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With the development of science and technology, the feature size of CMOS devices will always shrink to the limit.�erefore, some
new nanodevices will eventually become substitutes for microelectronic devices. A new electronic revolution will break out.
Nanoscience and technology is the high-tech frontier technology of the century and one of the main contents of scienti�c
development in the new era. Its development will have a profound impact on other disciplines, industries, and society.
Nanoelectronics is an important part of the discipline of nanoscience and technology, which represents the development trend of
microelectronics and will become the foundation of the next generation of electronic science and technology. With the de-
velopment of ultra-large-scale integrated circuits, the feature size of electronic devices is getting smaller and smaller and has
entered the nanoscale from the microscale. When the size of the system is small enough to be compared with the wavelength of
electrons, the quantum e�ect becomes the dominant current-carrying main factor in child behavior. While these new phenomena
and new e�ects bring challenges to the original semiconductor devices, they also provide opportunities for the development of
new devices. Evolutionary circuit design is based on cellular neural network and quantum-dot cells, designs combinational logic
circuits through the evolutionary algorithm, uses the logic gate based on cellular neural network design as the population gene of
evolutionary circuit design, enriches the diversity of the population, and improves the evolutionary algorithm at the same time, the
success rate of the improved genetic algorithm for evolutionary circuits has been greatly improved, and the failure rate has been
reduced from 14% to 2%, obtaining a faster evolution speed and improving the performance of the evolution circuit.

1. Introduction

In the nineteenth century, scientists discovered silicon ex-
perimentally and then began a wide range of research and
applications, including the preparation of crystalline silicon
and the exploration of its applications. Silicon is a special
material with both metallic and nonmetallic properties, that
is, a semiconductor material in the usual sense. Its discovery
and research play a crucial role in the emergence and
continuous development of integrated circuits. Nanotech-
nology is the science and technology of using atoms or
molecules with a scale of 0.1 to 100 nm to manufacture
substances, and nanoelectronics is the science of studying
nanodevices. At present, due to the characteristics of new
physical theories and unique working methods, nano-
electronics technology has caused extensive research in
academia. �e main purposes of studying nanoelectronics

are to explore more advanced manufacturing technology to
break through the physical size and technical limits of de-
vices under traditional processes and then to prepare new
nanomaterials and nanodevices with brand-new functions
and, similar to traditional circuits, to explore nanodevices
applications in the construction of electronic systems,
thereby greatly improving the level of information storage
and processing in electronic systems. �e di�erent-plane
crossing in the current QCA circuit solves the problem of
signal crosstalk caused by coplanar crossing, but it is quite
di�cult to physically realize the di�erent-plane crossing. At
present, there is no actual experimental result to realize the
di�erent-plane crossing special physical structure. �e ad-
vantages and disadvantages of the evaluation circuit in the
classic circuit can be evaluated by the number of devices,
power consumption, and other evaluation criteria, but the
QCA circuit is still an immature research content, and its
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evaluation criteria have not been unified. At present, there
are only complexity, delay, area, power consumption, and
other factors that determine the merits of this QCA circuit.
Although these evaluation criteria are still very simple, a
comprehensive evaluation of the overall performance of the
circuit has not been made, and large-scale mass production
is still difficult. Among all nanodevice research, QCA is
considered to be the most promising new generation of new
nanoelectronic components [1–8].

2. Related Work

Quantum-dot cellular automata (QCA) were first proposed
in 1993 by Lent et al. Since QCA was proposed, it has re-
ceived extensive attention and research from domestic and
foreign researchers. In the QCA circuit, the core idea of
studying the QCA circuit is to use the special properties and
unique rules of the QCA itself to realize various unit devices
and large-scale circuits in the classical circuit. Different from
the basic logic gates in the classical circuit, QCA mainly
realizes the circuit by the multiple gate, the NOT gate, and
the derivative gate of the multiple gate. Since the two most
typical circuit structures of the NOTgate are fixed, while the
majority gate and the crossover are not fixed, the two
structures are converted into corresponding structures
according to the needs of the circuit structure. At present,
the research on three-input and five-input majority gates is
more extensive, and most of the majority gates used in
circuits are these two structures. For example, Dharmendra
Kumar et al. published in Microelectronics Journal 2016 a
fault-tolerant majority gate that not only occupies a small
area but also has incredible reliability; Sen et al. in the
Journal of 2016 Computational Electronics has published a
majority gate implemented by rotating cells, and the fault
tolerance rate is close to 100% even in the case of a missing
cell. In addition, when reducing circuit complexity, a five-
input majority gate is a better choice. For example, Shadi
Sheikhfaal et al. published a five-input multiple gate with low
energy consumption and low complexity in Microelec-
tronics Journal in 2015, and the use of the five-input multiple
gate to realize the XOR gate can simplify the overall.
)erefore, when a large-scale circuit is realized based on the
exclusive OR gate, the complexity of the circuit is reduced.
Sankit Kassa et al. proposed a five-input majority gate with
the lowest complexity so far in the Journal of Computational
Electronics in 2016 and published the verification of the
physical calculation process.)e above is a demonstration of
the research results of the majority gate of the basic device,
and then the majority of scientific researchers have launched
the research and design of combinational logic circuits; for
example, adders, comparators, subtractors, dividers, and
other circuits have been designed and implemented. In
2006–2008, Huang et al. successively published the design
concept based on orthogonal modules in the Journal of
Electronic Testing-theory and Applications and Proceedings
of the 18th ACM Great Lakes Symposium on VLSI and
realized 2–4 lines decoder, and the fault tolerance perfor-
mance is also theoretically analyzed on this decoder. High-
bit current-carrying adders and multipliers were published

by Cho et al. in 2009, and the advantages compared with the
previous adders and multipliers were analyzed in detail.
Until today, many QCA circuits designed using quantum
cellular automata have been theoretically confirmed and
experimentally tested. QCA circuit design has also become a
key research branch of nanoelectronics, and many classic
circuits such as adders, multipliers, and flip-flops have been
transplanted into QCA circuits. )roughout the develop-
ment of nanoelectronics technology, its technological de-
velopment is based on novel physical theories and guided by
the most advanced process technology. )e development of
electronic technology needs to break through the bottleneck
of traditional physical size and technical limits, develop the
structural potential of substances, and develop nanodevices
with brand-new concepts. According to the current devel-
opment of nanoelectronic technology, there are two main
research approaches for nanoelectronic devices: one is new
nanoelectronic devices such as resonant tunnel diodes,
single-electron transistors, carbon nanotubes, and quantum
cellular automata.)e second is the assembly of molecules to
form devices with certain functions, such as organic thin
films and transparent oxide thin-film transistors. Although
there has been a lot of progress in the design and research of
QCA circuits in recent years, there are still many problems,
such as the degradation of the stability of the QCA circuit
caused by the coplanar cross-linking of the lines and the
division of clock regions in the QCA circuit. Although there
are still many problems, quantum cellular automata are still
considered to be one of the next-generation electronic
components with the most potential to replace CMOS
technology [9–15].

3. Related Theoretical Methods

3.1. Cellular Neural Network. )e structure of the cellular
neural network is similar to cellular automata, each neuron
is only connected to its surrounding neurons, and infor-
mation can be directly transmitted between adjacent cells.
)ey are not directly connected but can influence each other
indirectly. )e figure shows a two-dimensional cellular
neural network. In theory, we can define cellular neural
networks of any dimension but usually focus on the two-
dimensional case and its application in image processing, as
shown in Figure 1 [16].

For example, an M×N cellular neural network has
M×N neurons, arranged inM rows and N columns; we can
express the neurons in the i-th row and the j-th column as
cell(i, j), abbreviated as C(i, j); the cell neuron in its
neighborhood is defined as

Nr(i,j) � C(k,l)|max |k − i|, |i − j| ≤r,1≤k≤M;1≤l≤N .

(1)

A cellular neural network is a spatial array of locally
coupled cells, each of which is a dynamical system. It consists
of input variables, output variables, and state variables that
change according to some prescribed dynamic laws. To be
precise, it consists of two mathematical elements. (1) It
consists of a spatially discrete collection of continuous
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nonlinear dynamical systems called cells, where each cell is
loaded with information through input variables, initial
states, and thresholds. (2) Each cell is centered on its own
and is connected with all other cells within the radius of the
sphere of influence through a coupling law.

3.2. QCA Cells. )e basic device unit of the QCA circuit is
the cell, and the cell is the basic device of the circuit, so the
basic research on the circuit is the research on the cell. In the
research field of QCA, first of all, from the perspective of the
composition mechanism of the cell, among the currently
known cells, a single cell is usually composed of two or four
or five or six or even eight quantum dots and free electrons,
which is the basic composition of the cell [17]. Furthermore,
from the perspective of circuit operation mechanism, free
electrons tunnel between quantum dots to realize infor-
mation transmission, such as a five-quantum-dot cell, re-
moving the central quantum dot, and the remaining four
quantum dots are composed of four-quantum-dot cells., the
operation mechanism of the two is the same, but the four-
quantum-dot cell is more suitable as the basic cell of the
QCA circuit, and the five-quantum-dot cell is suitable for
calculating the kink energy between quantum dots. Al-
though the above five cell structures look similar in shape,
they have the same structural form, and the common point is
that they all have bistable characteristics, which ensures that
the cell can transmit signals correctly and effectively and
effectively avoid it to solve the problem of signal weakening
and crosstalk.

3.2.1. Four-Quantum-Dot Cell. A standard QCA cell of four
quantum dots is mainly composed of quantum dots, elec-
trons that can move freely in the quantum dots, and a tunnel
structure. But their actual structure depends on the specific
implementation. )e earliest experimental verification was
the cell composed of silicon-based metal semiconductors. In
a standard four-quantum-dot cell, two electrons that move
freely in the quantum dot can be accommodated. However,
due to the high potential barrier height between cells, it is
impossible for electrons to tunnel between cells, and the
range of electron activity is regulated within a cell. Two free
electrons tend to occupy two quantum dots on the diagonal

under the Coulomb interaction.)ere are only two states on
the diagonal in the cell. )ese two states are stable and
unique. )e two states of the cell are the characterization of
the cell in the polarized state; that is, the polarizability P� 1
or P� − 1, respectively, represents the “1” and logical “0” of
binary information, as shown in Figure 2. )is can be
obtained using the polarization calculation formula, such
as equation (1). In the formula, p1 to p4 represent the
potential energy occupied by each quantum dot, respec-
tively [18].

P �
(P1 + P3) − (P2 + P4)

P1 + P2 + P3 + P4
. (2)

3.2.2. Five-Quantum-Dot Cell. In Figure 3, the five-quan-
tum-dot cell has one more quantum dot in the center than
the four-quantum-dot cell, and we number it as 0. In order
to calculate the kink energy between the quantum dots, the
polarity of the cell can be calculated. Since the five-quantum-
dot cell and the four-quantum-dot cell are the same, they
also contain two free electrons. Since there is a quantum dot
in the center of the five-quantum-dot cell, the free electrons
can be transmitted diagonally, thus realizing diagonal
quantum dot tunneling, which is lacking in four-quantum-
dot cells. When there is no external magnetic field or electric
field in the cell, the free electrons are distributed probabi-
listically in the five quantum dots of the cell. When there is
an external magnetic field or electric field, the two free
electrons show a diagonal distribution state in the cell due to
the action of the external force, that is, the two cell polar-
ization states of the above four quantum dots, which is the
polarization of the cell. Its polarity calculation formula is
shown in [19]

P �
(P1 + P3) − (P2 + P4)

P0 + P1 + P2 + P3 + P4
. (3)

3.3. QCA Basic Device Unit

3.3.1. Transmission Line. Transmission lines are indis-
pensable in QCA circuits and play an extremely important
role. )e same or opposite information transmission is
required between devices. )erefore, almost every circuit
must have the participation of transmission lines. )erefore,
the study of transmission lines is also particularly important,
but transmission lines are also relatively simple; it has two
transmission forms, namely, straight transmission line and
angled transmission line, specifically as shown in Figure 4
[20].

When simplifying the circuit and reducing the area
occupied by the circuit, the right-angle transmission line is a
transmission line that must be considered. )e right-angle
transmission line plays a role in the information trans-
mission of the devices in the horizontal and vertical di-
rections. Figure 5 is a schematic diagram of a right-angle
transmission line.

Angled transmission lines are often used in QCA circuits
to connect two devices that are not on the same line.

C (1,1) C (1,2)

C (2,1) C (2,2)

C (3,1) C (3,2)

C (1,3)

C (2,3)

C (3,3)

Figure 1: A 3× 3 CNN structure diagram.
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Figure 4: Transmission line polarization diagrams with different polarity inputs.
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Figure 5: Schematic diagram of the right-angle transmission line.
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Sometimes, the use of angled transmission lines in circuit
design will reduce the circuit area. )e polarity of the cells
does not change during transmission. In addition, fan-out
transmission lines are used when multiplexed signals are
required. Sometimes, an input signal can be used by several
devices, which has to consider the fan-out transmission line,
which serves as an input signal that can transmit the same
signal in different directions at the same time, and the fan-
out transmission line has such a function. In the QCA
circuit, the fan-out transmission line has the following two
structures. Figure 6(a) shows a three-fan-out transmission
line; Figure 6(b) shows a two-fan-out transmission line.

3.3.2. Inverter. )e inverter plays a vital role in the QCA
circuit. Although there are only three structures of the in-
verter, the choice is very flexible when choosing its con-
struction circuit, because it greatly simplifies the complexity
of the QCA circuit degree and area, and the structure of the
circuit tends to be simple. Its structure is shown in Figure 7.
)e following three structures are briefly analyzed.

3.3.3. 0ree-Input Multiple Gate. )e QCA circuit is su-
perior to the classical CMOS circuit. Another reason for the
device is that the QCA circuit can realize the multigate
structure with the least number of cells, which cannot be
achieved in the CMOS circuit. )en, the multigate plays a
very important role in the QCA circuit. It is a very important
logic device in the QCA circuit. Figure 8 is the cell diagram
of the three-input majority gate and the logic diagram of its
classical circuit.

4. Evolutionary Circuit Design Based on
Cellular Neural Network

)e circuit structure of the basic logic function of the cellular
neural network is similar, and the logic function corre-
sponding to different parameters is also different, which
determines the reconfigurability of the cellular circuit. Using
this property combined with the intelligent algorithm can
constitute the two elements of the evolutionary circuit design.
)is paper mainly studies the evolutionary circuit design
based on a cellular neural network and evolves the combi-
national logic circuit by improving the genetic algorithm.

4.1. Evolutionary Circuit Design Algorithm. Traditional cir-
cuit design depends on the knowledge reserve, ability, and
experience of developers and the progressiveness of the design
platform.When a circuit is successfully designed, its hardware
circuit structure is fixed and cannot bemodified. If we want to
design other circuits, we need to rebuild their circuit struc-
ture, which is cumbersome and expensive. )erefore,
Friedman first proposed the idea of studying evolutionary
combinational logic circuits in his paper in the 1950s. He
mainly proposed an idea to evolve a series of control circuit
units through a “selective feedback” similar to the neural
network. In the 1990s, the idea of applying this evolutionary
design to circuits was called evolvable hardware (EHW).

)e application of evolvable hardware enables re-
searchers to deal with the design of more complex circuits
without relying on prior knowledge and evolves design
schemes that researchers cannot think of. Evolvable hard-
ware refers to a system that uses intelligent algorithms, such
as genetic algorithm (GA), evolutionary strategy (ES),
particle swarm optimization algorithms (PSO), and genetic
programming (GP) [30], to automatically design circuits,
including reconfigurable hardware and intelligent algo-
rithms. Evolutionary hardware has a wide range of research
fields, including digital filter design, function level image
filter design, robot controller design, equalizer design,
combinational circuit design, sequential circuit design,
embryonic electronic system design, fault-tolerant system
design, analog circuit design, and polymorphic circuit
design.

Evolvable hardware has two evolution situations. )e
first is to design circuits based on existing electronic com-
ponents, such as basic components (triode, FET, resistance,
inductance, and capacitance) and basic logic gates (and gate,
or gate and not gate). Among them, using logic gate circuit
as population design, the combinatorial logic circuit is called
evolutionary circuit design. )is paper studies evolutionary
circuit design based on the logic gate.

)e second is to find the optimal parameters of the
circuit; for example, the design of a digital filter and equalizer
is to find the optimal parameters fundamentally. For ex-
ample, in the evolutionary design of analog circuits, when
the framework of the circuit has been determined, and the
important goal of its evolution is the parameters corre-
sponding to the components, this goal is also called the
design of evolutionary hardware.

At present, the main problem faced by evolutionary
circuit design is scalability. Scalability is an important reason
why evolvable hardware is difficult to be applied to practical
engineering. It is mainly reflected in that when the input
increases, the evolutionary scale increases and the time spent
increases rapidly. At the same time, evolutionary algebra also
increases rapidly because of the expansion of the scale of the
problem. )erefore, the evolutionary ability decreases ac-
cordingly, so satisfactory results can not be obtained. At
present, there are four main methods to solve the above
problems: optimization of evolutionary algorithm, decom-
position of input problem, improvement of “genotype-
phenotype” mapping relationship, and taking function level
module as the basic construction unit. )e first method and
the third method can partially solve this problem, and the
fourth method has a certain improvement. At present, the
second decomposition method is relatively good, but it
requires too many resources. In general, scalability is a long-
standing problem, which needs further research.

)e evolution of combinational logic circuits using ge-
netic algorithms first came from Louis’ research. He com-
bined the knowledge content of circuits with a genetic
algorithm and used a masked Crossover Genetic operator to
replace the classical crossover operator to optimize the
evolution process. Although it can not completely solve the
design problem of combinational circuits, the results also
opened up a new development direction for researchers.
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)e genetic algorithm is a very important intelligent
algorithm for computer simulation of biological behavior. It
can be used for the optimization of complex systems. It has
the following characteristics:

(1) Genetic algorithm realizes pure mathematical opera-
tion by coding the problem. In particular, for problems
that cannot be expressed by numerical values, the way
of coding processing shows its advantages.

(2) Genetic algorithm only converts the objective
function into a fitness function and then carries out
genetic and mutation operations on the fitness
function without the help of other information and
derivation. On the one hand, it reduces the com-
plexity of the operation; on the other hand, it im-
proves search efficiency.

(3) Genetic algorithm has the characteristics of parallel-
ism. )e traditional optimization algorithm starts
from a certain point for the iterative search. )e
single-point search contains less information; the
search efficiency is low and even easy to fall into local
optimization. )e genetic algorithm starts from the
whole population, which is composed of multiple
individuals rather than a single individual. When the
genetic operator operates on each generation of the
population, it will produce a new generation of
population, and there is an interactive relationship
between individuals in the population. )is infor-
mation can be used by the genetic algorithm.
)erefore, it is equivalent to searching multiple points
at the same time, which speeds up the search speed.

(4) )e probability genetic algorithm is used. )e op-
erations of genetic operators are carried out under a
certain probability, and the mutual transfer between
search points is uncertain, which increases the di-
versity of individuals in the process of algorithm and
avoids being limited to local optimization.

Using the characteristics of the circuit and genetic al-
gorithm, the process of evolutionary circuit design is to en-
code the structure and parameters of the circuit, calculate its
fitness function value, and observe whether the fitness value
meets the requirements. If it meets the requirements, the
process can be ended. Otherwise, according to the fitness
value, carry out a series of operations such as cross mutation
on individuals, and then repeat the above process. If the set
maximum evolutionary algebra is reached in this process, the
algorithm will be terminated. )e coding methods include
direct coding and indirect coding. )is paper adopts indirect
coding, which corresponds to the external evolution method.
When the evolved circuit individual meets the requirements,
the circuit structure corresponding to the coding is restored.

4.2. Improved Genetic Algorithm for Evolutionary Circuit
Design

4.2.1. Improvement of Selection Operator. A selection op-
erator commonly used in basic genetic algorithms is the

roulette selection operator. Due to the large selection error of
the roulette wheel, degeneration sometimes occurs; that is,
individuals with high fitness lose the opportunity to choose,
making it difficult for the algorithm to converge to the
optimal solution. Based on this, some scholars proposed a
multiround roulette selection operator, let M be the pop-
ulation size, the fitness of each individual i is Fi, and the
selection probability calculated according to the fitness of
these M individuals is [0, 1] divided into M intervals, ξ1, ξ2,
. . ., ξM which are M integers, which, respectively, represent
the number of random numbers in these M intervals. )e
algorithm performs multiple rounds of roulette selection.
During the multiround roulette selection process, the
generated M random numbers are used for one round of
selection, and the ξ values of each interval are counted to
obtain ξ1, ξ2, . . ., ξM, and take the maximum ξ value. )e
individual corresponding to the interval is the individual
selected in this round, and the above operation is repeatedM
times to obtain M individuals.

In the above algorithm, the selection of each individual
needs to perform M roulettes, and each generation of in-
dividuals needs to perform M2 roulettes. Although this
method reduces the randomness of the selection, it reduces
the evolution speed.)rough the analysis, it can be seen that
when the differences between individuals are relatively large,
the use of multiple rounds of roulette selection can reduce
the randomness. When the difference between individuals is
relatively small, the advantage of multiround roulette se-
lection is not significant, and since the number of roulette
selections M is unchanged, it will greatly reduce the pop-
ulation evolution speed. )erefore, the number of multi-
round roulette selections can be appropriately reduced to
increase the speed of evolution. Based on the above analysis,
this paper proposes an improved multiround roulette se-
lection operator; that is, the number of roulette rounds in
each round changes with the variability of individuals. )e
specific number of roulettes is determined by the following
formula:

m � M 1 −
Favg

FMAX
   + 1, (4)

where m is the number of roulettes in each generation, M is
the population number, Favg is the average fitness value of
the current generation population, Fmax is the highest fitness
value of the current generation individual, and [ ] means
rounding. )rough this method, the number of roulette
selections can be dynamically adjusted, which increases the
evolution speed while reducing randomness.

4.2.2. Improvement of Crossover Operator. In the basic
crossover operation, individuals in the population use a fixed
crossover probability for the crossover operation. However,
this method of fixing the crossover probability has certain
defects. As the crossover probability increases, the frequency
of gene exchange between individuals also increases.
However, when the crossover probability is too large, the
genes of individuals with high fitness inherited will be more
likely to be destroyed; if the crossover probability is too
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small, the frequency of gene exchange between individuals
will be reduced, and the diversity of the population will be
reduced, which is not conducive to jumping out local op-
timum. In the process of genetic evolution, the population is
always changing, and the fixed crossover probability cannot
adapt to the changing population. )erefore, this paper
proposes a crossover operator that dynamically adjusts the
crossover probability. )e specific adjustment formula (5) of
the crossover probability is

Pc � Pc1 − Pc1 − Pc2(  ×
Favg − Fmin

Fmax − Fmin
 . (5)

In the formula, Pc represents the actual crossover
probability, Pc1 � 0.9, Pc2 � 0.4, Favg represents the average
fitness value of all individuals in the current generation
population, Fmax is the highest fitness value of the current
generation individual, and Fmin is the current generation
individual minimum fitness value degree value. From the
analysis of the formula, it can be seen that when the gap
between the average fitness of the population and the
minimum fitness value is larger, it means that the pop-
ulation as a whole is concentrated near the maximum
fitness value, and there are many excellent individuals. In
crossover probability, when the gap between the average
fitness of the population and the minimum fitness value is
smaller, it means that the population as a whole is con-
centrated near the lowest fitness value. At this time, there
are few excellent individuals, and the crossover probability
should be increased to generate more excellent individuals.
By adopting a crossover operator that dynamically adjusts
the crossover probability, it can tend to generate more
excellent individuals in order to achieve the global
optimum.

4.2.3. Improvement of Mutation Operator. In the basic
mutation operation, individuals in the population use a fixed
mutation probability for mutation operation. However, this
method of fixing the probability of mutation has certain
drawbacks. When the mutation probability is too large, the
excellent individuals in the population are easily destroyed;
when the mutation probability is too small, it is not con-
ducive to jumping out of the local optimum. )erefore, this
paper proposes a mutation operator that dynamically
changes the mutation probability, which is determined by
the following formula:

Pm � Pm1 − Pm1 − Pm2(  ×
F − Fmin

Fmax − Fmin
 . (6)

In the formula, Pm represents the actual mutation
probability, Pm1 � 0.1, Pm2 � 0.001, F represents the fit-
ness of the current individual, Fmax is the highest fitness
value of the current generation individual, and Fmin is
the lowest fitness value of the current generation indi-
vidual. It can be seen from the formula that the larger the
individual fitness is, the smaller the mutation proba-
bility is, and the easier it is for the excellent individual to
be retained; the smaller the individual fitness is, the

larger the mutation probability is, and the easier the
population is to jump out of the local optimum. By using
a mutation operator that dynamically adjusts the mu-
tation probability, the population can be kept from
falling into the local optimum while retaining excellent
individuals, and finally, the global optimum can be
achieved.

4.3. Analysis of Experimental Results. )e Ackley function
is used as the objective function, and the function has a
minimum value, but the genetic algorithm used in this
paper operates on the principle that the larger the fitness
value, the better, so it is necessary to convert the mini-
mum value of the objective function to the maximum
value of the fitness function and, at the same time,
consider the selection. )e operator requires that the
fitness values are all positive numbers, so the fitness
function is selected as

F � 20 − ACKley x1, x2( . (7)

When (x1, x2)� (0, 0), the Ackley function obtains the
minimum value of 0, and the fitness function obtains the
maximum value of 20 at this time. )e value range of x1 and
x2 is [− 10, 10]. At this time, the maximum value of the
Ackley function does not exceed 20. )erefore, the fitness
function takes 20 and the inverse of the function to ensure
that all fitness values are positive numbers. In the genetic
algorithm, the population size is 50, and the terminating
evolutionary generation is 100. In the basic genetic algo-
rithm, the roulette selection method is used as the selection
operator, the single-point crossover is used as the crossover
operator, and the nonuniform mutation is used as the
mutation operator. Select a fixed value of 0.7 for crossover
probability and 0.01 for mutation probability. From this, the
change curve of the fitness function can be obtained as
shown below. In the 100th iteration, x1 � 0.0147,
x2 � − 0.1026, and the corresponding optimal fitness value is
19.4440.

It can be seen from the fitness value curve in Figure 9 that
the basic genetic algorithm is not easy to retain the optimal
individual, the fitness value oscillates obviously, it is easy to
fall into the local optimum, and the convergence accuracy is
poor. )e values of the variables x1 and x2 corresponding to
the fitness function are shown in the following figure. It can
be seen from Figure 10 that there are many value points near
the value (0, 0) range, but they have not converged to one
point. )e center of the circle in the figure is the location of
the optimal value (0, 0). )e nearby values are not com-
pletely concentrated in the circle and are scattered around
the circle so that the optimal value cannot be obtained.
)erefore, it proves the poor convergence of the basic ge-
netic algorithm.

Apply the improved genetic algorithm to the Ackley
function by setting the operator parameters of the genetic
algorithm. Also take the population size as 50 and the
number of termination iterations as 100. )e fitness curve
of the improved genetic algorithm can be obtained as
shown below, in which, at the 100th iteration, x1 = 0.0049,
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x2 = − 0.0049, and the corresponding optimal fitness value is
19.9792.

It can be seen from Figure 11 that in the 20th iteration,
the optimal fitness is already around 19.8. From the
overall change trend of the curve, it can be seen that the
fitness is rapidly approaching the global maximum value
and continues to approach the global maximum value.)e
maximum error is very small. It can be seen that the
improved genetic algorithm has no obvious oscillation,
the global convergence is good, and the speed is fast. It can
jump out of the local optimum and achieve the global
optimum. )e values of the variables x1 and x2 corre-
sponding to the fitness function are shown in Figure 12.
Compared with the basic genetic algorithm, the number of
points shown in the figure is very small. It can be seen that
the convergence speed is fast, near (0, 0), and they are all
in the circles in the figure. )erefore, it can be verified that
the improved genetic algorithm has good convergence
and high precision.

4.3.1. Evolving a One-Bit Full Adder. )e most basic
components of a computer are basic logic gates, bit-by-bit
arithmetic addition operations, and computational storage
units. Among them, addition is the most basic form of
computer operation, and the adder is the most basic
combinational logic circuit, which can be used for binary
subtraction, multiplication, and other operations, and
arithmetic operations in the digital system are all per-
formed by addition. )erefore, a full adder is analyzed and
evolved to verify the superiority of the improved genetic
algorithm.)e experiment uses a 4 × 4 matrix to implement
a one-bit full adder. )e number of populations is 50, and
the maximum number of generations is set to 1000. )e
basic genetic algorithm parameter setting is as follows:
crossover probability is 0.7; mutation probability is 0.01;
improved genetic algorithm parameter setting is dynamic
change.

)rough two genetic algorithms, run 50 times, respec-
tively, the performance of the algorithm is shown in Table 1.
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From Table 1, it can be concluded that the success rate
of the improved genetic algorithm for the evolution circuit
is greatly improved, and the failure rate is reduced from
14% to 2%. It is determined by experiments that the rate
ratio of the basic genetic algorithm and the improved
genetic algorithm is 1 :1.24 under the same number of
iterations. Compared with the basic genetic algorithm, the
optimal convergence algebra of the improved genetic al-
gorithm is reduced by 37.94%, so the overall speed is in-
creased by 23%. )e fitness value curve for one of the
evolutionary processes is shown in the figure. )e analysis
shows that after the basic genetic algorithm reaches the
maximum fitness value of 875, the improved genetic al-
gorithm achieves the maximum fitness value of about 535.
It can be seen that the convergence speed of the improved
genetic algorithm is accelerated.

5. Conclusion

)is paper is based on the evolutionary circuit design of
the cellular neural network. Firstly, the principle of
evolutionary circuit design and its algorithm are
expounded, the performance of the genetic algorithm is
analyzed, and the genetic algorithm is determined as the
algorithm for evolutionary circuit design; then, the three-
input linear distributable function is added as the pop-
ulation gene to improve the diversity of genes and enrich
circuits. )e diversity of evolution improves the effec-
tiveness of the circuit; then, an improved genetic algo-
rithm is proposed, which improves the selection operator,
the crossover operator, and the mutation operator, and
compared with the basic genetic algorithm, the failure rate
of the improved genetic algorithm for the evolutionary
circuit is reduced from 14% to 2%, the optimal conver-
gence algebra is reduced by 37.94%, and the overall speed
is increased by 23%, so as to improve the evolution rate
and the overall performance of the circuit. Finally, the
improved genetic algorithm is used to evolve a one-bit full
adder and two-bit multiplier, and a more simplified circuit
design is obtained.
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