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Generally, system failures, such as crash failures, Byzantine failures, and so on, are considered as common reasons for the
inconsistencies of distributed consensus and have been extensively studied. In fact, strategic manipulations by rational agents are
not ignored for reaching consensus in a distributed system. In this paper, we extend the game-theoretic analysis of consensus and
design an algorithm of rational uniform consensus with general omission failures under the assumption that processes are
controlled by rational agents and prefer consensus. Different from crashing one, agent with omission failures may crash or omit to
send or receive messages when it should, which leads to difficulty of detecting faulty agents. By combining the possible failures of
agents at the both ends of a link, we convert omission failure model into link state model to make faulty detection possible.
Through analyzing message passing mechanism in the distributed system with n agents, among which t agents may commit
omission failures, we provide the upper bound onmessage passing time for reaching consensus on a state among nonfaulty agents
and message chain mechanism for validating messages.Then, we prove that our rational uniform consensus is a Nash equilibrium
when n> 2t + 1, and failure patterns and initial preferences are blind (an assumption of randomness). Thus, agents have no
motivation to deviate the consensus, which could provide interpretable stability for the algorithm in multiagent systems such as
distributed energy systems. Our research strengthens the reliability of consensus with omission failures from the perspective of
game theory.

1. Introduction

How to reach consensus despite failures is a fundamental
problem in distributed computing. In consensus, each
process proposes an initial value and then executes a unique
consensus algorithm independently. Eventually all processes
need to agree on a same decision chosen from the set of
initial values even if there may be some system failures, such
as crash failures, omission failures, and Byzantine failures
[1]. In the crash model, processes can get into failure state by
stopping executing the remaining protocol. In the omission
model, processes can get into failure state by omitting to
send or receive messages. Also, in the Byzantine model,
processes can fail by exhibiting arbitrary behavior. Extensive
studies have been conducted on fault-tolerant consensus.

Moreover, two kinds of consensus problems are usually
distinguished. One is non-uniform version (usually called

“consensus” directly) where no two nonfaulty processes
decide differently. The other is uniform version (called
“uniform consensus”) where no two processes (whether
correct or not) decide on different values. We believe that
consensus protocols cannot simply replace uniform con-
sensus protocols because the condition of non-uniform
consensus is inadequate for many applications [2]. From [3],
uniform consensus is harder than consensus because one
additional round is needed to decide. Also, uniform con-
sensus is meaningless with Byzantine failures.

Game theory provides interpretable equilibrium by
analyzing the game among intelligent players. We argue that
its incentive mechanism and punishment mechanism can be
effectively applied in distributed systems. Recently, there is
an increasing interest on distributed game theory especially
in several fields such as peer-to-peer network, biological
system, cryptocurrency, and e-commerce, in which
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processes are selfish called rational agents (or intelligent
agents). Combining distributed computing with algorithmic
game theory is an interesting research area enriching the
theory of fault-tolerant distributed computing. In this
framework, agents may deviate from protocols with any
behaviors in order to increase their own profits according to
utility functions, which could be regarded as general
Artificial Intelligence. In [4], this kind of deviation is re-
ferred to as strategicmanipulation of distributed protocol.
This research is necessary in some practical scenarios, in
which each process has selfish incentives. Also, we argue that
the fairness of algorithmsmust be promoted by game theory.
Clearly, the goal of distributed computing in the context of
game theory is to design algorithms for reaching Nash
equilibrium, in which all agents have no incentive to deviate
from the algorithms. Perhaps, this framework has been
investigated and formalized for the first time in the context
of secret sharing and multiparty computation [5–8]. More
recently, some fundamental tasks in distributed computing
such as leader election and consensus have been studied
from the perspective of game theory [9–17].

Following this new line of research, we combine fault-
tolerant consensus with rational agents and study the ra-
tional uniform consensus problem in synchronous round-
based system, where every agent has its own preference on
consensus decisions. Thus, an algorithm of rational uniform
consensus needs to be constructed. Also, for each agent, its
utility is not less with following the consensus algorithm
than with deviating from the algorithm. That achieves a
Nash equilibrium. It is easy to see that standard consensus
algorithms cannot reach equilibrium and they can be easily
manipulated by even a single rational agent. Several research
studies on rational consensus have been conducted
[4, 12–16, 18, 19], but none of them consider the uniform
property. Also, most studies on rational consensus only
support that there are crash failures or no system failures.
We argue that omission failures, which are more subtle and
complicated than crashing one, cannot be ignored for
reaching uniform consensus. In this paper, we pay attention
to a distributed system with n agents, among which t agents
may experience omission failures. In this setting, we extend
the game-theoretic analysis of consensus. Specifically, our
contributions in this paper include the following:

(i) We utilize a punishment mechanism to convert
omission failure model into link state model, which
makes faulty detection more direct. In the link state
model, faulty links never recover whether or not
omission failures recover. Therefore, it can provide
an idea to simplify the problem of faulty recovery in
distributed computing.

(ii) An almost complete mechanism analysis is given for
message passing in the distributed system with
general omission failures. Then, we provide the
upper bound x + 1 on message passing time for
reaching consensus on a link state.The upper bound
determines the round complexity of our algorithm.
Next, a message chain mechanism is introduced for
validating messages.

(iii) An algorithm of rational uniform consensus with
agent omission failures is presented for any
n> 2t + 1. We give a complete formal proof of
correctness of our algorithm. The proof shows that
our consensus is a Nash equilibrium.

The rest of the paper is organized as follows. Section 2
introduces the related work. Section 3 describes the model
that we are working on. Section 4 presents the algorithm of
rational uniform consensus for achieving Nash equilibrium
and proves it correct. Section 5 concludes the paper.

2. Related Work

From the view point of modeling methods about agents, the
research framework for distributed game theory in the lit-
erature may be divided into three categories. In the first
category, all of the agents in distributed system are con-
trolled by rational agents preferring consensus and some of
them may randomly fail by system failures. Bei et al. [4]
studied distributed consensus tolerating both unexpected
crash failures and strategic manipulations by rational agents.
They considered agents that may fail by crashing. However,
the correctness of their protocols needs a strong requirement
that it must achieve agreement even if agents deviate. Afek
et al. [18] proposed two basic rational building blocks for
distributed system and presented several fundamental dis-
tributed algorithms by using these building blocks. However,
their protocol is not robust against even crash failures.
Halpern and Vilaça [12] presented a rational fair consensus
with rational agents and crash failures. They used failure
pattern to describe the random crash failures of agents.
Clementi et al. [13] studied the problem of rational con-
sensus with crash failures in the synchronous gossip com-
munication model. The protocols of Halpern et al. and
Clementi et al. do not tolerate omission failure, but we think
the consideration to it is necessary. Harel et al. [15] studied
the equilibria of consensus resilient to coalitions of n − 1 and
n − 2 agents. They gave a separation between binary and
multi-valued consensus. However, they assumed that there
are no faulty agents.

The second category is named rational adversary. Groce
et al. [19] studied the problem of Byzantine agreement with a
rational adversary. Rather than the first model, they assumed
that there are two kinds of processes: one is honest and
follows the protocol without question; the other is a rational
adversary and prefers disagreement. Amoussou-Guenou
et al. [14] studied Byzantine fault-tolerant consensus from
the game theory point. They modeled processes as rational
players or Byzantine players and consensus as a committee
coordination game. In [14], the Byzantine players have
utility functions and strategies, which can be regarded as
rational adversaries similar to [19]. In our opinion, this
framework limits the scope of the Byzantine problem.

Finally, the BAR framework (Byzantine, Altruistic, and
Rational) was proposed in [20]. In [16], Ranchal-Pedrosa
and Gramoli studied the gap between rational agreements
that are robust against Byzantine failures and rational
agreements that are robust against crash failures. Their
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model consists of four different types of players: correct,
rational, crash, or Byzantine, which is similar to the BAR
model. They consider that rational players prefer to cause a
disagreement than to satisfy agreement, which we view as a
bit limited because only referring rational players as rational
adversaries is one of the questions in the Byzantine model.
Moreover, no protocols are proposed in [16].

3. Model

We consider a synchronous system with n agents and each of
agent has a unique and commonly known identify in
N � 1, . . . , n{ }. Execution time is divided into a sequence of
rounds. Each round is identified by the consecutive integer
starting from 1.There are three successive phases in a round:
a send phase in which each agent sends messages to other
agents in system, a receive phase in which each agent re-
ceives messages that are sent by other agents in the send
phase of the same round, and a computation phase where
each agent verifies and updates the value of local variables
and executes local computation based on the messages sent
and received in that round. We assume that every pair of
agents i and j in N is connected by a reliable communication
link denoted by linkij. For an agent i, all links in the system
can be divided into two types: direct link linkij where j ∈ N,
and indirect link linkkp where neither k nor p is equal to i.

3.1. Failure Model. Here the general omission failures [21],
which occur in agents and not in communication links [22],
are considered. That is, an agent crashes or experiences
either send omissions or receive omissions. Also, send
omission means that the agent omits sending messages that
it is supposed to send. Receive omissionmeans that the agent
omits receiving messages that it should receive. We define
that agent omission failures never recover.We argue that our
protocol also works even if failures could recover, but
proving this seems more complicated. It is easy to see that
crash failure can be converted to omission failure because if
an agent crashes, it must omit to send and receive messages
with all other agents after it has crashed. We assume that
there are t agents undergoing general omission failures.

Based on the failure model, we divide the agents in the
system into three types:

(i) Good Agent. Good agents do not have omission
failures.

(ii) Risk Agent. Risk agents experience omission failures
but we temporarily consider them as correct agents
in our protocol.

(iii) Faulty Agent. Faulty agents have omission failures
with more than t agents.

It is easy to see that t is the sum of the number of risk and
faulty agents. We treat good agents and risk agents as
nonfaulty agents uniformly. Send omission and receive
omission are symmetrical. For example, the cases that i

omits to send messages with j and that j omits to receive
messages with i have the same view for i and j. Therefore, we
may not be able to directly detect the states of some agents

with omission failures. Thus, we call them risk agents and
consider them as correct agents. For an agent that has
omission failures with more than t agents, it must have
omission failures with at least one good agent and then
clearly we can know it is a faulty agent.

Due to the symmetry of agent omission failures, we
model the agent omission failures as the link state problem
by a punishment mechanism. Specifically, in our protocol, if
an agent i receives nomessages from j in a round, then in the
following rounds, i sends no messages to j and does not
receive messages from j [23]. Thus, both send omission or
receive omission will cause the link interruption. So in a
round, we divide each link linkij into three types:
correct link, where neither i nor j experiences omission
failures in this round, faulty link, where at least one of i and j

has omission failures with the other one in the round, and
unknown − state link, where the state of linkij in this round
is unknown to another agent k. It is easy to see that we can
determine the type of an agent by the number of correct
direct links of it, which is the fault detection method in our
protocol. Similarly, faulty links never recover under this
punishment mechanism whether or not omission failures
recover.

3.2. Consensus. In the consensus problem, we assume that
every agent i has an initial preference vi in a fixed value set V

(we follow the concept of initial preference in [12]). We are
interested in uniform consensus in this paper. A protocol
solving uniform consensus must satisfy the following
properties [3]:

(i) Termination. Every correct agent eventually decides.
(ii) Validity. If an agent decides v, then v was the initial

value of some agent.
(iii) Uniform Agreement. No two agents (whether cor-

rect or not) decide on different values.

To solve uniform consensus in presence of agent
omission failures, we assume that n> 2t + 1 and n≥ 3.

In uniform consensus, an agent’s final decision must be
one of the following formalized types:

(i) ⊥: it means that there is no consensus. ⊥ is a
punishment for inconsistency.

(ii) ‖: it means no decision. Deciding ‖ is not ambiguous
with validity, as ‖ cannot be proposed [23]. It does
not affect the final consensus outcome.

(iii) v ∈ V: it satisfies the property of validity, which
must be the initial preference of some agent.

3.3. Rational Agent. We consider that distributed processes
act as rational agents according to the definition in game
theory. Each agent i has a utility function ui. We assume that
agents have solution preference [18], and an agent’s utility
depends only on the consensus value achieved. Thus, for
each agent i, there are three values of ui based on the
consensus value achieved: (i) β0 is i’s utility if i’s initial
preference vi is decided; (ii) β1 is i’s utility if there is a
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consensus value which is not equal to i’s initial preference;
(iii) β2 is i’s utility if there is no consensus. It is easy to see
that β0 > β1 > β2, and our results can easily be extended to
deal with independent utility function for each agent.

The strategy of an agent i is a local protocol σi satisfying
the system constrains. i takes actions according to the
protocol σi in each round. That is, σi is a function from the
set of messages received to actions. Each agent chooses the
protocol in order to maximize its expected utility. Thus,
there are n local protocols chosen by every agent, which is
called strategy profile σ→ in game theory. The equilibrium is a
strategy profile, where each agent cannot increase its utility
by deviating if the other agents fix their strategies. For each
agent i, if the local protocol σi is our consensus algorithm
when reaching an equilibrium, then we say that consensus is
a Nash equilibrium and the consensus reaching a
Nash equilibrium is called rational consensus. Formally, if a
strategy profile (or consensus) σ→ is a Nash equilibrium, then
for all agents i and all strategies σi

′ for i, it must have
ui(σi
′, σ→− i)≤ ui( σ→).

3.4. Notation Description. The main notations used in fol-
lowing sections are summarized in Table 1.

4. Rational Uniform Consensus with General
Omission Failures

4.1. A Rational Uniform Consensus in Synchronous Systems.
In order to reach rational uniform consensus that can tol-
erate omission failures, our protocol adopts a simple idea
from an early consensus protocol [23]: An agent does not
send or receive any messages to those agents that did not
send messages to it previously. Then, we convert the
omission failure model which cannot be detected into the
link state model which can be detected by agents in each
round. However, the presence of rational agents makes
protocol more complicated. It requires the protocol to
prevent the manipulation of rational agents. Hence, the
security of the algorithm needs to be improved from three
aspects. The first is interacting with the latest network link
states and message sources in each round. The update
process of the latest link states within each agent depends on
complete message chains, and we can obtain a unified de-
cision round and decision set from message passing
mechanism in omission failure environment. The second is
using secret sharing for agents’ initial preferences [24]. It
encrypts the initial preferences so as to prevent an agent
knowing the values of other agents in advance. The third is
signing each message with a random number and marking
faulty links by faulty random numbers [4]. This can improve
the difficulty of a rational agent to do evil.

The protocol is described in Algorithm 1. In more detail,
we proceed as follows.

Initially, each agent i generates a randomnumber proposali
which is used for consensus election later (line 2). Then i

computes two random 1-degree polynomials qi and bi with
qi(0) � vi and bi(0) � proposali, respectively (line 3). They
satisfy (2, n) threshold which means that an agent j≠ i can

restore vi or proposali if it knows more than two pieces of qi or
bi.Then i initialize set losti,NS0i ,HSi, decisioni and consensusi

(line 4); we discuss these inmore detail below.Then i generates
the faulty random number X-random1

i [k][lij] for each agent
k≠ i and each direct link lij that is the abbreviation of linkij for
the link between i and j (lines 5–7; lrij represents the linkij in
round r). And the message random number random1

i for
round 1 is randomly chosen from 0, . . . , n − 1{ } (line 8). For
each link, i generates n − 1 faulty random numbers and then
sends them to other agents, respectively, in round 1. So, we can
get that X-random1

i contains (n − 1)2 faulty random numbers
in total. Then i puts X-random1

i and random1
i into X-RANDOM

and RANDOM, respectively (lines 9 and 10), where X-RANDOM is a
function storing all faulty random numbers known to i and
RANDOM stores all message random numbers. Agents can in-
voke these two functions to verify random numbers. Specifi-
cally, input the id, link, and round to invoke X-RANDOM and
input id and round to invoke X-RANDOM.

There are t + 4 rounds in total and each round has three
phases. In phase 1 of round r, 1≤ r≤ t + 4, i only sends
messages to each agent j who does not belong to losti that is a
set of agents that have omission failures with i detected by i

(line 15). If 1≤ r≤ t + 3, i sends randomr
i andNSr− 1

i to j. And
if1≤ r≤ t + 2, i also sends X-randomr

i [j] which contains n −

1 random numbers (lines 16 and 17). If r � 1, i also sends the
piece of qi, qi(j) and the piece of bi, bi(j) to j (line 16). If
r � t + 3, i also sends all the secret shares ql(i) and
bl(i)(l≠ j) that it has received from other agents (line 18). It
is easy to see that the piece ql(i) and bl(i) must be in pairs.
That is, if i restores vj, then it can also restore proposalj.
Finally, if r � t + 4, i only sends consensusi to j (line 19). For
each agent i, consensusi is the set of all consensus values
calculated and received by i. Hence, if the algorithm is
executed validly, |consensusi| must be equal to 1.

In phase 2 of round r, 1≤ r≤ t + 4, i only receives
messages from agents that are not in set losti (line 22). And if
there are no messages received from an agent j, j ∉ losti, i

Table 1: Notation description.

Variable Description
linkij The link between i and j

linkr
ij The link between i and j in round r

X-randomr
i Faulty random number of i in round r

randomr
i Message random number for i in round r

NSr
i The latest states known to i in round r

HSi Historical link states in agent i

vi Initial value of i

proposali The number ofi for computing consensus
tA The first tuple of NSr

i [lkp]

tB The second tuple of NSr
i [lkp]

Statei[lrij]
Detection result of agent i on the state of lij in round

r

C
j

i (m1, m2)
Agent chain (or message propagation path) from

agent i to j.
Nfr Set of nonfaulty agents in round r

Fr Set of faulty agents in round r

FΔr Set of faulty agents newly detected in round r

xr The number of risk agents in round r
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(1) function CONSENSUS(vi)
(2) proposali← a random number
(3) qi, bi←random 1 degree polynomials with qi(0) � viand bi(0) � proposali ⊳(2, n) threshold

secret sharing
(4) losti←∅; NS0i←∅; HSi←∅; decisioni←none; consensusi←∅
(5) for allj≠ ido
(6) for allk≠ ido
(7) X− random1

i [k][lij]←a random bit
(8) random1

i←random value in 0, . . . , n − 1{ }

(9) puts X− random1
i into X-RANDOM

(10) puts random1
i into RANDOM

(11)
(12) forround r � 1→ t + 4do
(13) NSr− 1 ←∅; randomr

{ }←∅
(14) Phase 1: send phase
(15) for allj ∉ lostiandj≠ ido
(16) ifr � 1thenSend 〈qi(j), bi(j), NSr− 1

i , X− randomr
i [j], randomr

i 〉to j
(17) if2≤ r≤ t + 2thenSend〈NSr− 1

i , X− randomr
i [j], randomr

i 〉to j
(18) ifr � t + 3thenSend 〈NSr− 1

i , (ql(i))l≠ j, (bl(i))l≠ j, random
r
i 〉to j

(19) ifr � t + 4thenSend consensusito j
(20)
(21) Phase 2: receive phase
(22) for allj ∉ lostiandj≠ ido
(23) if newmessage has received from jthen
(24) puts X− randomr

j[i]into X-RANDOM ⊳round 1 to t+ 2
(25) puts randomr

jinto RANDOM ⊳round 1 to t+ 3
(26) NSr− 1 ← NSr− 1 ∪NSr− 1

j ; randomr
{ }← randomr

{ }∪ randomr
j ⊳round 1 to t+ 3

(27) save (ql(j))l≠ iand (bl(j))l≠ i ⊳round t+ 3
(28) consensusi←consensusi ∪ consensusj ⊳round t+ 4
(29) elselosti←losti ∪ j

(30) if|losti|> tthen ⊳Faulty agent
(31) Decide(‖) ⊳No decision
(32)
(33) Phase 3: computation phase
(34) ifr≤ t + 3then
(35) NSr

i←NSr− 1
i

(36) NSr
i , HSi← VERIFYANDUPDATE(r, i, NSr

i , HSi, NSr− 1 , randomr
{ }) ⊳Punishment if an inconsistency is detected

(37) ifr≤ t + 2then
(38) randomr+1

i ←random value in 0, . . . , n − 1{ }

(39) for allj≠ ido
(40) for allk≠ ido
(41) X− randomr+1

i [k][lij]←a random bit
(42) puts X− randomr+1

i into X-RANDOM
(43) puts randomr+1

i into RANDOM
(44) else ifr � t + 3then
(45) LASTUPDATE (HSi, NSt+3

i ) ⊳Update the Msg − Xof HSi

(46) form � 1→ t + 2do
(47) ifmis the first reliable round in HSithen
(48) m∗←m; break ⊳decision round
(49) D←the set of nonfaulty agents in HSm∗

i ⊳decision set
(50) for allj ∈ Ddo
(51) ifthe number of qj(l)< 2 and j≠ ithenbreak
(52) qj, bj← restored by qj(l) and bj(l)received
(53) vj, proposalj←qj(0), bj(0)

(54) ifall values are known in Dthen
(55) C←the set of agents with the second max proposal in D

(56) if|C| � 1thenconsensusi←consensusi ∪ vC.element
(57) else if|C| � 0then
(58) S←the same proposalmod |D| ⊳the proposals are the same for all agents in D

(59) consensusi←consensusi ∪ vj, where j is the (S + 1) st highest id in D

(60) else ⊳|C|> 1

ALGORITHM 1: Continued.
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adds j to losti (line 29). Otherwise, i stores the received in-
formation (lines 24–28). NSr− 1  and randomr

{ } are the sets
of all new link states NSr− 1

j and message random numbers
randomr

j, respectively, received by i from each agents j ∉ losti
in round r (line 26). Correspondingly, the elements in
NSr− 1  and randomr

{ } are one-to-one correspondence.
Specially, if |losti|> t, i knows that it becomes a faulty agent
and then i must decide ‖ directly and no longer run in later
rounds (line 31). And we say that ‖ means agent i does not
decide in the end, which has no influence on the solution.

In phase 3 of round r≤ t + 3, i firstly uses NSr− 1
i to

update NSr
i which is useful for the update and verification of

link states (line 35). Then i invokes the function VER-
IFYANDUPDATE to verify and update NSr

i and HSi by NSr− 1 

and randomr
{ } (line 36; see Algorithm 2 for details). NSr

i is
the latest state known to i of all links in the system in round r.
HSi is the historical link state including t + 3 rounds in total.
If r≤ t + 2, i generates the message random number
randomr+1

i and the faulty random numbers X-randomr+1
i for

round r + 1, which will be sent to other agents in round
r + 1, and then puts these random numbers into X-RAN-
DOM and RANDOM, respectively (lines 37–43). Then if
r � t + 3, i last updates HSi by NSt+3

i (line 45). Specifically, if
a link lkp is faulty in round m in NSt+3

i , then change the state
of lkp into fault from round m to round t + 3 in HSi. This is
the last time modifying HSi. And following that, i utilizes
HSi to find the decision roundm∗ from round 1 to round
t + 2, which is the first reliable round in HSi (lines 46–48).
We follow the concept of clean round in [12]. The number of
faulty agents does not increase in clean round and the
previous round of clean round is reliable round. Specially, we
say that reliable round cannot be round 0, so that the first
reliable round is the previous round of the second
clean round if the first clean round is round 1. In HSr

i , if less
than n − t − 1 links to agent j are correct, then j is a faulty
agent. Otherwise, j is a nonfaulty agent. We define that it
must remove the explicitly faulty agents when computing the
state of j in round r by HSi. Then i computes the
decision setD that is the set of nonfaulty agents in HSm∗

i

(line 49). And then i uses all the secret shares it has received
in round t + 3 to try to restore the initial preference and
proposal of each agent j ∈ D (lines 50–53). If i can recon-
struct the values of all agents ∈ D, then i must know all
proposals of these agents. Then i computes the consensus
proposal (lines 54–63). Firstly, i sorts all the proposals in D

and finds the set C of agents with the second max proposal
value (line 55).Then if there is only one agent in C, i puts the
initial preference of this agent into consensusi (line 56). If
there are more than one agents in C, that is, more than one
agents have the same secondmax proposal value pr in D (we
say that the probability is extremely low), then i uses the pr

to mod the agent number of C and gets S (lines 60–62). In
this case, i finally puts vj into its consensusi where j is the
(S + 1) st highest id in C (line 63). Finally, if there is no agent
in C, then the proposals must be the same for all agents in D

and the second max proposal value does not exist. Thus, i

uses the same proposal to mod the agent number of
decision setD and gets S (line 58). Similarly, i elects the
initial preference of the agent with the (S + 1) st highest id in
D (line 59). But if i cannot restore all the values of agents
∈ D, it does nothing and keeps consensusi as the empty set.
Finally, if r � t + 4, if consensusi contains only one value,
then i makes a decision (lines 65–67). Otherwise, an in-
consistency is detected and i decides ⊥ (line 69).

The detailed implementation of the verification and
update protocol in phase 3 is given in Algorithm 2.

Basically, for each link lkp, NSr
i [lkp] is a tuple containing

two tuples, tA and tB. The first tuple tA represents the state of
lkp, which contains three types: Msg-R, Msg-X and Msg-O,
representing correct link, faulty link, and unknown-state
link, respectively. The format of type Msg-R is
(m, k, randomm

p ), where m is the round of the link state, k is
the agent reporting the link state, and randomm

p is the
message random number sent by p in round m. It is easy to
see that if k reports the state of its direct link lkp is correct
(Msg-R) in round m, then it must knowrandomm

p . The
format of type Msg-X is (X, m, k, X-randomm

k [lkp]), where
m and k are the same as those in Msg-R, X is an identifier,
and X-randomm

k [lkp] is the sorted set of faulty random
numbers on lkp which is generated by k in round m-1.
Specifically, the set is sorted by the ids of agents from small to
large. The format of type Msg-O is∅ because the state of lkp

is unknown for i. The second tuple tB describes the source of
tA and has the form (j, m), where j is the agent sending the
link state tA to i, and m is the round when j sends it to i.
Specially, for direct link, when i first updates the state in
round r, tB is ϕ meaning that the message source is i itself.
HSr

i [lkp] denotes the state of link lrkp known to i and r could
range from 1 to t + 3. It contains at most two different tuples
because the state of lkp in round r can only be detected and

(61) pr←the second max proposal in D

(62) S←prmod |C|

(63) consensusi←consensusi ∪ vj, where j is the (S + 1) st highest id in C

(64) else ⊳round t+ 4
(65) if|consensusi| � 1then
(66) decisioni←consensusi.element
(67) Decide(decisioni)

(68) else ⊳Inconsistency
(69) Decide(⊥)

ALGORITHM 1: Agent i’s uniform consensus protocol with initial value vi(n> 2t + 1).
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Require:r←round, i←id, NSr
i , HSi, NSr− 1 , randomr

{ }

Ensure:(NSr
i , HSi) or decided

(1) function VERIFYANDUPDATE(r, i, NSr
i , HSi, NSr− 1 , randomr

{ })
(2) T←IDs NSr− 1  ⊳ The function IDs returns ids from NS set
(3) S←N − T − i{ }

(4)
(5) Phase 1: update the state of direct links
(6) for j ∈ T do
(7) NSr

i [lij]←((r, i, randomr
j), ϕ) ⊳ Message source verification is not

required if ϕ
(8) APPENDHS (HSi, lij, (r, i, randomr

j)) ⊳ append the state into HS or
decide ⊥

(9) for j ∈ S do
(10) if TypeNSr

i [lij] � Msg − X then
(11) continue
(12) else
(13) NSr

i [lij]←((X, r, i, X− randomr
i [lij]),ϕ)

(14) APPENDHS (HSi, lij, (X, r, i, X− randomr
i [lij]))

(15)
(16) Phase 2: verify message chain
(17) for j ∈ T do
(18) VERIFYMSGCHAIN(NSr− 1

j ) ⊳ Message chain verification or decide ⊥
(19)
(20) Phase 3: verify and update
(21) for j ∈ T do
(22) for k � 1→ n − 1 do
(23) for p � k + 1→ n do
(24) recvState←NSr− 1

j [lkp].state
(25) localState←NSr

i [lkp].state
(26) if an inconsistency is detected then
(27) Decide (⊥) ⊳ Punishment
(28) ifType(recvState) � Msg − Othen ⊳Case 10
(29) Continue
(30) else if Type(localState) � Msg − O then ⊳ Case 11
(31) NSr

i [lkp]←(recvState, (j, r))

(32) APPENDHS(HSi, lkp, recvState)
(33) else
(34) lr←localState.round
(35) li←localState.id
(36) rr←recvState.round
(37) ri←recvState.id
(38) if (k � i or p � i) then ⊳ Direct link
(39) ifTYPE(localState) � Msg − R andTYPE(recvState) � Msg − R

then ⊳ Case 1
(40) APPENDHS(HSi, lkp, recvState)
(41) else ifTYPE(localState) � Msg − R andTYPE(recvState) � Msg − X

then ⊳ Case 2
(42) Decide (⊥)
(43) else ifTYPE(localState) � Msg − X andTYPE(recvState) � Msg − R

then ⊳ Case 3
(44) APPENDHS(HSi, lkp, recvState)
(45) else ifTYPE(localState) � Msg − X andTYPE(recvState) � Msg − X

then ⊳ Case 4 and 5
(46) if li � i then ⊳ Case 4
(47) if rr � lr or rr � lr + 1 then
(48) APPENDHS(HSi, lkp, recvState)
(49) else if rr � lr − 1 then
(50) NSr

i [lkp]←(recvState, (j, r))

(51) APPENDHS(HSi, lkp, recvState)
(52) else ⊳ Indirect link

ALGORITHM 2: Continued.
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reported by k and p. The form of each tuple is similar to tA

but the round in tA must be r. And the agents in the two
tuples must be different and be k and p, respectively.
Specially, if the types of two tuples are Msg-R and Msg-X,
then we think the state of lrkp is faulty. And if Msg-O and
Msg-O, then lrkp is a unknown-state link which is regarded
as a correct link when computing decision round and
decision set in round t + 3.

The pseudocode in Algorithm 2 is explained in detail as
follows.

i initially generatesT from NSr− 1 , which is easy to see
that i must receive the messages sent by agent j ∈ T in
round r (line 2). And i also computes set S that is equal to
losti (line 3).

Firstly, in phase 1, i updates the states of direct links in
round r. For each agent j ∈ T, i has received the messages
from it in round r so that i updates the tA of NSr

i [lij] to Type
Msg-R (line 7). And i must be able to obtain the message
random number randomr

j from randomr
{ }. Then i invokes

APPENDHS to append the state (r, i, randomr
j) into HSr

i [lij]

(line 8). We stipulate APPENDHS must guarantee that the
inputting state satisfies the properties of HS which we have
discussed above. For example, each link lkp has at most two
different tuples in each round, and they come from different
agents, k and p. If a state violated the properties of HS,
APPENDHS would decide ⊥ and terminate the protocol
early. Then for each agent j ∈ S, it has omission failures
detected by i because i does not receive a message from it. If
the type of link lij is already faulty in NSr

i inherited NSr− 1
i , i

does nothing because for a link, NS only records the earliest
round when the link has failures (lines 10–11). Otherwise, i

updates the tA to Type Msg-X and appends the new state
into HSi (lines 13–14).

Then in phase 2, i utilizes message chain mechanism to
verify the correctness of messages NSr− 1  received in re-
ceive phase (lines 17–18).

Message Chain Mechanism. For each agent j, its message
NSm

j has the following properties.
Suppose Sm

j is the set of agents that disconnected from j

in or before round m and Tm
j is the set of agents that are still

connected to j in round m. Suppose X(r) represents the
Msg − X tuple where the round number is equal to r.

Claim 1. For link lkp in NSm
j , where k � j and p ∈ Sm

j ∪Tm
j ,

its state in round m must be known and the number of
correct links in ljp  is greater than or equal to n − t − 1.

Claim 2. For link lkp in NSm
j , where k � j and p ∈ Sm

j ∪Tm
j ,

its state in round m + 1 and later must be unknown.

Claim 3. For link lkp in NSm
j , where k ∈ Sm

j and p ∈ Sm
j , its

state in round m − 1 and later must be unknown.

Claim 4. For link lkp in NSm
j , where k ∈ Sm

j and p ∈ Sm
j , if

the state of NSm
j [ljk] is X(m1) and the state of NSm

j [ljp] is
X(m2), suppose m≥m1 ≥m2, then the state of l

m1− 2
kp must be

known.

Claim 5. For link lkp in NSm
j , where k ∈ Tm

j and
p ∈ Sm

j ∪Tm
j , its state in round m − 1 must be known and

that in round m and later must be unknown.

Claim 6. For link lkp in NSm
j , where k ∈ Tm

j and p ∈ Sm
j , if

the state of lm− 1
kp is Msg − R, then the state of link lpt in round

(53) ifTYPE(localState) � Msg − R andTYPE(recvState) � Msg − R

then ⊳ Case 6
(54) if rr≤ lr then
(55) APPENDHS(HSi, lkp, recvState)
(56) else if rr> lr then
(57) NSr

i [lkp]←(recvState, (j, r))

(58) APPENDHS (HSi, lkp, recvState)
(59) else ifTYPE(localState) � Msg − R andTYPE(recvState) � Msg − X

then ⊳ Case 7
(60) NSr

i [lkp]←(recvState, (j, r))

(61) APPENDHS (HSi, lkp, recvState)
(62) else ifTYPE(localState) � Msg − X andTYPE(recvState) � Msg − R

then ⊳ Case 8
(63) APPENDHS (HSi, lkp, recvState)
(64) else ifTYPE(localState) � Msg − X andTYPE(recvState) � Msg − X

then ⊳ Case 9
(65) if ri≠ li then
(66) if lr≤ rr then
(67) APPENDHS (HSi, lkp, recvState)
(68) else
(69) NSr

i [lkp]←(recvState, (j, r))

(70) APPENDHS (HSi, lkp, recvState)
(71) return NSr

i , HSi

ALGORITHM 2: Agent i verifies and updates link state in round r.
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m − 2, where t ∈ Sm
j , must be known and its state in round

m − 1 and later must be unknown.

Claim 7. For link lkp in NSm
j , where k ∈ Tm

j and p ∈ Sm
j , if

the state of lm− 1
kp is equal toX(m′), where m′ ≤m − 1, then the

state of lm′− 2pt , t ∈ Sm
j , must be known.

Explicitly, we say that the function VERIFYMSGCHAIN is to
verify whether a message NSr− 1

j ∈ NSr− 1  violates the above
claims. If not, then continue to the phase 3. Otherwise, it
decides ⊥ and terminates the protocol early.

Finally, in phase 3, i updates NSr
i and HSi by the states in

NSr− 1 . For a link, i compares its state in NSr
i with the state

in NSr− 1
j ∈ NSr− 1 , so as to implement update according to

different cases.

Claim 8. For each link lkp(k, p ∈ N), the agent of tA must be
k or p in all NS[lkp] and HS[lkp].

Case 1. For the direct link lij of i, if the tA of NSr
i [lij] is

(r, i, random) and the tA of NSr− 1
j [lij] is

(r′, k, random′), then i only needs to append the new
state into HSi (lines 39–40).

Claim 9. In Case 1, there must be r′ < r.

Case 2. For the direct link lij of i, if the tA of NSr
i [lij] is

(r, i, random) and the tA of NSr− 1
j [lij] is

(X, r′, k, X-randomr′
k [lij]),then i detects an inconsis-

tency and decides ⊥ (lines 41–42).
Case 3. For the direct link lij of i, if the tA of NSr

i [lij] is
(X, r′, k, X-randomr′

k [lij])and the tA of NSr− 1
j [lij] is

(r″, p, random), then i only needs to append the new
state into HSi (lines 43–44).

Claim 10. In Case 3, there must be r″ ≤ r′.

Case 4. For the direct link lij of i, if the tA of NSr
i [lij] is

(X, r′, i, X-randomr′
i [lij])and the tA of NSr-1

j [lij] is
(X, r″, k, X-randomr″

k [lij]),then i only needs to append
the new state into HSi when r″ � r′ or r″ � r′ + 1, and i

must update NSr
i and HSi when r″ � r′-1 (lines 45–51).

When updating NSr
i , the tB of NSr

i [lij] must be (j, r)

because the new state is obtained from NSr− 1
j and

updated in round r.

Claim 11. In Case 4, if k � i, the tA of NSr− 1
j [lij] must be the

same as the tA of NSr
i [lij], and if k � j, it must have

0≤ |r′ − r″|≤ 1.

Case 5. For the direct link lij of i, if the tA of NSr
i [lij] is

(X, r′, j, X-randomr′
j [lij]) and the tA of NSr− 1

j [lij]is
(X, r″, k, X-randomr″

k [lij]),then i does nothing.

Claim 12. In Case 5, if k � j, the tA of NSr− 1
j [lij] must be the

same as the tA of NSr
i [lij], and if k � i, it must have

r″ � r′ + 1.

Case 6. For the indirect link lkp of i, if the tA of NSr
i [lkp]

is (r″, y, random′) and the tA of NSr− 1
j [lkp] is

(r″, z, random′),then i only needs to append the new
state into HSi when r″ ≤ r′, and i must update NSr

i and
HSi when r″ > r′ (lines 53–58).
Case 7. For the indirect link lkp of i, if the tA of NSr

i [lkp]

is (r′, y, random) and the tA of NSr− 1
j [lkp] is

(X, r″, z, X-randomr″
z [lkp]),then i needs to update NSr

i

and append the new state into HSi (lines 59–60).

Claim 13. In Case 7, if z � y, it must have r′ < r″, and if
z≠y, it must have r′ ≤ r″.

Case 8. For the indirect link lkp of i, if the tA of NSr
i [lkp]

is (X, r′, y, X-randomr′
y [lkp])and the tA of NSr− 1

j [lkp] is
(r″, z, random), then i only needs to append the new
state into HSi (lines 62–63).

Claim 14. In Case 8, if z � y, it must have r′ > r″, and if
z≠y, it must have r′ ≥ r″.

Case 9. For the indirect link lkp of i, if the tA of NSr
i [lkp]

is (X, r′, y, X-randomr′
y [lkp]))and the tA of NSr− 1

j [lkp]

is (X, r″, z, X-randomr″
z [lkp]),then i does nothing

when z � y, and i appends the new state into HSi when
z≠y. Specially, i also updates NSr

i using the new state
received if r′ > r″ (lines 64–70).

Claim 15. In Case 9, if z � y, the tA of NSr− 1
j [lkp] must be

the same as the tA of NSr
i [lkp], and if z≠y, it must have

0≤ |r′ − r″|≤ 1.

Case 10. If the tA of NSr− 1
j [lkp] is∅, then i does nothing

(lines 28–29).
Case 11. For the indirect link lkp of i, if the tA of
NSr

i [lkp] is ∅ and the tA of NSr− 1
j [lkp] is

(r′, z, random) or (X, r′, z, X-randomr′
z [lkp])),then i

needs to update NSr
i and append the new state intoHSi.

(lines 30–32).

Claim 16. If in round r, agent i receives a message in which
tB is (j, m) and j ∈ Tm

i or j � i, then tA of the message must
already be in HSi when in round r.

Claim 17. If in round r, agent i receives a message in which
tB is (j, r − 1) from k, then Type(NSr− 1

k [lr− 1
kj ]) must be

Msg-R.
In phase 3, for a link lkp, i needs to detect whether there is

an inconsistency firstly (line 26). An inconsistency detected
in phase 3 may be because

(1) (message format verification). The format of
NSr− 1

j [lkp] is incorrect;
(2) (message source verification). NSr− 1

j [lkp] violates
Claim 16 or Claim 17;

(3) (random number verification). If the type of
NSr− 1

j [lkp] is Msg-R, the message random number
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in NSr− 1
j [lkp] is different from that in RANDOM, or if

Msg-X, the faulty random numbers in X-RANDOM
are different from the random numbers at the cor-
responding indexes of the sorted set in NSr− 1

j [lkp];
(4) (round number verification). NSr− 1

j [lkp] violates one
of the claims from Claim 8 to Claim 15.

If i detects an inconsistency, then it decides⊥ (line 27). If
not, i updates the states as previously discussed.

4.2. Proof of theProtocol. The proof assumes n> 2t + 1. Some
variables are defined as follows.

Definition 1. Statei[lrij] denotes the detection result of agent i

on the state of direct link lij in round r. The type of Statei[lrij]

must be Msg-R or Msg-X.

Definition 2. C
j
i (m1, m2)denotes the agent chain (or we can

call it message propagation path) from agent i to j. i detects a
direct link state in round m1 and sends it to agent k≠ i, j in
round m1 + 1.Then k also sends the state to another agent in
round m1 + 2. Finally, j receives the state in round m2.

Definition 3. Nfr denotes the set of nonfaulty agents in
round r. Fr denotes the set of faulty agents in round r. FΔr

denotes the set of faulty agents newly detected in round r. xr

denotes the number of risk agents in round r.
We first prove the upper bound of message passing time

and give the round complexity of the algorithm.

Theorem 1. (message passing mechanism). If i, j ∈ Nfr+t+1,
all link states in round r can be reached a consensus between i

and j at the latest in round r + t + 1.

Proof. Consider the state of linkkp in round r, where
k, p ∈ N. Specially, we can consider the messages sent by k

and p to be independent of each other and this does not
affect the final consensus outcome. For example,
Type(Statek[lrkp]) � Msg-X and it is received by all non-
faulty agents in round m1(< r + t + 1), and
Type(Statep[lrkp]) � Msg-R and it is received by all non-
faulty agents in round m2(m1 <m2 < r + t + 1). Even if the
detection result of p may no longer be forwarded after round
m1, we still have the correct consensus state in round r +

t + 1 when we consider two detection results independently.
We have following cases:

(i) Case 1. k and p are good agents in round r. In round
r + 1, k and p send their detection results to all good
agents. So if t � 0, all agents reach a consensus on the
state of lkp in round r + 1. If t> 0, all nonfaulty
agents reach a consensus in round r + 2. Therefore,
all link states of round r among good agents can
reach a consensus in round r + t + 1.

(ii) Case 2. k is a risk agent or faulty agent and p is not
equal to k. Generally, since a receive omission can be
converted to a send omission, then each risk agent
and faulty agent has at most the following 3 choices
when sending messages in each round:

(1) It has sending omissions with all other agents.
(2) It does not have sending omissions with at least a

good agent.
(3) It has sending omissions with all good agents and

no sending omissions with some risk agents or
faulty agents.

Hence, k has three choices in round r + 1.
(1) Case 2.1. k chooses 1. Then all agents do not know

Statek[lrkp]. All nonfaulty agents agree on the “un-
known-state.”

(2) Case 2.2. k chooses 2. Then there must be some good
agents knowing Statek[lrkp] in round r + 1. And all
good agents and k know the state in round r + 2. If
t � 1, k is the only risk agent, then there is a con-
sensus on the state in round r + 2. But if t> 1, all
nonfaulty agents receive Statek[lrkp] in round r + 3
because all good agents must send it to all nonfaulty
agents in this round. Thus, the lemma holds.

(3) Case 2.3. k chooses 3. So no good agents know
Statek[lrkp] in round r + 1 and k is detected faulty in
round r + 1. Suppose that there is only a risk agent
receiving the state. Since agents are independent of
each other, it is easy to scale the number of the agents
from one to many. We can also divide this case into
two cases.

(a) Case 2.3.1. k only sends messages to p in round
r + 1. It means that Type(Statek[lrkp]) � Msg-R.
If Type(Statep[lrkp]) � Msg-X, p does not re-
ceive messages from k in round r + 1. Then the
result is the same as that in case 2.1. But if
Type(Statep[lrkp]) � Msg-R, k has no influence
on the final result and the consensus result of lrkp

depends on the choice of p. If p also chooses
Case 2.3.1, then two states of lrkp only exist in k

and p. The final result is also the same as that in
case 2.1.

(b) Case 2.3.2. k has no sending omissions with some
risk agents or faulty agents other than p. Then in
round r + 2, the risk agents and faulty agents that
have received messages from k also have 3
choices. Take one of the risk agents l as an ex-
ample. If l chooses 1 or 2 in round r + 2, the
results are the same as those in case 2.1 and case
2.2 where the lemma holds. And if l chooses 3, no
good agents know Statek[lrkp] in round r + 2.
Suppose that when risk and faulty agents choose
3, they must send Statek[lrkp] to risk agents or
faulty agents other than the source agent of the
state because if they only send the state back to
the source agent, the final results depend only on
the source agent, not on themselves. Then until
round r + t, if from round r + 1 to round
r + t − 1, all risk agents and faulty agents that
have received Statek[lrkp] choose 3, then the risk
(or faulty) agent z in round r + t must be the last
risk (or faulty) agent in system. At this time, z
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has only 2 choices: 1 and 2. And it is easy to get
that Statek[lrkp] must be consensus in round
r + t + 1. But if from round r + 1 to round
r + t − 1, some risk agents or faulty agents that
have received Statek[lrkp] choose 1 or 2, then
the results are the same as those in case 2.1 and
case 2.2.

In summary, the lemma holds. □

Corollary 1. If i, j ∈ Nfr+xr+1, all link states in round r can
reach a consensus between i and j in round r + xr + 1.

Proof. There are t − xr faulty agents in round r. Since the
faulty agents before round r do not send any messages in
round r + 2, it is equivalent to case 2.1 that k sends messages
to these faulty agents in round r + 1. Then the total number
of risk and faulty agents in case 2.3 can be reduced to xr.
Therefore, in case 2.3.2, if keeping choosing 3, there are no
risk or faulty agents anymore up to round r + xr and all link
states in round r can be reached a consensus between i and j

in round r + xr + 1. □

Lemma 1. (round complexity). The link states HS of
the second clean round and all previous rounds can reach
a consensus among all nonfaulty agents at the latest in
round t + 3.

Proof. By Theorem 1, the smaller the round r, the smaller
the supremum of the round in which the link states in round
r can reach a consensus. Hence, we directly consider the
second clean round. Suppose the second clean round is y.
Then there are already at least y − 2 faulty agents in round y.
That is, xy ≤ t − y + 2. By Corollary 1, the link states in round
y can reach consensus in round y + xy + 1. Since
y + xy + 1≤ t + 3, the lemma holds.

Then it is proved that the algorithm satisfies all the
properties of uniform consensus with general omission
failures. □

Lemma  . If i is a nonfaulty agent, then Type
(HSr ∼ t+3

i [lkp]) � Msg-X when Type(HSr
i [lkp]) �

Msg-X(k, p ∈ N).

Proof. Link lkp cannot recover after a fault occurs. So if lkp is
a faulty link in round r, then its state must also be Msg-X in
subsequent rounds. Moreover, HS also expands all Msg-X
states backwards in LASTUPDATE. □

Lemma 3. If i is a nonfaulty agent, then Type
(HS1 ∼ r− 1

i [lkp]) � Msg-R when Type(HSr
i [lkp]) �

Msg-R(k, p ∈ N).

Proof. Since Type(HSr
i [lkp])≠Msg-O, there must be an

agent in k or p (supposing p) that has reported Statep[lrkp] in
round r + 1, and finally the state has been transmitted to i.
We suppose that i receives the state in round r′. Then we
have Ci

p(r, r′). Since link omission is irreversible,
Ci

p(r, r′)must be nonfaulty from round 1 to round r − 1.

Hence, Statep[l1∼r− 1
kp ] must eventually be received by i. That

means Type(HS1 ∼ r− 1
i [lkp])≠Msg-O. Combining Lemma

2, it is easy to get Type(HS1 ∼ r− 1
i [lkp])≠Msg-X. Thus, the

lemma holds. □

Lemma 4. If i is a nonfaulty agent, then Type
(HSr ∼ t+3

i [lkp]) � Msg-O when Type(HSr
i [lkp]) �

Msg-O(k, p ∈ N).

Proof. For a contradiction, let Type(HS
m1
i [lkp])≠

Msg-O(m1 > r) when Type(HSr
i [lkp]) � Msg-O. Suppose

that i receives the state of link
m1
kp in round m2(m2 >m1). Let

us suppose i receives it from k. Then we must have
Ci

k(m1, m2). Since link omission is irreversible, the message
propagation path is also correct for round r, so that i must
receive Statek[lrkp] and then Type(HSr

i [lkp])≠Msg-O.
Therefore, we have a contradiction here and the lemma
holds. □

Lemma 5. A nonfaulty agent must have correct links with at
least n − t − 1 agents other than itself in a round.

Proof. We can know that for a nonfaulty agent i, |losti| must
be less than or equal to t. So it is easy to get that i have correct
links with at least n − t − 1 agents. □

Lemma 6. A nonfaulty agent must have correct links with at
least 2 good agents other than itself in a round.

Proof. We analyze the nonfaulty agent i from two aspects of
good agent and risk agent.

(i) Case 1. i is a good agent. Then i must have correct
links with all other n − t − 1 good agents. Since
n> 2t + 1 and n≥ 3, there must be n − t − 1≥ 2.

(ii) Case 2. i is a risk agent. Suppose that i is nonfaulty in
round r and there are f faulty agents in this round.
Because it must remove faulty agents when com-
puting the state of i, combining Lemma 5, the risk
agent i needs to have correct links with at least (n −

t − 1) − (t − f − 1) � n − 2t + f good agents in
round r. Since n − 2t> 1, n − 2t + f>f + 1. Then
n − 2t + f≥ 2 always holds.

Therefore, the lemma holds. □

Remark 1. For a faulty agent f in round r, since it has faulty
links with more than t agents in round r, then it does not
send messages to any agents after at most 2 rounds. Hence,
we claim that in round r and later, the faulty agent f needs to
be removed when computing the number of connections of
other agents.

Lemma 7. Suppose that the direct link state information of
j in round r can be agreed by all nonfaulty agents in round m.
If i is a nonfaulty agent in round m and agent j is considered
to be a uncertain agent in HSr

i , then j must be a faulty agent
in HSr+1

i .
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Proof. The proof argument is by contradiction. Assume that
j is considered to be a nonfaulty agent or a uncertain agent
in HSr+1

i .

(i) Case 1. j is a nonfaulty agent in HSr+1
i when it is

considered to be a uncertain agent in HSr
i . j must

send NSr
j to at least 2 good agents in round r + 1

(Lemma 6). Then these good agents send the direct
link states of j to all nonfaulty agents. Hence, j must
be a certain agent in HSr

i . A contradiction.
(ii) Case 2. j is a uncertain agent in HSr+1

i when it is
considered to be a uncertain agent in HSr

i . It is easy
to see that the link states between j and good agents
cannot be unknown-state in round r and r + 1. Since
the number of good agents n − t must be greater than
t, j cannot have faulty links with all good agents.
Then it must send NSr

j to some good agents in round
r + 1. Equally, j must be a certain agent in HSr

i . A
contradiction.

Thus, we reach contradictions in all cases, which proves
the lemma. □

Lemma 8. If round r is a clean round, the state of lr− 1
ij can

reach a consensus by all nonfaulty agents in round r + 2,
where i, j ∈ Nfr− 1 and j≠ i.

Proof. We can pay attention to the state of lr− 1
ij . Consider the

following cases:

(i) Case 1. i and j are good agents. By Lemma 6, a risk
agent must have correct links with some good
agents. Hence, i sends Statei[lr− 1

ij ] to all good agents
and risk agents having correct links with i in round
r. And j also does this. In round r all good agents
have two detection results of lr− 1

ij . Then after
updating, they send the uniform state to all risk
agents that have faulty links with i and j in round
r + 1.

(ii) Case 2. i and j are risk agents. i and j send their
detection results of lr− 1

ij to some good agents
(denoted by U) and risk agents in round r. Then two
results are sent to all good agents by the agents in U

in round r + 1. So every good agent knows the
uniform state of lr− 1

ij in round r + 1. Therefore, all
nonfaulty agents reach a consensus on the state in
round r + 2.

(iii) Case 3. i is a good agent and j is a risk agent.
Similarly, it is easy to get that all good agents have
the uniform state of lr− 1

ij in round r + 1 by case 1 and
case 2. So this is what we want. Thus, the lemma
holds. □

Lemma 9. If round r is a clean round, then in the
HSr− 1

i (i ∈ Nfr+2), the state of link lkp (k ∈ Nfr− 1 and
p ∈ N) cannot be Msg − O.

Proof. Assume, without influence, that the messages of p

have no effect on the state of lkp. Since k is a nonfaulty agent,

by Lemma 8, Statek[lr− 1
kp ] is received by all nonfaulty agents

in round r + 2. Hence, i must know the state of lr− 1
kp . The

lemma holds. □

Corollary  . If round r is a reliable round and the total
number of rounds is greater than r + 3, there are not un-
certain agents in round r.

Proof. For a contradiction, let i be a uncertain agent in
round r, by Lemma 7, we have two cases. For both case 1 and
case 2, by Lemma 8, there are contradictions to the as-
sumption. Hence, i must be a faulty agent in HSr+1. The
unknown-state link is regarded as correct link so that i is
regarded as a nonfaulty agent in HSr. Then it is a contra-
diction to the assumption that r is a reliable round.Thus, the
lemma holds. □

Lemma 10. There is at least one clean round in t + 1 rounds.

Proof. Suppose, for a contradiction, that there is no clean
round in t + 1 rounds. Then there must be new faulty agents
added in each round. So there are at least t + 1 faulty agents
in t + 1 rounds. This contradicts the assumption that there
are at most t faulty agents. □

Corollary 3. There are at least two clean rounds in t + 2
rounds.

Corollary 4. In t + 2 rounds, there must be one reliable
round r in which at most one new faulty agent is detected.

Proof. Suppose that there are a clean rounds in t + 2 rounds.
We prove the lemma from two cases:

(i) Case 1. All clean rounds are greater than round 1.
And for a contradiction, two new faulty agents are
detected in each reliable round. Then there are 2a

faulty agents and there are still t − 2a faulty agents
remaining in t + 2 − 2a rounds. It is easy to see that
t + 2 − 2a> t − 2a. Therefore, there must be clean
rounds in the remaining t + 2 − 2a rounds. This
contradicts the assumption that there are a clean
rounds in t + 2 rounds.

(ii) Case 2. Round 1 is a clean round. And for a con-
tradiction, two new faulty agents are detected in each
reliable round. Then there are 2(a − 1) faulty agents
and there are still t − 2a + 2 faulty agents remaining
in t + 2 − 2a + 1 rounds. Since t + 2 − 2a+ 1> t−

2a + 2, there must be clean rounds in the remaining
t + 2 − 2a + 1 rounds, a contradiction.

Thus, we reach a contradiction in every case, which
proves the lemma. □

Lemma 11. In round t + 3, if a faulty agent i ∈ FΔt+3 can
receive messages from at least one good agent, the link states of
the second clean round and all previous rounds can also reach
a consensus among i and all nonfaulty agents.
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Proof. By Corollary 4, from the second clean round y to
round t + 3, there must be a reliable round (suppose the first
is r) in which at most one new faulty agent is detected
because the total number of risk and faulty agents is t − y + 2
and the total number of rounds is t − y + 4. Suppose r + 1 �

y′ which is a clean round. Since FΔt+3 ≠∅, y<y′ < t + 3.
Since no new faulty agents are detected in round y′, risk
agents can only choose 2 in round y′ (see details inTheorem
1). Hence, in round y′ + 1, all good agents reach a consensus
on the link states HS of round y and before rounds. We
divide y′ into two cases to prove as follows:

(i) Case 1. y<y′ < t + 2. Then we have y′ + 2≤ t + 3. In
round y′ + 2, all good agents send the latest and
uniform link states of round y and before rounds to
all agents. Thus, i must reach a consensus.

(ii) Case 2. y′ � t + 2. We assume that for the reliable
rounds in which two or more faulty agents are de-
tected, the faulty agents can be averaged to the next
round and then the clean round can also be regarded
as a normal round. Then it can be seen that the
number of faulty agents keeps increasing in each
round from round y + 1 to round t + 1.Thus, at least
t + 1 − y faulty agents have been added until round
y′. Since there are xy(≤ t − y + 2) risk agents in
round y, then at most one risk agent remains in
round y′ and it must be i. Then it is easy to get see i

must reach a consensus in round t + 3.

Thus, the lemma holds. □

Theorem  . Consensus solves uniform consensus if at most t

agents omit to send or receive messages, n> 2t + 1, and
suppose that all agents are honest.

Proof. Since n> 2t + 1, it is easy to see that no inconsistency
is detected.

Termination. From Algorithm 1, nonfaulty agents must
decide in round t + 4 and faulty agents decide before round
t + 4.

Validity. Since no inconsistency is detected, all agents make
decisions different from ⊥. For agent i, if i decides a value
decisioni, decisioni must be the initial preference of an agent
in decision setD. Since D depends on HSm∗

i , it must have
D⊆N. Therefore, decisioni satisfies the validity property. If i

decides ‖, i has no decision and ‖ does not affect the final
consensus outcome. Thus, it also conforms to the validity.

Uniform Agreement. We prove this from the following cases:

(i) Case 1. Agents i and j ∈ Nft+4. By Corollary 3, there
must be a decision roundm∗ in t + 3 rounds. And by
Lemma 1, we have HS1 ∼ m∗+1

i � HS1 ∼ m∗+1
j . Then

Di � Dj � D∗. Since the pieces of preferences and
proposals of all the agents in D∗ must be saved by at
least 2 good agents (Lemma 6), all good agents and
some risk agents can restore all initial values and
proposals of the agents in D∗ in round t + 3. We

denote these agents by Nft+4
1 and Nft+4

2 � Nft+4

Nft+4
1 .Thus, all agents in Nft+4

1 have the same set C

and give a unified consensus set containing one
value. That is, if agent u and v ∈ Nft+4

1 , then there
must be consensusu � consensusv � cons{ } and
|consensusu| � |consensusv| � 1 in round t + 3. And
if agent w ∈ Nft+4

2 , consensusw � ∅ in round t + 3.
(ii) Case 2. We analyze the agents in Ft+4. It is easy to see

that Ft+4 � Ft+2 ∪FΔt+3 ∪FΔt+4.

(1) Case 2.1. i ∈ Ft+2. i must decide ‖ at the latest in
the receive phase of round t + 3.

(2) Case 2.2. i ∈ FΔt+3. Suppose that FΔt+31 denotes
the set of faulty agents that can receive the
messages from some good agents in round t + 3
and send messages in round t + 4. Then
FΔt+32 � FΔt+3\FΔt+31 .It is easy to see that the
agents in FΔt+32 definitely do not sendmessages in
round t + 4 and they must decide ‖ in round
t + 3. If i ∈ FΔt+31 , by Lemma 11, Di must be
the same as D∗ of good agents in case 1. Thus, if
i can restore all initial preferences and proposals
in Di, it must have consensusi � cons{ } and
|consensusi| � 1 in round t + 3. Otherwise,
consensusi � ∅ in round t + 3.

(3) Case 2.3. i ∈ FΔt+4. Since i is a nonfaulty agent in
round t + 3, consensusi has the same two pos-
sible states in round t + 3 as in case 1. Suppose
FΔt+4 � FΔt+41 ∪FΔt+42 . FΔt+41 denotes the set of
faulty agents that cannot detect faulty by itself in
the receive phase of round t + 4. FΔt+42 denotes
the set of faulty agents that can detect that they
become faulty agents in the receive phase of
round t + 4. Therefore, the agents in FΔt+41 decide
cons by consensusi and the agents in FΔt+42 decide
‖ in round t + 4.

In summary, consensus set only has two types in round
t + 3 and round t + 4: cons{ } and ∅. The agents in
Nft+4

1 ∪Nft+4
2 ∪FΔt+41 decide cons in round t + 4, the agents

in Ft+2 ∪FΔt+3 decide ‖ before round t + 4, and the agents in
FΔt+42 decide ‖ in round t + 4. Thus, uniform agreement
holds.

To achieve the Nash equilibrium, we make some ap-
propriate assumptions about initial preferences and failure
patterns. Failure pattern represents a set of failures that
occur during an execution of the consensus protocol [12].
Specifically, we assume that initial preferences and failure
patterns are blind. □

Definition 4. The blind initial values mean that each agent
cannot guess the preferences of other agents and the
probability of its own preference becoming the consensus
cannot be improved by trusting others.

By Definition 4, we can get that if an agent wants to
improve its own utility, it can only rely on itself, for ex-
ample, increasing the probability of entering the
decision set and reducing the number of agents in the
decision set and so on.
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Definition 5. The blind failure patterns mean that before t

faulty agents appear, an agent cannot guess the link states in
the following rounds. Then we have that

(i) If agent i does not know the link states of round m in
round r and j is a nonfaulty agent in round r,
thenP(i ∈ FΔm|linkij is faulty) �

P(j ∈ FΔm|linkij is faulty)≤ α.
(ii) For round m1 and m2, if m1 <m2 and i does not

know the link states of round m2, then
P(vibecomesconsensus|m1isthedecisionround)
�P(vibecomesconsensus|m2 is the decision round).

(iii) For t + 1 rounds, if the link states of each round in
t + 1 rounds are unknown to agent i, then for a
round r in t + 1 rounds,P(r is a clean round)≥ 1/
(t + 1).

Theorem 3. If n> 2t + 1, at most t agents have omission
failures at the same time, agents prefer consensus, and failure
patterns and initial preferences are blind, then σ→CONSENSUS is
a Nash equilibrium.

Proof. To prove Nash equilibrium, we need to show that it is
impossible for each agent i ∈ N to increase its utility ui with
all possible deviations σi. That is, proving that for each agent
i, there must be

ui σCONSENSUSi , σCONSENSUS− i ≥ ui σi, σ
CONSENSUS
− i . (1)

We use the same deduction method as in [12]. Consider
all the ways that i can deviate from the protocol to affect the
outcome as follows:

(1) i generates a different value vi
′ ≠ vi (or proposali′ ≠

proposali) and sends qi
′(j) (or bi

′(j)) to some agents
j≠ i.

(2) qi(j) (or bi(j)) sent by i cannot restore vi (or
proposali).

(3) i does not choose randomi or X-randomi or
proposali appropriately, such as not randomly.

(4) i sends an incorrectly formatted message to j≠ i in
round m.

(5) If |losti|> t in round m, i does not decide ‖, but
continues to execute the following protocol.

(6) i lies about the state of lkp in round m; that is, in
round m, i sends a state of lkp which is different
from NSm− 1

i [lkp].
(7) i sends an incorrect random or X-random of lkp to j

in round m.
(8) i sends an incorrect ql(i) (or bl(i)) to j≠ l different

from the ql(i) (or bl(i)) that i has received from l in
round 1.

(9) i sends an incorrect consensusi to j≠ i in round
t + 4.

(10) i pretends to crash in round m.

We consider these deviations one by one and prove that i

does not gain by any of deviations.That is, equation (1) holds if
i deviates from the protocol by these deviations on the list
above.

(i) Type 1. (i) If i sends qi
′(j) to some agents, then

either an inconsistency is detected because of se-
cret restoring error, or i does not gain. Specifically,
if i is the agent whose value is chosen, then i is
worse off if it lies than it does not, since some
agents cannot restore vi, but they can restore it
when following the protocol. Then if i is not the
agent whose preference is chosen, then it does not
affect the outcome. (ii) i sends bi

′(j). Then an in-
consistency is detected if restoring polynomial
error or generating different consensus values in
the system. And if no inconsistency is detected,
then either all agents that receive bi or bi

′ are faulty
or both bi and bi

′ do not affect the final outcome.
Since changing the proposal cannot increase i’s
utility, i does not gain.Therefore, both (i) and (ii), i

does at least as well if i uses the strategy
σCONSENSUSi , as it deviates from the protocol
according to type 1. So, equation (1) holds.

(ii) Type 2. It is easy to see that either an inconsistency
is detected or no benefit because there is no in-
crease in the probability that vi becomes the
consensus. Thus, equation (1) holds.

(iii) Type 3. (i) Since other agents follow the protocol, it
does not affect the final outcome because the two
kinds of random numbers are only used for ver-
ification. (ii) Since i does not know the proposals of
other agents in round 1, then using different
proposals cannot improve the probability that vi

becomes the consensus. Thus, equation (1) holds.
(iv) Type 4. If i sends an incorrectly formatted message

to j, then either an inconsistency is detected by j or
it does not affect the outcome since j omits to
receive messages from i in round m. Thus, i does
not gain, so equation (1) holds.

(v) Type 5. Since |losti|> t, i does not receive messages
from at least t + 1 agents in round m, that is, i has
receiving omission failures with at least two good
agents.

(1) Case 1. i does not guess message random
numbers in round m + 1. Then by Claim 1, an
inconsistency is detected.

(2) Case 2. i guesses the message random number
in round m + 1 and has correct links with the
remaining n − t − 2 agents, and these agents
are all nonfaulty agents. Then by the Claim 1, i

can successfully send messages in round m + 1
iff i can guess a message random number
randomm

j from a nonfaulty agent j and i has no
sending omission failures with j. That is, the
random guessing does not change the detec-
tion result of the state of i by other agents in
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round m. Clearly the probability that i can
guess a random number is 1/n.

(a) Case 2.1. If i guesses some random num-
bers from agents j and has sending
omission failures with each agent j, then it
does not affect the outcome even if the
random numbers are correct guesses.

(b) Case 2.2. Suppose that i guesses only one
random number from the good agent j in a
round and i does not have sending omis-
sion failures with j. If i only guesses the
message random number in round m + 1,
then we have that

ui σi, σ
CONSENSUS
− i ≤

1
n

P(the decision round is inm + 1 rounds)
1

|D|
β0 + c1β1 + c2β2. (2)

Thus,

ui σi, σ
CONSENSUS
− i ≤

1
n

×
1

n − t + 1
β0 + c1β1 + c2β2, (3)

which means that i only guesses one ran-
dom number in round m + 1 and then i

must be in decision setD(|D|≥ |G| �

n − t). Since i ∈ D, there are at least n − t +

1 agents in D. It is easy to see that if i

guesses random numbers in multiple
rounds, the utility must be less than (3). If i

follows the protocol, then imust decide ‖ in
round m. Since i has receiving omission
failures in round m, the link states after
round m − 1 must be unknown to i. Thus,
by Definition 1 and the assumptions about
omission failures, we can get that

P(roundm − 1orm is a clean round)≥
1

t + 1
.

(4)

Then

ui σCONSENSUS ≥
1

t + 1
×

1
|D|m− 2

β0 + c
cβ1. (5)

Since n> 2t + 1, (1) must hold.
(c) Case 2.3. If i guesses more than one

random numbers in round m + 1, then
the utility of i must be less than (3). And i

does at least well by following the pro-
tocol as the deviation because the
guessing work does not affect the state of i

in round m. Specifically, either if i is a
nonfaulty agent detected by other agents,
then (5) holds, or if i is a faulty agent,
then it does not affect the outcome even if
i guesses the random correctly. Thus, (1)
holds.

(3) Case 3. If i has sending omission failures with
the remaining n − t − 2 agents, then either no
benefit since i is faulty in round m detected by
other agents, or i does not gain if i is nonfaulty

because the utility of deviating from the pro-
tocol must be less than (3).

In summary, either an inconsistency is detected by
Claim 1 if i does not guess the message random
numbers, or no benefit from guessing the message
random numbers. Thus, yet again, (1) holds.

(vi) Type 6. By the proof of Type 5, it is easy to see that i

must be a nonfaulty agent detected by i itself in
round m − 1. Since there is more than one state of a
link, we partition this deviation into eight cases
and show that i does at least well by using
σCONSENSUSi as it deviates from the protocol by these
eight deviations.

(1) Case 1. k or p � i, such as k � i, and Type
(NSm− 1

i [lrkp]) � Msg-R where r≤m − 1, and i

pretends Type(Statei[lrkp]) � Msg-X in round
m.

(a) Case 1.1. r<m − 1. Then Statei[lrkp] must
be sent in round r + 1 in order to enable
message chain mechanism to succeed.
Since r + 1<m, an inconsistency must be
detected in round m.

(b) Case 1.2. r � m − 1 and r is the
decision roundm∗. Since i does not know
the link states of round m − 1 in the
sending phase of round m, by Definition 1,
if p is a nonfaulty agent in round m, then
P(i ∈ FΔm− 1|i pretends linkipis faulty) �

P(p ∈ FΔm− 1|i pretends linkip is faulty)≤
α. Suppose that the decision set in round r

is D when following the protocol. We can
see that |D|≥ 3. (i) If all agents become
faulty due to the deviation of i, then there is
no consensus in the system and i does not
gain. (ii) If the deviation does not cause no
solution and p is a nonfaulty agent in
round m − 1, then we have that&ecmath;
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ui σi, σ
CONSENSUS
− i ≤ α(1 − α)

1
|D| − 1

β0 + α(1 − α)
|D| − 2
|D| − 1

β1 + (1 − α)
2 1
|D|

β0 + (1 − α)
2|D| − 1

|D|
β1 + αβ1.

(6)

That is,

ui σi, σ
CONSENSUS
− i ≤

(1 − α)(|D| − 1 + α)

(|D| − 1)|D|
β0 + α(1 − α)

|D| − 2
|D| − 1

+ (1 − α)
2|D| − 1

|D|
+ α β1.

(7)

It is easy to get that

ui σCONSENSUS  �
1

|D|
β0 +

|D| − 1
|D|

β1. (8)

If α � 0, then (1 − α)(|D| − 1 + α) in (7)
takes its supremum |D| − 1. Hence, there
must be equation (1). (iii) If p is a faulty
agent in round m − 1, then the deviation
does not affect the outcome. Thus, cases
(i),(ii), and (iii) hold equation (1).

(c) Case 1.3. r � m − 1 and r � m∗ + 1. Since
the link states of next reliable round are
unknown to i, either there is no solution
since all agents become faulty; the devia-
tion of i does not affect the final outcome;
or by Definition 1, i does at least well by
using σCONSENSUSi as it deviates from the
protocol because the probability that vi

becomes consensus does not increase.
Thus, equation (1) holds.

(d) Case 1.4. r � m − 1 and r≠m∗ and
r≠m∗ + 1. Either there is no solution since
all agents become faulty or there is no
benefit because it does not affect the
decision round.

In summary, all cases in case 1 cannot make i

gain.
(2) Case 2. k or p � i, such as k � i, and

Type(NSm− 1
i [lrkp]) � Msg-X where r≤m − 1,

and i pretends Type(Statei[lrkp]) � Msg-R in
round m. If r < m-1, i does not gain, which is
the same as that in case 1.1. If r ≤ m − 1, i does
not gain, which is the same as that in case 1.1. If
r � m − 1, since i is nonfaulty in round m − 1
and i does not know the link states of round
m − 1, then by Definition 1, there is no benefit
in guessing the message random number with
the probability 1/n. So equation (1) holds.

(3) Case 3.k and p≠ i, and Type(NSm− 1
i [lrkp]) �

Msg-R or Msg − O, and i pretends
Type(State[lrkp]) � Msg-X in round m. Sup-
pose i lies about the detection result Statek[lrkp]

of k. (i) If k is faulty in round r, it does not
affect the final outcome even if no inconsis-
tency is detected. (ii) If k is nonfaulty in round
r, then k must send the faulty random numbers

X-randomr
kto at least two good agents (Lemma

6). And i guesses a faulty random number with
the probability 1/2. If it does not affect the
states of k and p, then i does not gain even if
guessing the random correctly. Otherwise, if
the decision round is changed, then

ui σi, σ
CONSENSUS
− i ≤

1
2

×
1

n − t
β0 +

1
2

×
n − t − 1

n − t
β1 +

1
2
β2.

(9)

And since i is nonfaulty in round m − 1, then

ui σCONSENSUS ≥
1
n
β0 +

n − 1
n

β1. (10)

By the definition of n> 2t + 1, equation (1)
holds. So equation (1) holds both in (i) and (ii).

(4) Case 4. k and p≠ i, and Type(NSm− 1
i [lrkp]) �

Msg-X or Msg-O, and i pretends
Type(State[lrkp]) � Msg-R in round m. We
also suppose that i lies about the detection
result State[lrkp] of k. (i) If
Type(NSm− 1

i [lrkp]) � Msg-O, then it does not
affect the final outcome even if i guesses the
random correctly, since Msg-R and Msg-O
have the same meaning when computing the
state of an agent. (ii) If
Type(NSm− 1

i [lrkp]) � Msg-X, then either an
inconsistency is detected by message random
number verification or link state conflict; it
does not affect the outcome if the states of k

and p are unchanged after deviating; or it
makes round r a clean round. Then if there is
already a decision round r∗ and r∗ ≤ r − 1, it
does not affect the outcome because we need
the first reliable round finally. And if r∗ > r − 1,
then the utility of i decreases because
decision round is advanced compared to fol-
lowing the protocol. If there is no
decision round, by Definition 1, i does at least
well by using σCONSENSUSi as it deviates from the
protocol. Hence, equation (1) holds again.

(5) Case 5. k or p � i, and Type(NSm− 1
i [lrkp]) �

Msg-R or Msg-X where r≤m − 1, and
ipretendsType(Statei[lrkp]) � Msg − O in
round m. By Claim 1, an inconsistency is
detected. Thus, equation (1) holds.
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(6) Case 6. k and p≠ i, and Type(NSm− 1
i [lrkp]) �

Msg − X or Msg-R, and i pretends
Type(State[lrkp]) � Msg-O in round m. Since
Msg − R and Msg-O have the same meaning
when computing the state of an agent, there is
no benefit, which is the same as that in case 4.

(7) Case 7. k and p≠ i, and Type(NSm− 1
i [lrkp]) �

X(r), and i pretends Type(State[lrkp]) � X(r −

1) in round m. We can turn this case into case 3
because the type of NSm− 1

i [lr− 1
kp ] must be

Msg − R. So it has the same result as that in
case 3. Thus, yet again, equation (1) holds.

(8) Case 8. k or p � i, such as k � i, and Type
(NSm− 1

i [lrkp]) � Msg-R where r≤m − 3, and i

receivesType(Statep[lrkp]) � Msg-X, and i

pretendsType(Statep[lrkp]) � Msg-O or
Msg-R in round m. (i) If p is a nonfaulty agent
in round r + 1, then it must sendStatep[lrkp] to
at least two good agents except i in round r + 1.
Thus, all nonfaulty agents must know
Statep[lrkp] in round m, so that i does not gain.
(ii) If p is faulty in round r + 1, then since i is
nonfaulty in round m − 1, i is also a nonfaulty
agent in round r even if the link between i and
p is faulty. Thus, the results are the same as
those in case 4 and case 6. Therefore, equation
(1) holds both (i) and (ii).

In summary, in any case, i’s utility is at least as high
with σCONSENSUSi (σi, σCONSENSUS− i ) as with
ui(σi, σCONSENSUS− i ).

(vii) Type 7. Since the random numbers are only used in
inconsistency detection, either j detects an in-
consistency and decides ⊥ or it does not affect the
final outcome if no inconsistency is detected. Thus,
equation (1) holds.

(viii) Type 8. It is easy to see that either an inconsistency
is detected due to consensus difference or re-
storing secret faulty; it does not affect the outcome
if l ∉ D or l is not the agent whose preference is
chosen; or i does not gain due to the blind initial
preferences by Definition 1 and the random
agents’ proposals.

(ix) Type 9. Clearly it does not affect the outcome if
j decides ‖ in the receiving phase of round t + 4
or j does not receive the messages from i. Oth-
erwise, j must receive the messages from at least
two good agents in last round. Then j detects an
inconsistency and decides⊥. So equation (1) holds.

(x) Type 10. We divide this type into two cases to
prove.

(1) Case 1. There is no consensus in the system.
This case happens when either all agents
become faulty due to the deviation, or re-
storing secret faulty in round t + 3 for all
good agents because of the missing pieces ofi.
Thus, i’s utility with pretending to crash is

lower than with following the protocol in
case 1.

(2) Case 2. There is a consensus finally. (i) m≤m∗.
Since i does not send messages to any agents
before decision round,i cannot exist in decision
set D. Thus, i’s utility also decreases when
pretending the protocol. (ii) m>m∗. It does
not affect the outcome. Therefore, (1) holds
both in cases 1 and 2.

Finally, concluding the proof. □

5. Conclusion

In this paper, we introduce game theory as an interpretable
method for studying the algorithms in multiagent system
and provide an algorithm for uniform consensus that is
resilient to both omission failures and strategic manipula-
tions. We prove that our uniform consensus is a Nash
equilibrium as long as n> 2t + 1, and failure patterns and
initial preferences are blind. Additionally, we present the
theory of message passing in presence of process omission
failures. We argue that our research enriches the theory of
fault-tolerant distributed computing and strengthens the
interpretable reliability of consensus with omission failures
from the perspective of game theory. And our contribution
provides a theoretical basis for the combination of dis-
tributed computing and strategic manipulations in omission
failure environments, which we think is an interesting re-
search area.

In our opinion, there are many interesting open prob-
lems and research directions which are not covered in this
paper. We list a few here: (a) whether an algorithm for
rational uniform consensus exists if coalitions are allowed;
(b) the study of rational consensus with more general types
of failures, such as Byzantine failures, is important; (c) with
the problem setting of this paper, whether the rational
consensus exists if we relax the constraint n> 2t + 1; (d)
studying the rational consensus in asynchronous system,
which seems significantly more complicated; and (e) in-
troducing the assumption of agent bounded rationality may
be useful in practical scenarios.
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