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Technical decision-makings (TDMs) are a vital part of the decision-makings in construction megaprojects, facing high risks
brought by technical complexity, dynamic environment, and subject cognition. Identifying technical decision-making risks
(TDMRs) and exploring their interactions are important in megaproject management. Due to the high complexity of TDMs in
megaprojects, TDMRs are complex and diverse. However, there is a lack of research on exploring the systematic TDMRs in
megaprojects. To address this gap in knowledge, this paper aims to better understand the dynamic complexity of TDMRs in
megaprojects by identifying the risks and exploring their interactions from a dynamic and systematic perspective. Grounded
theory (GT) and system dynamics (SD) were adopted for this research. First, the GT was used to identify TDMRs in megaprojects
and create a conceptual model depicting the relationships among TDMRs. Then, an SD model characterizing the causal structure
of the TDMRs system in megaprojects is developed in both qualitative and quantitative manners. The developed model involves
interrelationships among environmental risks, decision-making process risks, and decision-making execution process risks. After
the validation of the model, a model simulation is conducted to predict the dynamic evolution process of the TDMRs. As a result, a
multilayer risk list consisting of 42 index layer risk indicators, 13 field layer risk indicators, and 3 standard layer risk indicators is
identified. The SD modeling results show that these multilevel TDMRs interact dynamically and have intricate influences on the
total risk level of TDMs in megaprojects. The results of this study could be useful for decision-makers to identify and mitigate
TDMRs in megaprojects.

1. Introduction

Construction megaprojects are characterized by significant
technical complexity that requires multitechnology inte-
grations [1-3]. Hence, substantial technical decision-mak-
ings (TDMs) are required in megaprojects on almost all
management hierarchies [4]. The TDMs refer to the process
of identifying and analyzing key problems, as well as de-
veloping, selecting, and implementing technical schemes to
resolve the problems. Hence, the TDMs include both long-
term technology development strategies and short-term

technology selections [5, 6]. The outcome of a TDM process
is a technical decision-making scheme, consisting of deci-
sion objectives, key variables, measures, and criteria [7]. The
TDMs must be conducted properly to ensure the successful
delivery of megaprojects [2, 7, 8].

Due to the high technical complexity of megaprojects,
TDMs in megaprojects also have higher complexity. The
complexity of TDMs comprises uncertainties and ambigu-
ities (e.g., dynamic environment, ambiguities of decision-
making goals, etc.), as well as the complex interrelationships
among influencing factors in TDM issues (e.g., technical
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complexity relating to the size and multitechnology inte-
gration of the project) [9-12]. Thus, TDMs are generally
exposed to various risks. Technical decision-making risk
(TDMR) is an extension of project risk and decision-making
risk [13, 14]. TDMRs are potential hazards existing in the
process and outcome of TDM, which negatively affect the
TDM quality and project performance. These risks can cause
project cost overruns, delays in delivery, and irreversible
accidents [15-17]. For instance, in the Busan-Geoje Fixed
Link Project, owing to the defective scheme for towing and
mooring, the GINA gasket of standard tunnel element E16
was damaged during construction, resulting in a delay of
three months and huge financial loss for repairing the GINA
gasket [18]. Therefore, effective management of TDMRs in
megaprojects plays an important role in successful decision-
makings. Further, the TDM in megaprojects is an open
environmental system involving multiple subsystems, which
has dynamic and complicated relationships among the
factors, rather than a series of normative and procedural
activities [7, 19]. The dynamic complexity makes TDMRs in
megaprojects highly interrelated, and the risks are trans-
mitted between the internal and external environments of
the system [20]. Many risk accidents in construction
megaprojects occur due to the interactions of multiple risks
rather than a single risk [13]. As such, it is imperative to
examine the dynamic interactions among TDMRs.

Thus far, a few research efforts have been made to study
decision-making risks of megaprojects using both quanti-
tative and qualitative methods, such as optimism-based
decision-making risk model for bridge projects [14], deci-
sion-making risk mitigation in megaprojects [21, 22], and
identifying and assessing specific types of decision-making
risks in megaprojects (i.e., design risks [23, 24], technology
selection risks [25], social risks [26], and bidding risks
[27, 28]). However, the first two kinds of studies were not
focused on TDMR, and the last kind of studies was focused
on only one specific risk belonging to TDMR (i.e., design
risks and technology selection risks). Risks are interrelated
and systematic through causal loops in megaprojects
[28-30]. Negligence in considering such risk interrelations
results in either underestimation or exaggeration of risk
effects [12]. Thus, it is crucial to understand how risks are
generated and how they transmit through their interactions.
It is argued that research is still lacking to explore TDMRs
from a systematic and dynamic perspective considering the
whole process of decision-making-execution-feedback.

To address the aforementioned research gaps, this paper
aims to identify the TDMRs in construction megaprojects
and explore their interactions using the mixed method. The
grounded theory (GT) is employed to identify all TDMRs in
megaprojects, capturing the managers’ perception of
TDMRs in the practice of TDM in megaprojects. A con-
ceptual framework depicting the relationships among these
risks is provided. Then, a system dynamics (SD) model of
TDMRs in megaprojects is constructed to explore the casual
loops among TDMRs and simulate the interactions among
these risks. The contributions of this study lie in two aspects.
First, this study investigates TDMRs and their interactions
systemically and dynamically for the first time to reveal the
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dynamic nature of TDMRs, which deepens the under-
standing of TDM in construction megaprojects and enriches
theories of construction decision-making and risk man-
agement. Second, the identified TDMRs and the simulation
model proposed in this study could be adopted as a tool to
evaluate and control TDMRs dynamically. The rest of this
paper is structured as follows. Section 2 introduces the
related work, followed by research methodology in Section 3.
The results are presented in Section 4, and discussions and
implications are illustrated in Section 5. Lastly, Section 6
summarizes and concludes this study.

2. Literature Review

2.1. Decision-Making Risks in Megaprojects. In recent years,
many scholars have indicated the significance of identifi-
cation and control of the complexity and risks of decision-
makings in megaprojects [29, 30]. For example, Shi et al. [7]
presented a comprehensive framework of decision-making
complexity in megaprojects, which includes six dimensions
which are technical, social, financial, legal, organizational,
and time. Liu et al. [14] proposed an optimism-based de-
cision-making risk model for bridge projects, where explicit
benefits, implicit benefits, construction cost, and operation
cost are considered. To mitigate decision-making risks in
megaprojects, several researchers proposed risk mitigation
strategies via degrading the uncertainty and complexity.
Salet et al. [21] put forward three solutions to reduce the
complexity and uncertainty of megaprojects to mitigate the
decision-making risks, including changing organizational
structure, enhancing organizational learning atmosphere,
and controlling the number of alternative options for de-
cision-makings.

Furthermore, efforts have been made to identify specific
decision-making risks in projects, such as design risks
[23, 24], technology selection risks [25, 31, 32], social risks
[26], investment risks [33], and bidding risks [27, 28]. Al-
though the aforementioned design risks and technology
selection risks belong to TDMRs, each of these existing
studies was focused on only one type of TDMRs. Some
studies also attempted to assess decision-making risks. For
instance, Kurhade and Wankhade [33] proposed a risk
assessment framework for decision-making and identified
four risk categories for infrastructure investment decision-
making, covering political risk, economic risk, social/envi-
ronmental/cultural risk, and technology risk.

Nevertheless, previous studies on decision-making risks
are static without considering the dynamic nature of risks.
Attention is lacking to systematically examine TDMRs in
construction megaprojects considering the whole process of
decision-making. This research gap is addressed in this
paper by eliciting the perceptions of managers on what
create and drive TDMRs and how they interact with each
other by GT.

2.2. Risk Assessment Methods in Megaprojects. Risks can be
interrelated, especially in megaproject [34]. Megaprojects
are characterized by dynamic interactions of multiple
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subsystems, extreme complexity, and technology challenges
[35]. Such dynamic complexity makes the risks in mega-
project a dynamic system, where the risks are highly in-
terrelated [36]. To capture the dynamic nature of risks and
their complex interactions in megaprojects, various risk
analysis methods have been applied, such as interpretative
structure models (ISM) [37], complex network (CN)
[38, 39], social network analysis (SNA) [40], decision-
making trial and evaluation laboratory (DEMATEL) [41],
the analytic network process (ANP) [42], Bayesian network,
and system dynamics (SD) [36, 43-45].

Among these methods, ISM is a qualitative method
aiming to develop the hierarchy structure of the factors with
direct and indirect correlation paths, and the developed
model is influenced by the number of risk factors [37].
Different numbers of risk factors may result in different
hierarchy structure of risk factors. Further, CN, SNA, and
DEMATEL aim to analyze risk factors from the network
perspective, whereas they failed to evaluate risk state in
accordance with the interactions of factors. Meanwhile, ANP
and Bayesian network (BBN) can be used to explore the
interactions among risks and evaluate the risk state quan-
titatively, while they require large amounts of data. Wu et al.
quantify the risk level of a subway station construction using
fuzzy ANP via the synthesis of weight matrices, which re-
quires much more computation for pairwise comparison
between risk factors [46, 47]. BBN performs excellently to
model complex relationships among risks on the bases of the
conditional probabilities of the nodes [48]. However, it can
only deal with discrete functions. In recent years, various
artificial intelligence (AI) methods, such as machine learning
and neural networks, have been utilized to identify, evaluate,
and predict potential risks in constructions qualitatively and
quantitatively [49]. For example, Yaseen et al. [50] developed
an Al model integrating Random Forest classifier and Ge-
netic Algorithm optimization to assess the risk of delay in
construction, which indicated a robust and accuracy result
for project delay risk prediction. Nevertheless, the above-
mentioned risk assessment methods analyzed the relation-
ships of risks based on the topology of the network rather
than a dynamic and holistic description of the variations of
risks. SD developed by Glaser and Strauss [51] is a modeling
method dealing with complex causal relationships among
components of the system [52]. The foundation of SD is the
theory of system thinking, which holds on the view that
everything is connected in a dynamic and complex system
[53]. SD can not only study the dynamic relationships
among risk factors but also simulate risk status during a time
period [54]. Hence, SD has been widely used for megaproject
risk assessment including modeling of the interrelationships
and feedbacks of the risk system. For example, Boateng et al.
[55] implemented SD to model the interactions among
social, technical, economic, environmental, and political
(STEEP) risks considering the complexity and dynamics of
megaprojects. Xue et al. [36] proposed a risk coupling model
based on SD for risk assessment of High-Speed Rail projects
considering the interactions among risks. Wang et al. [56]
developed an SD-based safety risk model that covered or-
ganizational processes and technical systems and

demonstrated the model on an urban metro tunnel project.
To identify and control the system risks of automatic metro,
Zhao et al. [57] proposed an SD-based model embodying
system risks and factors of organizational resource assign-
ment, organizational experience, and avoidance of driver
error to reveal the feedback mechanisms of automatic metro.
In summary, SD can provide a powerful insight in under-
standing the complexity and dynamics of construction risk
systems [54].

However, there have not been studies exploring the
dynamic interactions among TDMRs in construction
megaprojects. In this study, SD will be adopted to model the
dynamics and interactions among TDMREs.

3. Methodology

A research framework based on a mixed method integrating
GT, SD, and Shannon’s entropy was proposed in this study
to identify TDMRs and explore their dynamic interactions,
as shown in Figure 1. Among the three methods, GT is
widely used to identify risks from qualitative data [58], SD is
an effective approach for modeling the dynamic relations
among risks based on mathematical modeling techniques
[59], and Shannon’s entropy method is one of the various
methods for objective weighting measures. GT, along with
qualitative data collection techniques (e.g., case study, in-
terviews, focus groups, etc.) and data analysis techniques
(e.g., opening coding, axial coding, and selective coding), can
be used to develop SD models based on qualitative data [60].
A mixed method is adopted to draw the advantages and
minimize the disadvantages of both qualitative and quan-
titative methods [61-63]. Several studies have successfully
implemented similar mixed methods with GT and SD
[53, 64, 65]. For example, in [53], safety archetypes of
construction workers were identified by GT and the behavior
archetypes of safety involving construction workers were
explored with SD.

Therefore, the mixed method was conducted in this
study as follows. First, GT was employed to identify TDMRs
in megaprojects and develop the conceptual model of these
risks, as explained in Section Grounded theory. Then, an SD
model of TDMRs in megaprojects was built, which involved
qualitative modeling, quantitative modeling, model valida-
tion, and model simulation, as discussed in Section System
dynamics. Further, the parameters involved in SD equations
were determined based on the weights of risk indicators
calculated by Shannon’s entropy, as introduced in Section
Shannon’s entropy. Lastly, a simulation was conducted to
understand the behavior of the system.

3.1. Grounded Theory. This study uses GT to identify
TDMRs and build the conceptual model. GT put forward by
Forrester [52] as a qualitative research method linking
concepts to generate meaningful theories [66], where con-
cepts and their interdependencies are obtained from ana-
lyzing qualitative data (e.g., interview transcripts). GT could
be applied by three approaches, namely, the Straussian
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approach [67], the Glaswegian approach [68], and the
Constructive approach [69].

Compared to other approaches, the Straussian approach
is more prescriptive as it provides systematic procedure for
data analysis including open coding, axial coding, and se-
lective coding [70, 71]. On the other hand, the Glaswegian
approach and the Constructive approach have no clear
guidelines for data analysis. Therefore, the Straussian ap-
proach is adopted in this study to identify TDMRs from real
megaprojects in a systematic way. Following the Straussian
approach, the GT process of this study includes (1) data
collection and (2) data analysis consisting of open coding,
axial coding, and selective coding, as described in the fol-
lowing [67].

3.1.1. Data Collection. Qualitative data were collected based
on a case study so that practical insights could be addressed
to enable changes in practice to occur [72]. A case study can
include either one single case or multiple cases, and there are
different opinions on the required number of cases for
understanding a phenomenon [72, 73]. The case study in this
research was conducted on three megaprojects in China,
namely, the Hong Kong-Zhuhai-Macao Bridge Island
Tunnel Project (HZMBIT), the Foshan West Railway Station
Comprehensive Transportation Hub Project (FWRSCTH),
and the Kunming Comprehensive International Trans-
portation Hub Project (KCITH), to enable generalizations
on the TDMRs. These cases were selected because (1) the
authors had access to the major stakeholders of these

projects, (2) these megaprojects were representative, char-
acterized by multitechnology integrations and high technical
complexity, and (3) these projects were under construction
or completed less than three years during data collection.
The selected cases covered different type of projects (tunnel,
railway, and building), and they were all demonstration
megaprojects jointly developed by national and local gov-
ernments. All the cases had multitechnology decision-
makings along project lifecycle, which made it possible to
collect substantial qualitative data for TDMRs identification.

The case data were collected by semistructured inter-
views and review of technical documents. Semistructured
interviews were conducted with experts from designers,
contractors, consultants, and university partners of the three
megaprojects. According to Bernard and Bernard [74] and
Creswell and Poth [75], interviews with a sample size of 5 to
25 are appropriate for GT studies. In this study, 12 experts
were selected for interviews, and the experts had 8 to 27 years
of experiences in TDMR management in megaprojects, as
shown in Table 1. The selected 12 experts provided mean-
ingful insights that adequately represented the experiences
of construction professionals on TDMR management. The
interview questions were designed to collect relevant data
about TDMRs in megaprojects. The interviewees were asked
to elaborate their understandings on TDMRs, provide ex-
amples of TDMRs according to their working experience,
describe the risk issues, and explain how they deal with risks
in the TDM process. For example, the questions asked in-
cluded (1) what factors drive TDMR events in megaprojects,
and what factors contribute to a TDM failure? (2) Do
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TaBLE 1: The personal particulars of interviewees.

Job title Working experience Involved project
Project manager 17 years KCITH
Project manager 17 years KCITH
Project manager 25 years HZMBIT
Project manager 22 years FWRSCTH
Chief engineer 20 years KCITH
Deputy chief engineer 22 years HZMBIT
Designer 10 years FWRSCTH
Designer 8 years KCITH
Designer 18 years HZMBIT
Consultant 15 years HZMBIT
Consultant 13 years KCITH
Professor 27 years HZMBIT

TDMRs interact with each other and how? And (3) what
happens if a TDMR event happens in megaprojects? Each of
the 12 interviews lasted for 60 to 100 minutes.

In addition to interviews, technical documents of the
three megaprojects were also collected to understand the
TDMREs in these projects. Due to the large amount of TDMs,
the three projects had a large number of technical docu-
ments including result-based documents (i.e., construction
drawing, technical schemes, and contractual documents)
and process-based documents (i.e., safety technical disclo-
sure, environmental checklists and reports, records of
technical scheme assessment meeting of the project). A total
of 63 technical documents were selected as the raw data
including 29 documents from HZMBIT project, 18 docu-
ments from FWRSCTH project, and 16 documents from
KCITH project.

3.1.2. Three-Level Coding. After data collection, all the
collected data were analyzed based on three-level coding,
namely, open coding, axial coding, and selective coding.
Open coding is an analytic process that identifies the con-
cepts and discovers their properties and dimensions through
line-by-line analysis [67]. Hence, in the open coding step, the
original data collected from interviews and technical doc-
uments were examined and coded to find major TDMRs in
megaprojects (i.e., initial codes). Then, axial coding clusters
the identified TDMRs into subcategories (i.e., focalized
codes) and categories based on their properties and di-
mensions. Lastly, selective coding was to detect the rela-
tionships among different categories [67]. Selective coding is
the last step of GT for theory refining and integrating. A
conceptual model linking different categories to reveal their
relationships was built during this step via reviewing the
memos gathered during the analysis and interviews.

3.2. System Dynamics. As presented in Section 2.2, SD is
used in this study to model the interactions among TDMRs
in megaprojects and to reveal how TDMRs interact dy-
namically and how these interactions contribute to the
overall risk. The SD model is developed in the following four
steps. In Step 1 (qualitative modeling), based on the iden-
tified TDMRs and the conceptual model, system analysis is

conducted to draw the system boundary, and the logical
structure of the system is defined with a causal loop diagram.
Then, Step 2 (quantitative modeling) is performed to for-
mulate the relationships among TDMRs with the stock-flow
diagram. Next, Step 3 (model validation) is carried out
through structure validation, behavioral validation, and
sensitivity validation. Lastly, Step 4 (model simulation)
simulates how the system reacts under diverse scenarios.

3.3. Shannon’s Entropy. Shannon’s entropy is capable of
measuring the uncertainty of a random process. It is widely
used to calculate the weight of each risk indicator based on
expert scores [76]. First, the expert scores are normalized
using equations (1) and (2) for the-larger-the-better.
Criteria and the-smaller-the-better criteria are,

respectively:
v - X;; — min (.Xi) ) "
7 max(X;) - min(X;)
max (X;) - X;; 2)

i~ max (X;) — min(X;)’

where X;; is the score of the i"™ expert with regard to the j™
risk indicator (i=1, 2, 3,...,m; j=1,2,3,.. ,n) and Y;; is the
normalization value of each risk indicator.

It is important to note in this paper that since the experts
score based on the importance of each risk indicator, all
scores of indicators are processed following the-larger-the-
better criteria.

Subsequently, the entropy value E; of each risk indicator
is calculated as follows:

1 m
Ej:—m;pijln Pij (3)

where m is the number of experts; p;; = (Y;;/ Y12, Y;). If
pij = 0, lim pij In pij = 0. Then, the weight Wj of each
risk indifafor tan be calculated as

W 1-E j

i= on > (4)
Yia(1-E))

where E is the entropy value of each risk indicator, and 7 is

the number of the indicators.

4. Results

4.1. Identification of TDMRs in Megaprojects. According to
the Project Management Institute (2008), a risk is “an un-
certain event of condition that, if occurs, has a positive or
negative effect on project’s objectives.” Following this def-
inition, all the collected data were examined and TDMRs
were identified through GT-based data analysis. In the open
coding step, by identifying and describing overall constructs
relevant to TDMRs based on the collected data, 97 key
concepts were extracted through line-by-line and sentence-
by-sentence analysis. Then, the 97 key concepts were
summarized as 42 initial codes (A1-A42). Next, the axial



coding step identified connections between the initial codes
and aggregated the initial codes into focalized codes and
categories. As a result, the initial codes were grouped into 13
focalized codes (B1-B13) and further into three categories
(BB1-BB3). Table 2 gives some examples of how the collected
data were coded in open coding and axial coding.

Table 3 shows the coding results of TDMRs including 42
initial codes, 13 focalized codes, and 3 categories. Due to
space limitation, the 97 key concepts are not shown in the
table but can be obtained from the corresponding author
upon request. According to the coding results, TDMRs in
megaprojects are divided into three categories: decision-
making process risk, decision-making execution process
risk, and environmental risk.

Four layers of risk indicators (shown in Table 4) are
established from the coding results including (1) target layer
risk indicator (i.e., the total TDMR in a project), (2) standard
layer risk indicators (i.e., corresponding to three categories),
(3) field layer risk indicators (i.e., corresponding to 13 fo-
calized codes), and (4) index layer risk indicators (i.e.,
corresponding to 42 initial codes). Risk indicators in each
layer are determined by indicators in the lower layers. For
example, Bl is determined by Al to A5, and BBI is de-
termined by B1 to B5.

Decision-making process risk (BB1) represents risks
within the process of identifying and analyzing problem and
developing and choosing the technical solution. This process
involves decision-makers, information, and procedure, and
the outcome is a decision-making scheme. Five field layer
risk indicators are related to BB1 including decision-making
participants risk (B1), decision-making information risk
(B2), procedure risk (B3), decision-making mechanism risk
(B4), and decision-making scheme risk (B5).

Decision-making execution process risk (BB2) refers to
risks associated with the execution process of the final
technical decision-making scheme. Corresponding to the
elements and characteristics of decision-making execution,
executive, premanagement, in-process management, and
technology management are key issues for successful exe-
cution of decision-making. Three field layer risk indicators
are associated with BB2 including management risk (B6),
executive risk (B7), and construction technical risk (BS8).

Environmental risk (BB3) describes risks related to the
external environment of TDM. The environment contains
elements related to society, technology development,
economy, and natural and political environment. Five field
layer risk indicators are correlated to BB3 including tech-
nical environmental risk (B9), economic environmental risk
(B10), natural environmental risk (B11), social risk (B12),
and political environmental risk (B13).

In selective coding, three categories of risk indicators
(BB1-BB3) were linked following a single storyline around
which everything else was draped [77]. A conceptual model
of their relationships was developed with grounded theory,
as shown in Figure 2. The risk lies in the interaction between
the subject and the environment [78]. The TDMR accidents
in megaprojects occur under the joint influence of the en-
vironmental risks, the decision-making process risks, and
the decision-making execution process risks. When
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environmental risks occur, there will be an increased ten-
dency for the risk of the decision-making process and the
risk of decision-making execution process. At the same time,
the decision-making process risks may transmit to the de-
cision-making execution process risks.

4.2. Dynamic Model of TDMRs in Megaprojects

4.2.1. Qualitative Modeling of TDMRs in Megaprojects.
To qualitatively model TDMRs and understand the feedback
loops among TDMRs, a causal loop diagram containing the
three categories and 13 focalized codes of TDMRs is
depicted, as shown in Figure 3. A causal loop diagram aids in
visualizing how TDMRs and variables affect one another by
arrows with positive or negative labels (Bala et al., 2017). The
diagram is created based on the abovementioned coding
results, especially the conceptual model of relationships
among TDMRs in megaprojects, as well as the 12 interviews.
Furthermore, a group interview was conducted with the
abovementioned experts to validate the structure of the
diagram. It is noted that the developed causal loop diagram
aims to reveal the main causal loops among TDMR. Thus,
the index layer risk indicators are not considered in the
causal loop diagram since risk indicators in each layer are
determined by indicators in the lower layers and the index
layer risk indicators are the lowest layer. As presented in
Figure 3, TDMRs interact with each other in 3 ways: (1) by
the process of decision-making (i.e., the risks lie in decision-
making process transmit to the decision-making execution),
(2) by the life cycle of the project (i.e., the TDMRs lie in
previous construction stage transmit to the next construc-
tion stage), and (3) from the external risk to the internal risk
(i.e., environmental risks transmit to decision-making
process and decision-making execution process). The de-
cision-making process risks may transmit to the decision-
making execution process risks. The diagram includes five
balancing loops, which interact with each other.

Loop 1: Decision-making information risk--(+) Deci-
sion-making process risk--(+) Decision-making execution
process risk--(-) Decision-making information risk. This is a
balancing feedback loop meaning that the increase of de-
cision information risk will stimulate the rise of decision-
making process risk, with which decision execution process
risk will grow, and then much attention will be paid to
decreasing the risk of decision-making information risk.
According to Pirzadeh and Lingard [79], technical decision-
makings arise as the result of information exchanges be-
tween projects actors. Information is essential as an input of
the decision-making process [23, 80].

Loop 2: Decision-making scheme risk--(+) Decision-
making process risk--(+) Decision-making execution pro-
cess risk--(-) Decision-making scheme risk. This is a bal-
ancing feedback loop indicating that the increase of
decision-making scheme risk will result in a higher level of
decision-making process risk, and then there will be a higher
risk during the execution process of decision-making, which
will attract more attention and the decision-making scheme
will be checked and improved in turn. Decision-making
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TaBLE 2: Example of coding process in GT.

Collected data

Open coding

Key concepts Initial codes Focalized codes

Axial coding

Categories

Decision-maker lacks experience; the
requirements of owner are beyond our
ability; the chief decision-maker makes
decisions based on their own knowledge,
experience, and rationale, rather than
information from other consulting
subjects, which sometimes is impulsive,

a01 decision-maker lacks
ability and professional
knowledge
a02 the style of decision-
maker is different
a03 the psychological
tendency of decision-makers

Al poor professional
quality of decision-makers

A2 psychological

without enough information. Decision- matters
maker cooperated with the consulting
agency in the past; decision-maker usually
prefers to choose the scheme he is familiar
with rather than the more satisfying one;
sometimes, it is hard to control the quality
of scheme. Decision-making quality may
deviate from the expectations; the
consulting agency failed to provide proper
advice. The lack of good communication
and coordination ability among the
decision-making participants leads to
instability of the decision-making team. It
is hard to coordinate the interests of all
parties.

makers

making

a04 the value preference of
decision-maker is different

a05 decision-making
behavior changes

tendency and value
preference of decision-
makers
BB1 decision-
making process
risk

B1 decision-
making
participants risk

A3 risk of alienation of
decision-makers’
behavior

a06 the advice of experts is
not adopted as expected
a07 the consulting agency

fails to support the decision-

A4 no prominent role of
the decision support layer

a08 unreasonable sharing of
risks among project
participants in decision-

A5 game risk of interest
groups

scheme is the outcome of a decision-making process,
guiding the execution process [7]. Thus, the decision-
making risk could transmit to decision-making execution
process imperceptibly until the risk events happen. For
example, in the HZMBIT project, the rib rubber mound was
initially recommended as the structural design of the arti-
ficial island. However, it is found that the scheme may result
in quality defects, delay, and pollution in execution process.
Therefore, the initial design scheme was replaced by the large
diameter deep inserted steel cylinder scheme, which sped up
the schedule greatly [81].

Loop 3: Decision-making information risk--(+) Deci-
sion-making participants risk--(+) Decision-making process
risk--(+) Decision-making execution process risk--(—) De-
cision-making information risk. This is a balancing feedback
loop including a part of Loop 1. In addition to the infor-
mation shown in Loop 1, Loop 3 also illustrates that the
decision-making participants are more likely to make wrong
decisions with incomplete and inaccurate information,
which will result in a higher risk level of the decision-making
execution process. Then it will provide feedback to improve
the information quality. Research has shown that the
knowledge to make a TDM resides in more than one de-
cision-making participant [82]. TDM arises as the result of
interactions and information exchanges among decision-
making participants [79]. Hence, it is safe to claim that
decision-making participants, such as project managers, play
a pivotal role in successful TDM [83].

Loop 4: Decision-making information risk--(+) Deci-
sion-making scheme risk--(+) Decision-making process
risk--(+) Decision-making execution process risk--(—) De-
cision-making information risk. Loop 5: Decision-making
information risk--(+) Decision-making participants risk--

(+) Decision-making scheme risk--(+) Decision-making
process risk--(+) Decision-making execution process risk--
(-) Decision-making information risk. The balancing Loop 4
and Loop 5 include parts of Loop 1 to Loop 3. Loop 4 and
Loop 5 further explain how risks transmit among decision-
making information, decision-making scheme, and deci-
sion-making participants. The poor quality of decision-
making information makes it more difficult for decision-
making participants to make decision-making schemes [79].
The timely and effective exchange of information among
participants is critical for the development of TDM schemes
[84].

4.2.2. Quantitative Modeling of TDMRs in Megaprojects.
To quantitatively model the interactions among TDMRs, it is
essential to draw the system stock-flow diagram and build
the dynamic equations. Based on the causal loop diagram of
TDMRs in megaprojects as well as the characteristics of
TDMRs in megaprojects, the system stock-flow diagram
with four stock variables, four rate variables, 22 auxiliary
variables, and 33 constant variables is built with three
subsystems, namely, the decision-making process risk
subsystem, environmental risk subsystem, and decision-
making execution process risk subsystem. The meanings of
SD variables in system stock-flow diagram are shown in
Table 5. Arrows connect the four types of variables, indi-
cating either substance or information flow between the two
variables. As shown in Figure 4, a set of variables are in-
volved in each subsystem. (1) Subsystem of decision-making
process risk: decision-making process risk is quantified with
the equations in Table 6. (2) Subsystem of decision-making
execution process risk: decision-making execution process
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TaBLE 3: Coding results of TDMRs including 42 initial codes, 13 focalized codes, and three categories.

Core categories Categories

Focalized codes

Initial codes

BB1 decision-making
process risk

TDMR in
construction
megaprojects

BB2 decision-making
execution process risk

BB3 environmental risk

Bl decision-making
participants risk

B2 decision-making
information risk

B3 procedure risk

B4 decision-making
mechanism risk

B5 decision-making
scheme risk

B6 management risk

B7 executive risk

B8 construction
technical risk

B9 technical
environmental risk
B10 economic
environmental risk

B11 natural
environmental risk

B12 social risk
B13 political
environmental risk

Al poor professional quality of decision-makers; A2
psychological tendency and value preference of decision-
makers; A3 risk of alienation of decision-makers’ behavior;
A4 no prominent role of the decision support layer; A5 game
risk of interest groups
A6 blocked access to information; A7 improper description
of the decision problem; A8 insufficient precision and
accuracy of basic data such as survey and design
A9 incompleteness of decision-making procedures; A10
compliance and legality of project approval procedures
Al1 unreasonable allocation of decision-making power; A12
unreasonable decision-making regulation and system
A13 decision-making method risk; A14 indicators risk for
decision-making scheme comparison; A15 technology
selection risk; A16 scheme design defects; A17 the legal risks
of the scheme
A18 timing risk of plan execution; A19 insufficient member
ability; A20 fuzzy organizational structure and allocation of
rights, responsibilities, and benefits; A21 insufficient
emergency response capability; A22 management system
defects
A23 insufficient professional ability of workers; A24 the
executive’s attitude risk
A25 changes in geological and hydrological conditions at the
construction site; A26 plan change risk; A27 construction
and maintenance risks; A28 the risk of construction
technology, mechanical equipment, and material
A29 different technical standard; A30 technology maturity
risk; A31 technology policy risk
A32 financing difficulty; A33 unfavorable economic
situation
A34 complex hydrological, geological, and meteorological
conditions; A35 natural disasters; A36 regional ecosystem
vulnerability
A37 public opinion risk; A38 social stability risk
A39 government behavior; A40 legal risk; A41 government
policy changes; A42 coup, war

Total 3 13

42

risk is a stock variable, which is influenced by the growth rate
of decision-making execution with equations in Table 6. (3)
Subsystem of environmental risk: environmental risk was
determined by the growth rate of environmental risk with
corresponding equations in Table 6. In terms of system of
technical decision-making risk in megaprojects, technical
decision-making risk is a stock variable and the growth rate
of the technical decision-making risk in megaprojects as
input of stock variable. Further, the growth rate of the
technical decision-making risk in megaprojects was influ-
enced by the decision-making process risk, decision-making
execution process risk, and environmental risk. The rela-
tionships are depicted by equations in Table 6.

The mathematical equations of variables involved in each
subsystem are established based on the stock-flow diagram.
The coefficients of variables in each equation are established
based on the weights of indicators. To determine the weights
of indicators, questionnaires were distributed to seven ex-
perts engaged in megaproject management and risk man-
agement research at universities and practice fields. The

experts included two professors engaged in megaproject risk
management research at universities, two engineering
managers engaged in whole process engineering consulting,
two engineering managers from general construction con-
tracting company, and one engineering manager from
megaproject owner. They provide evaluations of the im-
portance of each risk indicator in the index layer.

The experts were asked to score based on the control-
lability, possibility, and degree of loss of the risk. Responses
are made based on a five-level Likert scale (1-5), where 1
represents lowest importance and 5 represents highest
importance. In general, there are two categories of weighting
methods, namely, subjective weighting methods and ob-
jective weighting methods [63]. Thereinto, subjective
weighting approach is conducted on the basis of decision-
maker’s experiences and judgment, while the objective
weights were calculated via mathematical computation [63].
According to Deng et al. [72], the method with objective
weighting is more applicable when it is difficult to obtain the
reliable subjective weights. In this paper, all the selected
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TaBLE 4: TDMRs in megaprojects.

Target layer risk

Standard layer risk

Field layer risk

Index layer

Definitions

indicator indicators indicators risk indicators
BI decision-making A1, A2, A3, Inal.)l.hty of Tl?M participants to contribute to .the
- . decision-making activities and poor collaboration
participants risk A4, A5
among them
B2 decision-making Inappropriate and inaccurate information, lack of
. . . A6, A7, A8
information risk documents
BB1 dec151on—maklng B3 procedure risk A9, A10 Incomple.ten.ess of procedure, lack of
process risk standardization, and process records
Ba dec1510.n-ma.k1ng All, Al12 Lack of rules and regulations
mechanism risk
b dionmbing 15 Ars, e e o il e TV
scheme risk Al5, Ale, A17 > . p ?
alternative scheme
AlLS. A19 Poor management and supervision in
B6 management risk A20 A)21 A,22 implementation of TDM scheme. Inadequate
- . ’ > coordination and collaboration on-site
TDMR in BB2 decision-making Inadequate experience and qualification of
. execution process risk B7 executive risk A23, A24 .
construction executive
megaprojects B8 construction A25, A26, inferior quality and low safety level of the project,
technical risk A27, A28 due to complex construction
39 technical . A29, A30, A31 The uncertainty and immature of new technology.
environmental risk Industry technology is backward
B10 economic Insufficient supply of capital and requlrefi
. . A32, A33 resources and unfavorable macroeconomic
environmental risk .
situation
Natural disasters, complex geographic and climatic
B11 natural ... . . .
. . . . A34, A35, A36 conditions, and high environmental requirements
BB3 environmental risk  environmental risk . . .
for fragile ecological environment
o The influence of bad public opinion and the
B12 1 A37, A . . .
social risk 37, A38 instability of society caused by TDM scheme
The uncertainty of the project construction caused
B13 political A39, A40, by changes in the host country’s domestic political
environmental risk Ad4l, A42 situation, legal environment, and political relations

with other countries

Technical decision-

S Environmental risk
making risks in

megaprogect . . .
§aprog « Political environmental risk

« Social risk
« Natural environmental risk

« Economic environmental risk
 Technical environmental riskt

—>» Motivation
-—-> Feedback

Risk accidents

Decision-making process risk

Decision-making execution

process risk

« Decision-making participants risk
« Decision-making information risk
« Procedure risk

« Decision-making mechanism risk
« Decision-making scheme risk

\ 4

€ — —

» Management risk
« Executive risk
« Construction technical risk

FiGUre 2: Conceptual model of the relationships among TDMRs in megaprojects.



10 Computational Intelligence and Neuroscience
Technical
environmental risk
Decision-making
/’r Social risk \‘ mechanism risk Procedure risk
Political Environmental risk
environmental risk ———_' . ‘
|I +
\ + / '|| Decision- m11\1ng
rocess risk —
‘g Economic | P
environmental risk ’ /_,.-"' + + Decision-making
Natural Lk J ya o Loop5 4+  schemerisk
environmental ris — ¥
+ / — /
*’ + — Decision-making
L * Decision- making participants risk y
Executive risk - — /
executlon process risk Loopl Loop3 / ;
\ / — Decision-making L U
information risk oop4
Management risk
\ Construction \’“-\\_ -
technical risk T Loop2 o
-_“-H____ __'_/
FIGURe 3: Causal loop diagram of TDMRs in megaprojects.
TaBLE 5: Meanings of SD variables.
Variable Variable type Meaning

Technical decision-making risk in

. Stock
megaprojects L
BBI decision-making process risk LV1 Stock
RV1 Rate variable
. . . . Auxiliary
B1 decision-making participants risk variable
PPQDM Constant
PTVPDM Constant
RADMB Auxllhary
variable
NPRDSL Auxiliary
variable
GRIG Aux.lhary
variable
B2 decision-making information risk Aux.lhary
variable
BAI Aux'lhary
variable
IDDP Auxllhary
variable
IPABD Constant
B3 procedure risk Aux'lhary
variable
IDMP Constant
CLPAP Constant
B4 decision-making mechanism risk Aux'lhary
variable
UADMP Constant
UDMRS Constant
B5 decision-making scheme risk Aux.lhary
variable
DMMR Constant
IRDMSC Constant
TSR Constant

State of technical decision-making risk in megaprojects

State of decision-making process risk
The growth rate of the decision-making process risk

Poor professional quality of decision-makers
Psychological tendency and value preference of decision-makers

Risk of alienation of decision-makers” behavior
No prominent role of the decision support layer

Game risk of interest groups

Blocked access to information

Improper description of the decision problem

Insufficient precision and accuracy of basic data such as survey and design

The incompleteness of decision-making procedures
Compliance and legality of project approval procedures

Unreasonable allocation of decision-making power
Unreasonable decision-making regulation and system

Decision-making method risk
Indicators risk for decision-making scheme comparison
Technology selection risk
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TaBLE 5: Continued.

Variable Variable type Meaning
SDD Constant Scheme design defects
LRTS Constant The legal risks of the scheme
E?é decision-making execution process risk Stock State of decision-making execution process risk
RV2 Rate variable The growth rate of decision-making execution process risk
B6 management risk Aux;hary
variable
TRPE Constant Timing risk of plan execution
IMA Aux.lhary Insufficient member ability
variable
FOSBARRC Constant Fuzzy organizational structure and allocation of rights, responsibilities,
and benefits
IERC Constant Insufficient emergency response capability
MSD Constant Management system defects
B7 executive risk Auxllhary
variable
IPAW Constant Insufficient professional ability of workers
EAR Constant The executive’s attitude risk
B8 construction technical risk Aux‘lhary
variable
CGHCCS Constant Changes in geological and hydrological conditions at the construction site
PCR Aux.lhary Plan change risk
variable
CMR Aux'lllary Construction and maintenance risks
variable
RCTMEM ézﬁliﬁlrey The risk of construction technology, mechanical equipment, and material
BB3 environmental risk LV3 Stock State of environmental risk
RV3 Rate variable The growth rate of environmental risk
B9 technical environmental risk Aux‘lhary
variable
DTS Constant Different technical standard
TMR Constant Technology maturity risk
TPR Constant Technology policy risk
B10 economic environmental risk Aux.lhary
variable
FD Constant Financing difficulty
UES Constant Unfavorable economic situation
B11 natural environmental risk Aux‘lhary
variable
CHGMC Constant Complex hydrological, geological, and meteorological conditions
ND Constant Natural disasters
REV Constant Regional ecosystem vulnerability
B12 social risk Aux‘lhary
variable
POR Constant Public opinion risk
SSR Constant Social stability risk
B13 political environmental risk Aux.lllary
variable
GB Constant Government behavior
LR Constant Legal risk
GPC Constant Government policy changes
CW Constant Coup, war

seven experts have much experience in TDMR management,
and it is hard to quantify the subjective weights of experts.

shown in Table 7, and the mathematical equations of var-
iables are presented in Table 6.

Therefore, the weights of indicators were obtained via ob-
jective weighting method, namely, Shannon’s entropy, as

illustrated in Section 3.3, ignoring the subjective weights of
each expert. The obtained weights of risk indicators are

4.3. Model Validation. Structure validation, behavioral
validation, and sensitivity validation are performed to test
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FIGURE 4: System stock-flow diagram of TDMRs in megaprojects.

the structure of the SD model and observe whether the
model is consistent with the actual situation [85]. In this
study, the structure validation aiming to assess the
structural reliability of the model is conducted via
structure verification test and dimension consistency test.
The variables in the model are extracted from interviews
and technical documents, and their relationships are
confirmed with a structure verification through interviews
with experts. Then, the behavioral validation test is
conducted by running the simulation model for the period
of one month and comparing the simulation results with
the actual field data. The actual field data were collected
from the KCITH project, and the comparison shows that
the simulation model could produce similar results with
the field data.

Furthermore, sensitivity validation is used to analyze
the effects of the alteration of variables on model simu-
lation results and identify critical TDMRs in megaproj-
ects. Taking the decision-making process risk subsystem
as an example, it is found that decision-making process
risk is the most sensitive to psychological tendency and
value preference of decision-makers (PTVPDM), unrea-
sonable allocation of decision-making power (UADMP),
and decision-making method risk (DMMR). The influence
of PTVPDM on the decision-making process risk can be
estimated by changing the initial values of PTVPDM.
When the initial value of PTVPDM varies from 0.4 (run 1)
to 4 (base run) and 40 (run 2), the decision-making
process risk will increase significantly, as shown in
Figure 5.

4.4. Model Simulation

4.4.1. Model Parameters. The model simulation of TDMRs
was conducted based on case study of the KCITH project,
which had an estimated investment of over 900 million USD.
The project started in November 2017 and was expected to
complete in February 2024. The KCITH project was selected
since the TDMs of the project faced a variety of risks such as
foundation pit collapse, impact of COVID-19, and policy
change, due to the high standard of construction, dynamic
external environment, and complex geology and climate
conditions. Besides, the construction process involved many
high-altitude operations and cross-disciplinary activities. At
the time of data collection, the project was under con-
struction and suffered time delays and other various risks in
TDMs both internally and externally. Furthermore, the
simulation results could help project manager to deal with
the TDMRs.

According to the actual construction schedule of the
project, the model simulation period was set to 73 months
and the step length was one month. To determine the initial
values of variables in the model, questionnaire surveys were
conducted with seven experts participating in this project,
including project managers, chief engineer, university ex-
perts, and managers of the project management firm. The
questionnaire consisted of an introduction to the research
aims and an introduction to the meanings of TDMRs and
the scoring rules, which guided the experts to score the risk
indicators according to the actual project situation and their
experiences. Each risk indicator was scored based on a five-
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TaBLE 6: Equations of the variables in the system.

Variable Equation

BAI 0.213 * GRIG, initial value=1

CMR 0.45 * Executive, initial value=3

Construction 0.1126 * CGHCCS+0.2576 * PCR+0.3722 * CMR+0.2576 * RCTMEM
technical risk

Lv2 INTEG (RV2, initial value), initial value =0

Decision-making
information risk
Decision-making
mechanism risk
Decision-making
participants risk
LV1
Decision-making
scheme risk
Economic
environmental risk
LV3

Executive risk
GRIG

IDDP

IMA

Management risk
Natural
environmental risk
NPRDSL

Political
environmental risk
PCR

Procedure risk

R

RADMB
RCTMEM

RV1
RV2

RV3

Social risk

L

Technical
environmental risk

0.1564 * Bai+0.3424 * IDDP+0.2564 * IPABD-0.2448 + LV2
0.5372 * UADMP+0.4628 + UDMRS

0.0785 * PPQDM+0.5196 * PTVPDM+0.0836 * RADMB+0.0825 * NPRDSL+0.2358 * GRIG

INTEG (RV1, initial value), initial value =0
0.0675 * DMMR+0.0675 * IRDMSC+0.1028 * TSR+0.1319 * SDD+0.1352 * LRTS+0.113 * Decision-making
participants risk+0.2057 % LV3+0.1146 * Decision-making information risk+0.0662 * Procedure risk

0.3979 = Political environmental risk+0.2198 * FD+0.6021 * UES

INTEG (RV3, initial value), initial value =0
0.2637 * IPAW+0.4548 + EAR+0.4548 + Management risk
0.5431 * Decision-making mechanism risk, initial =4
0.4876 * PPQDM+0.5124 * NPRDSL, initial value =2
0.4213 * CGHCCS, initial value=3
0.2367 * FOSARRC+0.1427 * MSD+0.3737 * TRPE+0.1273 * IMA+0.1196 * IERC

0.4853 * CHGMC+0.1971 * ND+0.3176 * REV
0.443 * Decision-making mechanism risk+0.322 * Procedure risk, initial value =3
0.1416 * GB+0.2687 * LR+0.1912 * GPC+0 * CW

0.456 * IMA+0.504 * CGHCCS, initial value=5
0.2257 * IDMP+0.5004 * CLPAP+0.2738 * RADMB, initial value =3
0.3023 * LV3+ 0.3319 « LV1+0.3658 =« LV2
0.5431 * Decision-making mechanism risk, initial value =2
0.4332 = Executive risk, initial value =4
0.149 * LV3+0.1928 * Decision-making participants risk+0.1954 # Decision-making information
risk+0.1053 * Procedure risk+0.117 * Decision-making mechanism risk+0.2404 * Decision-making scheme risk
0.2148 * Management risk+0.1272 * Executive risk+0.32 * Construction technical risk+0.1611 * Environmental
risk LV3+0.1769 = LV1

0.1825 = Political environmental risk+0.2224 * Natural environmental risk+ 0.1661 * Economic environmental

risk+0.2028 * Social risk+ 0.2261 * Technical environmental risk

0.2454 * POR+0.4538 * SSR+0.3002 = Political environmental risk

INTEG (R, initial value), initial value =0

0.1954 % DTS+0.3159 * TMR+0.2329 * TPR+ 0.2557 * Political environmental risk

level Likert scale (1-5), where 1 represented very low impact
and 5 represented very high impact. Based on the responses,
the initial value v; of risk indicator i was calculated as the
average score of all experts:

R

Xij> (5)

=

1

J

where x;; was the score given by expert j for risk indicator i
and k was the total number of the expert. The obtained initial
values of all risk indicators required in the technical deci-

sion-making system are shown in Table 8.

4.4.2. Simulation Results. Model simulation was conducted
to evaluate the evolution of the main stock variables (L, LV1,

LV2,and LV3) and rate variables (R, RV1, RV2, and RV3) in
the TDMRs system, as shown in Figure 6. According to line 2
shown in Figure 6(a), the decision-making process risk LV1
increases faster at the beginning of the simulation period but
then increases with a lower rate. The change of LV1 is
consistent with the trend of RV1 (line 2 in Figure 6(b)),
which increases at first and decreases after the 37th month.
Typically, at the early stage of a megaproject, due to the
complexity of the megaproject, decision-making partici-
pants lack sufficient cognition of the technical decision-
making problem as well as the project information, which
contributes to higher decision-making process risk. How-
ever, with the accumulation of decision-making execution
process risk, some risk accidents may happen, which reveal
the problems existing in the decision-making process, and
measures (e.g., personnel adjustment and technical scheme
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TaBLE 7: Weights of risk indicators.

Standard layer risk

Target layer risk indicator o Field layer risk indicators Index layer risk indicators Weight
indicators
Poor professional quality of decision- 0.0785
makers
Psychological tendency and value
- . .. 0.5196
Decision-making preference of decision-makers
participants risk Risk of alienation of decision-makers’ 0.0836
WI11=0.2266 behavior ’
No prominent role of the decision support 0.0825
layer
Game risk of interest groups 0.2358
Blocked access to information 0.2071
Decision-making Improper description of the decision
. . . 0.5858
information risk problem
W12 =0.2297 Insufficient precision and accuracy of basic
. . . 0.2071
Decision-making process data such as survey and design
risk W1=0.3319 The incompleteness of decision-making
. 0.3109
Procedure risk procedures
W13=0.1238 Compliance and legality of project
0.6891
approval procedures
Decision-making Unreasonable a!locatlon of decision- 05372
. . making power
mechanism risk Unreasonable decision-making regulation
W14=01375 2 § reguiation 4 4628
and system
Decision-making method risk 0.1116
Indicators risk for decision-making
.. . . 0.1116
Decision-making scheme scheme comparison
risk W15=0.2825 Technology selection risk 0.3353
Scheme design defects 0.2180
. . The legal risks of the scheme 0.2235
Technical decision- e .
making risk of Timing risk of plan execution 0.3737
. Insufficient member ability 0.1273
megaproject o
. Fuzzy organizational structure and
Management risk . . s
allocation of rights, responsibilities, and  0.2367
W21=0.3244
benefits
Insuflicient emergency response capability 0.1196
. . Management system defects 0.1427
Decision execution process Insufficient professional ability of workers 0.4837
risk W2 =0.3658 Executive risk W22 =0.1921 The executive’s attitude risk 0.5163
Changes in geological and hydrological
. . . 0.1126
conditions at the construction site
Construction technical risk Plan change risk 0.2576
W23 =0.4833 Construction and maintenance risks 0.3722
The risk of construction technology,
. . > 0.2576
mechanical equipment, and material
. . Different technical standard 0.2626
Technical environmental o
risk W31 = 02284 Technology maturity risk 0.4245
o Technology policy risk 0.3129
Economic environmental Financing difficulty 0.3188
risk W32=0.1579 Unfavorable economic situation 0.6812
Complex hydrological, geological, and
. . : o 0.4853
Environmental risk Natural environmental risk meteorological conditions
W33 =0.2246 Natural disasters 0.1971
W3=0.3023 . .1
Regional ecosystem vulnerability 0.3176
L Public opinion risk 0.3507
Social risk W34=0.2048 Social stability risk 0.6493
Government behavior 0.1416
Political environmental risk Legal risk 0.2687
W35=0.1843 Government policy changes 0.1912
Coup, war 0
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FIGURE 5: Sensitivity analysis of PTVPDM on the decision-making process risk.
TaBLE 8: Initial risk values of the technical decision-making system.

Variable Initial value Variable Initial value Variable Initial value
CGHCCS 2 IDMP 4 PTVPDM 3.13
CHGMC 2 IERC 3 REV 1
CLPAP 3 IPABD 2 SDD 2
CwW 0 IPAW 3 SSR 3
DMMR 2 IRDMSC 2 TMR 2
DTS 2 LR 1 TPR 2
EAR 4.23 LRTS 4.3 TRPE 4
FD 1 MSD 2 TSR 3
FOSARRC 2 ND 4 UADMP 3
GB 2 POR 1 UDMRS 3
GPC 5 PPQDM 443 UES 4

Behavior pattern of stock variables

60,000 Dmnl
600 Dmnl
6,000 Dmnl
200 Dmnl

0 Dmnl
0 Dmnl
0 Dmnl
0 Dmnl .

Time (Month)

L: Current 1 1 1 1 1 1 Dmnl

LV1: Current 2 2 2 < 2 2 Dmnl

LV2: Current = - = = = - Dmnl

LV3: Current 4 4 b 4 4 Dmnl
(a)

Behavior pattern of rate variables

2,000 Dmnl
10 Dmnl
200 Dmnl
4 Dmnl

0 Dmnl
0 Dmnl
0 Dmnl
2 Dmnl
0 18 37 55 73
Time (Month)
R:runl 1 1 1 1 1 1 Dmnl
RV1:runl 2 2 2 < 2 2 Dmnl
RV2:runl = - = - = - Dmnl
RV3:runl 4 4 b 4 4 4 Dmnl

(b)

FiGURE 6: Simulation results of (a) stock variables and (b) rate variables.

adjustment) will be taken to lower the decision-making
process risk.

As shown in line 3 in Figure 6(a), the decision-making
execution process risk LV2 is very low in the initial several
months and then increases with an increasing rate from the

9th month till the end. The corresponding rate variable
(RV2) shows a constant increase throughout the period (line
3 in Figure 6(b)). Typically, at the early stage of a mega-
project, many decision-making executions process risks are
not obvious and the total effect of these risks on the project is
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weak. Once the technical decision-making scheme is
implemented, decision-making execution process risk will
keep increasing and the increment rate LV2 also undergoes
sustained growth unless the risks are controlled in time.

Furthermore, according to line 4 in Figures 6(a) and
6(b), the environmental risk LV3 keeps increasing at a fixed
rate during the whole simulation period, which implies that
the environmental risks are constant and not affected by
other categories of risks.

Lastly, the L (technical decision-making risk in mega-
projects) keeps increasing with an increasing rate, as shown
in line 1 in Figures 6(a) and 6(b). The result indicates that the
total risk will keep extending and lead to risk accidents
unless risks are controlled in time. According to Figure 6(a),
L remains very low before the 18th month and begins to
increase faster afterwards, showing a similar trend with LV2.
Hence, it can be inferred that LV2 is one of the most sig-
nificant risk categories. There is also a strong two-way in-
fluence between LV1 and LV2. With the implementation of
the decision-making scheme and the continuous effect of
environmental risks, the decision-making execution process
risks gradually accumulate and emerge, easily triggering risk
accidents. Once the decision-making execution process is at
a high-risk level, many measures will be taken to improve
technical decision-making quality, such as to revise the
decision-making scheme or to improve the quality of de-
cision-making information.

4.4.3. Scenario Analysis. To provide policy implications for
TDMR management in megaprojects, scenario analysis is
conducted. For the purpose of clear illustration, only some
major variables were selected to examine and describe their
effects. First, two scenarios of PTVPDM and ND were se-
lected as examples to conduct single variable analysis,
detecting different effects of two variables on the overall
TDMR in megaprojects. Second, a multivariate scenario
analysis with three variables including PTVPDM, ND, and
IPAW is carried out as an example to approximate to the real
system.

For the single variable analysis of PTVPDM, three dif-
ferent values of PTVPDM are considered including 1 (runl),
4 (base run), and 7 (run2), respectively. As shown in
Figures 7(a)-7(c), the increase of PTVPDM can increase the
values of L, LV1, and LV2, which is in line with the study
finding that risk derives from the interaction between people
and the environment [86]. The personal characteristics of
decision-makers can influence decision-making quality. If
the decision-makers have a high tolerance of risk or have
insufficient experience, the decision-making process and
decision-making execution process may be subject to higher
risks. Meanwhile, according to Figure 7(d), the environ-
mental risk (LV3) does not change with different PTVPDM
values, which is consistent with the characteristics of en-
vironmental risk. The environmental risk subsystem serves
as the driver subsystem to the other two subsystems, and
itself is hardly influenced by the other two subsystems.
Hence, it is suggested that more attention should be paid to
the behavioral risk of decision-makers.
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For the single variable analysis of ND, three different
values of ND, namely, 1 (run 1), 4 (base run), and 7 (run 2),
were tested. As shown in Figures 8(a)-8(d), increase of ND
will result in increases of all stock variables, which is in line
with the influence path of the environment on decision-
makings. The increase of ND, which belongs to the envi-
ronmental risk subsystem, will certainly improve L and LV3,
while LV3 will aggravate LV1 and LV2.

There are various complicated scenarios in the actual
TDMRs system. It is the effect of risk interactions that in-
flates risk levels, which is the reason why this study explores
the TDMRs in megaprojects systematically and dynamically.
The multivariate analysis mainly observes the synthesis of
PTVPDM, ND, and IPAW by setting the values of them as 1
(run 1), 4 (base run), and 7 (run 2). The results (Figure 9)
show that the values of TDMRs are 42119.4 (run 1), 45348.1
(base run), and 48576.8 (run 2), respectively. Compared with
the base run, the value of TDMRs decreases by 7.1% (run 1)
and increases by 7.1% (run 2), respectively. However, under
the scenario analysis of ND, the value of TDMRs decreases
by 4.5% (run 1) and increases by 4.5% (run 2) compared with
the base run, while under the scenario analysis of PTVPDM,
the value of TDMRs decreases by 2.5% (run 1) and increases
by 2.5% (run 2) compared with the base run. This implies
that the increase of the TDMRs is not relying on the ag-
gregate effects of individual parameters but the synthesis
among them. Thus, it is suggested that decision-makers
should fully consider how to mitigate the effect of envi-
ronmental risks in TDM management of megaprojects. The
results demonstrate the complex interactions among mul-
tilevel TDMRs. A combination of measures considering the
comprehensive effects of risks would better control TDMRs
in megaprojects.

5. Discussion and Implications

The main aim of this research is to identify TDMRs and
examine their dynamic interactions. To attain the objective,
a hybrid methodology consisting of GT and SD was
implemented to explore TDMRs in megaprojects, which
combines a qualitative content analysis approach and a
quantitative simulation method. GT is used to elicit TDMRs
in megaprojects from interviews and technical documents at
first. Then an SD model of TDMRs is developed to describe
how these TDMRs are interacting with each other, and the
dynamic interactions among TDMRs are simulated with
different scenarios.

As to the implications, this present research advances
our understanding of TDMRs in megaprojects from a
systematic and dynamic perspective and can serve as a
decision-making management tool for the decision-makers
in the following aspects. First, the identified list of TDMRs
could be used to evaluate the overall risk level of TDM in
megaprojects, which have both theoretical and practical
contributions. Second, the SD model representing the in-
teractions among multilevel risks of TDM shows that there
are homogeneous and heterogeneous interactions within
and among the environmental risk, decision-making process
risk, and decision-making execution process risk
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Scenario analysis of ND: LV2
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Scenario analysis of ND: LV3
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FIGURE 9: The results of the multivariate scenario analysis: (a) curves of L; (b) curves of LV1; (c) curves of LV2; and (d) curves of LV3.

subsystems. This means that these risk transmissions may
aggravate the risk of certain subsystem. Specifically, the
results of scenario analysis show that the overall risk level of
TDM is inclined to be affected by the synthesis effects of risk
interaction rather than the aggregate of individual risks. As
such, multilevel measures considering the synthesis effects

are more effective to mitigate TDMRs in megaprojects. For
example, it is recommended to establish a risk-management-
based TDM process, integrating the iterative risk manage-
ment and TDM process. For each TDM, firstly, identify the
risk factors, then, make a decision-making scheme based on
the risk status, and evaluate the risk level of the final
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technical decision-making scheme and modify it dynami-
cally until the risk level of the scheme is acceptable. Besides, a
flatter organizational structure for decision-making and
multiagent (ie., the government, the owner, designer,
contractor, scientific research institutes, the experts, and
equipment suppliers) collaborative decision-making could
speed up the information exchange efficiency and reduce
risk. In addition, the decision-making information risk,
decision-making scheme risk, and decision-making partic-
ipants risk are three key variables indicated from the five
casual loops, which is in line with studies of Sutrisna and
Goulding [23] and Eweje et al. [80]. Thus, it is necessary to
strictly control the quality of decision-making information
and develop a reasonable comparison and selection process
of alternative schemes. Finally, the simulation model pre-
sented in this paper can be adopted to (1) identify changes of
TDMRs over time, (2) evaluate the effects of different risk
factors on the total TDMR in megaprojects under different
scenarios, and (3) take measures to respond to the project
changes brought by TDMRs.

6. Conclusions and Limitations

The TDMRs in megaprojects and their interactions are
complicated and dynamic, which makes them difficult to
control. In the practice of TDMR management in mega-
projects, project manager’s perceptions of risks may be
different from the identified risks in the literature. Therefore,
exploring the dynamics of TDMRs fitting the practice of
TDM in megaprojects is necessary for both scholars and
project managers to gain a better understanding of the
complexities of TDMRs in megaprojects. In this study, the
TDMRs in megaprojects were identified and a multilayer
risk list was determined based on GT. A total of 42 risk
factors were identified and classified into 13 subcategories
and 3 categories including decision-making process risk,
decision-making execution process risk, and environmental
risk. An SD model that depicted the dynamic interrela-
tionships among multilevel risks of TDM in megaprojects
was built. Rather than exploring single risk’s effect, the
developed SD model presented the risk-increasing synthesis
effects of the interactions among risks.

The results show that the relationships among these
TDMRs are complicated. The decision-making process risk
and decision-making execution process risk are susceptible
to environmental risk, whereas decision-making process risk
will transfer to decision-making execution process and
decision-making execution process risk may influence the
decision-making process in turn. Besides, variables at dif-
ferent levels have varying effects on the total TDMR in
megaprojects and the risk level of each subsystem. Among
these effects, the synthesis effects of the interactions among
risks have a great impact on TDMR in megaprojects.
Therefore, it is suggested that a TDM mechanism driven by
risk assessment should be established for megaprojects,
where only when the risk is in control will the TDM process
proceed. Specifically, decision-making execution process
risk and decision-making process risk are the two most
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important risk categories, which need to be paid more at-
tention to.

This study still has several limitations. Firstly, as GT is a
qualitative method without quantification and there is a
limited amount of original data, the identified TDMRs may
be incomplete or inapplicable to other projects. Secondly,
the mathematical equations and variable values used in the
simulation model are established with from interview data,
only considering the objective of each expert, which may not
be applicable to other projects. Thirdly, the SD model
presented in this paper only depicts the interactions among
TDMRs in megaprojects without considering the risk mit-
igation strategies. Fourth, according to Box et al. [87], at least
50 observations are required to get a useful estimate of the
correlation function, while the data used to simulate the
model are obtained from the experts rather than practical
observation data. Thus, more quantitative indicators and
more objective methods (i.e., TOPSIS model for weighting
the subjective weights and objective weights) determining
the mathematical equations of variables are needed to assess
TDMRs in megaprojects. Furthermore, the KCITH project is
used for both data collection of GT and model simulation,
which may limit the generalizability. Thus, more case studies
are necessary to test the applicability and generalization of
the presented simulation model [88].

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (nos. 71942006 and 71841028) and
China Scholarship Council (no. 202006370278).

References

[1] R.J. Chapman, “A framework for examining the dimensions
and characteristics of complexity inherent within rail
megaprojects,” International Journal of Project Management,
vol. 34, no. 6, pp. 937-956, 2016.

[2] J. Lehtinen, A. Peltokorpi, and K. Artto, “Megaprojects as

organizational platforms and technology platforms for value

creation,” International Journal of Project Management,

vol. 37, no. 1, pp. 43-58, 2019.

B. Cheng, K. Lu, J. Li, H. Chen, X. Luo, and M. Shafique,

“Comprehensive assessment of embodied environmental

impacts of buildings using normalized environmental impact

factors,” Journal of Cleaner Production, vol. 334, Article ID

130083, 2022.

[4] C. Beringer, D. Jonas, and A. Kock, “Behavior of internal
stakeholders in project portfolio management and its impact
on success,” International Journal of Project Management,
vol. 31, no. 6, pp. 830-846, 2013.

[3



20

[5] X. Tang, M. Wang, Q. Wang, and N. Liao, “Research on mega
infrastructure project technology decision-making mecha-
nism with risk controllable,” Modernization of Management,
vol. 40, no. 4, pp. 70-73, 2020.

[6] W. K. M. Brauers, E. K. Zavadskas, F. Peldschus, and
Z. Turskis, “Multi-objective decision-making for road design,”
Transport, vol. 23, no. 3, pp- 183-193, 2008.

[7] Q. Shi, M. Hertogh, M. Bosch-Rekveldt, J. Zhu, and Z. Sheng,
“Exploring decision-making complexity in major infra-
structure projects: a case study from China,” Project Man-
agement Journal, vol. 51, no. 6, pp. 617-632, 2020.

[8] M. Bosch-Rekveldt, Y. Jongkind, H. Mooi, H. Bakker, and
A. Verbraeck, “Grasping project complexity in large engi-
neering projects: the TOE (Technical, Organizational and
Environmental) framework,” International Journal of Project
Management, vol. 29, no. 6, pp. 728-739, 2011.

[9] D. Baccarini, “The concept of project complexity-a review,”
International Journal of Project Management, vol. 14, no. 4,
pp. 201-204, 1996.

[10] A. Nieto-Morote and F. Ruz-Vila, “A fuzzy approach to
construction project risk assessment,” International Journal of
Project Management, vol. 29, pp. 220-231, 2011.

[11] F. Guo, Y. Chang-Richards, S. Wilkinson, and T. C. Li,
“Effects of project governance structures on the management
of risks in major infrastructure projects: a comparative
analysis,” International Journal of Project Management,
vol. 32, no. 5, pp. 815-826, 2014.

[12] W. G. Meyer, “The effect of optimism bias on the decision to
terminate failing projects,” Project Management Journal,
vol. 45, no. 4, pp. 7-20, 2014.

[13] A. Mohammadi and M. Tavakolan, “Modeling the effects of
production pressure on safety performance in construction
projects using system dynamics,” Journal of Safety Research,
vol. 71, pp. 273-284, 2019.

[14] H.Liu, C.Jiang, Y. Liu, M. Hertogh, and X. Lyu, “Optimism
bias evaluation and decision-making risk forecast on
bridge project cost based on reference class forecasting:
evidence from China,” Sustainability, vol. 10, no. 11,
p. 3981, 2018.

[15] J. Y. Wang and H. P. Yuan, “System dynamics approach for
investigating the risk effects on schedule delay in infra-
structure projects,” Journal of Management in Engineering,
vol. 33, 2017.

[16] B. Flyvbjerg, “Over Budget, over Time, over and over Again:
Managing Major Projects,” The Oxford Handbook of Project
Management, Oxford, UK, 2011.

[17] B. N. Flyvbjerg and W. Rothengatter, Megaprojects and Risk:
An Anatomy of Ambition, Cambridge University Press,
Cambridge, UK, 2003.

[18] S. Jeong and J. Kim, “The immersed tunnel and bridges of
busan- geoje fixed Link,” Structural Engineering International,
vol. 22, no. 1, pp. 20-25, 2012.

[19] T. Wang, S. Wang, L. Zhang, Z. Huang, and Y. Li, “A major

infrastructure risk-assessment framework: application to a

cross-sea route project in China,” International Journal of

Project Management, vol. 34, no. 7, pp. 1403-1415, 2016.

C. Fang, F. Marle, E. Zio, and J.-C. Bocquet, “Network theory-

based analysis of risk interactions in large engineering

projects,” Reliability Engineering & System Safety, vol. 106,

pp. 1-10, 2012.

W. Salet, L. Bertolini, and M. Giezen, “Complexity and un-

certainty: problem or asset in decision making of mega in-

frastructure projects?” International Journal of Urban and

Regional Research, vol. 37, no. 6, pp. 1984-2000, 2013.

[20

[21

Computational Intelligence and Neuroscience

[22] M. Giezen, W. Salet, and L. Bertolini, “Adding value to the
decision-making process of mega projects: fostering strategic
ambiguity, redundancy, and resilience,” Transport Policy,
vol. 44, pp. 169-178, 2015.

[23] M. Sutrisna and J. Goulding, “Managing information flow and
design processes to reduce design risks in offsite construction
projects,” Engineering Construction and Architectural Man-
agement, vol. 26, no. 2, pp. 267-284, 2019.

[24] J.-G. Nibbelink, M. Sutrisna, and A. U. Zaman, “Unlocking
the potential of early contractor involvement in reducing
design risks in commercial building refurbishment projects - a
Western Australian perspective,” Architectural Engineering
and Design Management, vol. 13, no. 6, pp. 439-456, 2017.

[25] C. DURA&N, J. Sepulveda, and R. Carrasco, “Determination of
technological risk influences in a port system using
DEMATEL,” Decision Science Letters, vol. 7, pp. 1-12, 2018.

[26] Z.-z. Liu, Z.-w. Zhu, H.-j. Wang, and J. Huang, “Handling
social risks in government-driven mega project: an empirical
case study from West China,” International Journal of Project
Management, vol. 34, no. 2, pp. 202-218, 2016.

[27] Y. Chao, “Projects Bidding Decision Risk Analysis Based on
Multi-Factor Clustering Analysis,” Information Technology
Journal, vol. 12, pp. 6164-6168, 2013.

[28] P. W. Li, “Based on data analysis about risks of bidding
decisions in engineering projects,” in Proceedings of the 2015
7th International Conference on Measuring Technology and
Mechatronics Automation, ICMTMA 2015, pp. 228-231,
Nanchang, China, June 2015.

[29] M. N. Bakht and T. E. El-Diraby, “Synthesis of decision-
making research in construction,” Journal of Construction
Engineering and Management, vol. 141, no. 9, Article ID
04015027, 2015.

[30] Z.Sheng, X.Xue, and S. An, “Constructing Theoretical System
and Discourse System of Mega Infrastructure Construction
Management with Chinese Characteristics,” Management
World, vol. 35, no. 4, pp. 2-16+51+195, 2019.

[31] J. E. Vinnem, “Evaluation of the Norwegian major hazard risk
management approach for offshore installations in the con-
cept selection phase,” ASCE-ASME ] Risk and Uncert in Engrg
Sys Part B Mech Engrg, vol. 1, 2015.

[32] F.Zhao, Y. Xue, Y. Li, and H. Zhao, “A risk assessment system
for hard rock TBM selection based on bayesian belief net-
works (BBN),” Georisk: Assessment and Management of Risk
for Engineered Systems and Geohazards, pp. 454-467, Denver,
CO, USA, 2017.

[33] M. Kurhade and R. Wankhade, “An overview on decision
making under risk and uncertainty,” International Journal of
Science and Research, vol. 5, pp. 416-422, 2015.

[34] T. Williams, “The nature of risk in complex projects,” Project
Management Journal, vol. 48, no. 4, pp. 55-66, 2017.

[35] P. Boateng, A Dynamic Systems Approach to Risk Assessment
in Megaprojects, Thesis for: PhDAdvisor, Citeseer, Princeton,
NJ, USA., 2014.

[36] Y. Xue, P. Xiang, F. Jia, and Z. Liu, “Risk assessment of high-
speed rail projects: a risk coupling model based on system
dynamics,” International Journal of Environmental Research
and Public Health, vol. 17, 2020.

[37] X. Na, W. Jianping, L. Jie, and N. Guodong, “Analysis on
relationships of safety risk factors in metro construction,”
Journal of Engineering Science & Technology Review, vol. 9,
2016.

[38] C. Zhou, L. Ding, M. J. Skibniewski, H. Luo, and S. Jiang,
“Characterizing time series of near-miss accidents in metro



Computational Intelligence and Neuroscience

(39]

(40]

(41]

(42]

(43]

(44]

(45]

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

construction via complex network theory,” Safety Science,
vol. 98, pp. 145-158, 2017.

D.-m. Zhang, F. Du, H. Huang, F. Zhang, B. M. Ayyub, and
M. Beer, “Resiliency assessment of urban rail transit networks:
shanghai metro as an example,” Safety Science, vol. 106,
pp. 230-243, 2018.

Z. Zhou and J. Irizarry, “Integrated framework of modified
accident energy release model and network theory to explore
the full complexity of the Hangzhou subway construction
collapse,” Journal of Management in Engineering, vol. 32,
no. 5, Article ID 05016013, 2016.

S. Seker and E. Zavadskas, “Application of Fuzzy DEMATEL
Method for Analyzing Occupational Risks on Construction
Sites,” Sustainability, vol. 9, no. 11, p. 2083, 2017.

S. M. Hatefi and J. TamosSaitiené, “An integrated fuzzy
dematel-fuzzy anp model for evaluating construction projects
by considering interrelationships among risk factors,” Journal
of Civil Engineering and Management, vol. 25, no. 2,
pp. 114-131, 2019.

V. T. Luuy, S.-Y. Kim, N. V. Tuan, and S. O. Ogunlana,
“Quantifying schedule risk in construction projects using
Bayesian belief networks,” International Journal of Project
Management, vol. 27, no. 1, pp- 39-50, 2009.

Y. Li, B. Sankaranarayanan, D. Thresh Kumar, and A. Diabat,
“Risks assessment in thermal power plants using ISM
methodology,” Annals of Operations Research, vol. 279, no. 1-
2, pp. 89-113, 2019.

J. Yuan, K. Chen, W. Li, C. Ji, Z. Wang, and M. J. Skibniewski,
“Social network analysis for social risks of construction
projects in high-density urban areas in China,” Journal of
Cleaner Production, vol. 198, pp. 940-961, 2018.

L. Wu, H. Bai, C. Yuan, and C. Xu, “FANPCE technique for
risk assessment on subway station construction,” Journal of
Civil Engineering and Management, vol. 25, no. 6, pp. 599-
616, 2019.

F. Afzal, S. Yunfei, M. Nazir, and S. M. Bhatti, “A review of
artificial intelligence based risk assessment methods for
capturing complexity-risk interdependencies: cost overrun in
construction projects,” International Journal of Managing
Projects in Business, vol. 14, 2019.

P. Vaz-Serra and P. Edwards, “Addressing the knowledge
management “nightmare” for construction companies,”
Construction Innovation, vol. 21, no. 2, pp. 300-320, 2020.
Y. Pan and L. M. Zhang, “Roles of artificial intelligence in
construction engineering and management: a critical review
and future trends,” Automation in Construction, vol. 122,
p. 21, 2021.

Z. M. Yaseen, Z. H. Ali, S. Q. Salih, and N. Al-Ansari,
“Prediction of risk delay in construction projects using a
hybrid artificial intelligence model,” Sustainability, vol. 12,
no. 4, p. 1514, 2020.

B. G. Glaser and A. L. Strauss, The Discovery of Grounded
Theory: Strategies for Qualitative Research, Adline de Gruyter,
Piscataway, NJ, USA, 1967.

J. W. Forrester, “System dynamics, systems thinking, and soft
OR,” System Dynamics Review, vol. 10, no. 2-3, pp. 245-256,
1994.

A. Mohammadi and M. Tavakolan, “Identifying Safety Ar-
chetypes of Construction Workers Using System Dynamics
and Content Analysis,” Safety Science, vol. 129, 2020.

H. Bouloiz, E. Garbolino, M. Tkiouat, and F. Guarnieri, “A
system dynamics model for behavioral analysis of safety
conditions in a chemical storage unit,” Safety Science, vol. 58,
pp. 32-40, 2013.

(55]

[56]

(57]

(58]

(59]

(60]

(61]

(62]

(63]

(64]

(65]

(66]

(67]
(68]

[69]

(70]

(71]

(72]

(73]

21

P. Boateng, Z. Chen, S. Ogunlana, and D. Ikediashi, “A system
dynamics approach to risks description in megaprojects de-
velopment,” Organization, technology & management in
construction: An International Journal, vol. 4, 2012.

F. Wang, L. Ding, P. E. D. Love, and D. J. Edwards, “Modeling
tunnel construction risk dynamics: addressing the production
versus protection problem,” Safety Science, vol. 87,
pp. 101-115, 2016.

B. Zhao, T. Tang, and B. Ning, “System dynamics approach for
modelling the variation of organizational factors for risk
control in automatic metro,” Safety Science, vol. 94,
pp. 128-142, 2017.

P. Shojaei and S. A. S. Haeri, “Development of supply chain
risk management approaches for construction projects: a
grounded theory approach,” Computers ¢ Industrial Engi-
neering, vol. 128, pp. 837-850, 2019.

F. Nasirzadeh, A. Afshar, and M. Khanzadi, “System dynamics
approach for construction risk analysis,” International Journal
of Civil Engineering, vol. 6, pp. 120-131, 2008.

B. K. Akcam, S. Guney, and A. M. Cresswell, “Research design
and major issues in developing dynamic theories by secondary
analysis of qualitative data,” Systems, vol. 7, no. 3, p. 40, 2019.
R. B. Johnson and A. J. Onwuegbuzie, “Mixed methods re-
search: a research paradigm whose time has come,” Educa-
tional Researcher, vol. 33, no. 7, pp. 14-26, 2004.

J. E. Symonds and S. Gorard, “Death of mixed methods? Or
the rebirth of research as a craft,” Evaluation ¢» Research in
Education, vol. 23, no. 2, pp. 121-136, 2010.

J. W. Creswell and V. L. P. Clark, Designing and Conducting
Mixed Methods Research, Sage publications, Thousand Oaks,
CA, USA, 2017.

J. W. Rudolph and N. P. Repenning, “Disaster dynamics:
understanding the role of quantity in organizational collapse,”
Administrative Science Quarterly, vol. 47, no. 1, pp. 1-30, 2002.
L. J. Black, P. R. Carlile, and N. P. Repenning, “A dynamic
theory of expertise and occupational boundaries in new
technology implementation: building on barley’s study of CT
scanning,” Administrative Science Quarterly, vol. 49, no. 4,
pp. 572-607, 2004.

L. F. Luna-Reyes and D. L. Andersen, “Collecting and ana-
lyzing qualitative data for system dynamics: methods and
models,” System Dynamics Review, vol. 19, no. 4, pp. 271-296,
2003.

A. Strauss and J. Corbin, Basics of Qualitative Research, Sage,
Newbury Park, CA, USA, 1990.

B. G. Glaser, Emergence vs Forcing: Basics of Grounded Theory
Analysis, Sociology Press, Mill Valley,California,USA, 1992.
K. Charmaz, “Constructivist and Objectivist Grounded
Theory,” Handbook of Qualitative Research, Thousand Oaks,
CA, USA, 2000.

H. Heath and S. Cowley, “Developing a grounded theory
approach: a comparison of Glaser and Strauss,” International
Journal of Nursing Studies, vol. 41, no. 2, pp. 141-150, 2004.
J. C. Van Niekerk and J. D. Roode, “Glaserian and Straussian
Grounded Theory: Similar or Completely Different?” in
Proceedings of the 2009 Annual Research Conference of the
South African Institute of Computer Scientists and Information
Technologists, pp. 96-103, ACM International Conference
Proceeding Series, Times Square, NY, USA, October 2009.
R. L. Baskerville, “Distinguishing action research from par-
ticipative case studies,” Journal of Systems and Information
Technology, vol. 1, 1997.

C. Hou, Y. Wen, Y. He et al., “Public stereotypes of recycled
water end uses with different human contact: evidence from



22

event-related potential (ERP),” Resources, Conservation and
Recycling, vol. 168, Article ID 105464, 2021.

[74] H. R. Bernard and H. R. Bernard, Social Research Methods:
Qualitative and Quantitative Approaches, Sage, Thousand
Oaks, CA, USA, 2013.

[75] J. W. Creswell and C. N. Poth, Qualitative Inquiry and Re-
search Design: Choosing Among Five Approaches, Sage pub-
lications, Thousand Oaks, CA, USA, 2016.

[76] T.-C. Wang and H.-D. Lee, “Developing a fuzzy TOPSIS

approach based on subjective weights and objective weights,”

Expert Systems with Applications, vol. 36, no. 5, pp. 8980-

8985, 2009.

Z. Zhou, J. Irizarry, Q. Li, and W. Wu, “Using grounded

theory methodology to explore the information of precursors

based on subway construction incidents,” Journal of Man-

agement in Engineering, vol. 31, no. 2, Article ID 04014030,

2015.

[78] A. F. Farahani, K. Khalili-Damghani, H. Didehkhani,

A. H. Sarfaraz, and M. Hajirezaie, “A framework for project

risk assessment in dynamic networks: a case study of oil and

gas megaproject construction,” IEEE Access, vol. 9, Article ID

88767, 2021.

P. Pirzadeh and H. Lingard, “Understanding the dynamics of

construction decision making and the impact on work health

and safety,” Journal of Management in Engineering, vol. 33,

no. 5, 2017.

[80] J. Eweje, R. Turner, and R. Miiller, “Maximizing strategic
value from megaprojects: the influence of information-feed
on decision-making by the project manager,” International
Journal of Project Management, vol. 30, no. 6, pp. 639-651,
2012.

[81] Y. Zhu, M. Lin, F. Meng, X. Liu, and W. Lin, “The Hong Kong-
Zhuhai-Macao bridge,” Engineering, vol. 5, no. 1, pp. 10-14,
2018.

[82] J. B. Pocock, S. T. Kuennen, J. Gambatese, and J. Rauschkolb,
“Constructability state of practice report,” Journal of Con-
struction Engineering and Management, vol. 132, no. 4,
pp. 373-383, 2006.

[83] R. A. Huff and V. R. Prybutok, “Information systems project
management decision making: the influence of experience
and risk propensity,” Project Management Journal, vol. 39,
no. 2, pp. 34-47, 2008.

[84] A. N. Baldwin, S. A. Austin, T. M. Hassan, and A. Thorpe,

“Modelling information flow during the conceptual and

schematic stages of building design,” Construction Manage-

ment ¢ Economics, vol. 17, no. 2, pp. 155-167, 1999.

J. Sterman, Business Dynamics: Systems Thinking and Mod-

eling for a Complex World, McGraw-Hill, Manhattan, N, USA,

2000.

[86] G. Wu, H. Kai-Rong, and P. Bin, “The Evolution Mechanism
and It’s Simulation Analysis of the Huge Transportation
Infrastructure Projects Risk,” Forecasting, vol. 35, no. 3,
pp. 69-74, 2016.

[87] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series

Analysis:  Forecasting and ControlJohn Wiley & Sons,

Hoboken, NJ, USA, 2008.

B. Flyvbjerg, “What you should know about megaprojects and

why: an overview,” Project Management Journal, vol. 45, no. 2,

pp. 6-19, 2014.

(77

[79

[85

(88

Computational Intelligence and Neuroscience



