shown in Figure 10.

It can be seen from the figure that the accuracy of the
trace inspection system based on hyperspectral imaging
technology can reach 80%–95%, while the traditional one is
only 67%–75%. )erefore, the trace inspection system of
hyperspectral imaging technology designed in this study can
improve the accuracy by 5%–28%. )e recovery degree of
the trace inspection system of hyperspectral imaging tech-
nology can reach 80%–92%, while the traditional one is only
73%–79%. It shows that the trace inspection system of
hyperspectral imaging technology can be improved by 1%–
19%, compared with the traditional one. By analyzing the
experimental results, the trace inspection system based on
hyperspectral imaging technology has the characteristics of
high accuracy and high image recovery ability compared
with the traditional trace inspection system. )is is very
important for criminal investigation trace inspection.

5. Conclusion

)is study mainly studies the application of hyperspectral
imaging technology in trace inspection. In order to explore
how it can be used in trace inspection, this article combines
the nondestructive testing technology of hyperspectral im-
aging technology. By recognizing images of residual traces
such as car tires, shoe soles, and blood stains, and then
combining image denoising and least squares support vector
machine methods, this article denoises and restores the
images. )is study also designs the retrieval performance
experiment of the trace inspection system to verify the
performance problems of the hyperspectral imaging

technology. It designed a hyperspectral image noise re-
duction experiment to verify its degree of noise reduction. It
also designed a hyperspectral image fusion experiment of
blood stain samples to verify the fusion recovery capability of
hyperspectral imaging technology.
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