
Research Article
Low Power Scheduling Approach for Heterogeneous System
Based on Heuristic and Greedy Method

Junke Li ,1,2,3 Bing Guo ,4 Kai Liu ,1,2,5 and Jincheng Zhou 2,6

1School of Information Engineering, Suqian University, Suqian, Jiangsu 223800, China
2School of Computer and Information, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000, China
3Jiangsu Province Engineering Research Center of Smart Poultry Farming and Intelligent Equipment, Suqian,
Jiangsu 223800, China
4College of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China
5Key Laboratory of Machine Learning and Unstructured Data Processing of Qiannan, Duyun 558000, China
6Key Laboratory of Complex Systems and Intelligent Optimization of Guizhou, Duyun 558000, China

Correspondence should be addressed to Bing Guo; guobing@scu.edu.cn and Kai Liu; 407165332@qq.com

Received 7 February 2022; Revised 28 April 2022; Accepted 9 May 2022; Published 26 June 2022

Academic Editor: Qiangyi Li

Copyright © 2022 Junke Li et al.�is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Big data, cloud computing, and arti�cial intelligence technologies supported by heterogeneous systems are constantly changing
our life and cognition of the world. At the same time, its energy consumption a�ects the operation cost and system reliability, and
this attracts the attention of architecture designers and researchers. In order to solve the problem of energy in heterogeneous
system environment, inspired by the results of 0-1 programming, a scheduling method of heuristic and greedy energy saving
(HGES) approach is proposed to allocate tasks reasonably to achieve the purpose of energy saving. Firstly, all tasks are assigned to
each GPU in the system, and then the tasks are divided into high-value tasks and low-value tasks by the calculated average time
value and variance value of all tasks. By using the greedy method, the high-value tasks are assigned �rst, and then the low-value
tasks are allocated. In order to verify the e�ectiveness and rationality of HGES, di�erent tasks with di�erent inputs and di�erent
comparison methods are designed and tested. �e experimental results on di�erent platforms show that the HGES has better
energy saving than that of existing method and can get result faster than that of the 0-1 programming.

1. Introduction

As an important driving force of social development and
world economic growth in the 21st century, ICT (infor-
mation and communication technology) industry consumes
10% of the global power consumption [1], and its total
carbon emissions account for 2%–2.5% of the total global
carbon emissions, especially in developed countries,
reaching 10% [2]. �e Intergovernmental Panel on Climate
Change of the United Nations has released a report, pointing
out that if the temperature of global warming is to be limited
to 1.5°C higher than that before the Industrial Revolution,
unprecedented changes are needed, e�orts should be made
to completely stop using fossil fuels by 2050, and zero carbon
emissions should be achieved [3]. In order to promote the

sustainable development of ICT industry, green computing
[4–12] has become the consensus of many researchers at
home and abroad. At present, ICT industry represented by
big data technology and arti�cial intelligence technology is
constantly changing our life, transportation, learning, and
cognition of the world, which makes the heterogeneous
computing system (HCS) based on GPU (graphics pro-
cessing unit) supporting the development of these tech-
nologies become the mainstream of computer system. �e
characteristics of GPU heterogeneous system such as high
acceleration, easy to learn, and easy to expand make it
develop rapidly. At present, it is widely used in big data
processing, deep learning, cloud computing, arti�cial in-
telligence, unmanned vehicle driving, molecular simulation
computing, and other �elds. �e huge application

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 9598933, 17 pages
https://doi.org/10.1155/2022/9598933

mailto:guobing@scu.edu.cn
mailto:407165332@qq.com
https://orcid.org/0000-0002-9957-5650
https://orcid.org/0000-0001-6306-8879
https://orcid.org/0000-0003-1645-0690
https://orcid.org/0000-0002-1995-4002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9598933

market also has greatly promoted the development of GPU
heterogeneous system. In a typical GPU heterogeneous
system, CPU usually allocates computing tasks to GPUs for
calculation; in a computer system composed of multiple
GPUs, how to allocate computing tasks to each GPU will
greatly affect the power consumption of the whole system
[13–35]. In this paper, the low power task scheduling of GPU
heterogeneous system is studied. Although the performance
and power of GPU heterogeneous system are greatly im-
proved than that of traditional computer system, its power
consumption is still high in the whole computer system. In
order to comply with the development of ICT industry, the
power optimization of GPU heterogeneous system should be
studied in depth.

For reducing the power consumption of HCS, scholars
have put forward various methods and models, but there are
some problems in the current research work; for example, it is
necessary to manually rewrite the target task code [13, 19], the
energy consumption of heterogeneous systems is affected by
the order of task execution [32, 34], and assuming that the
power of GPU is constant when the tasks run [30], and it is
necessary to run the task in advance to obtain the parameters
[12, 26] before the task is scheduled. In order to effectively
alleviate the above problems andmakeHCSmore widely adapt
to the diversity of tasks, this papermainly focuses on the energy
saving of heterogeneous systems with multiple identical GPUs.
Inspired by the 0-1 programming, the HGES (heuristic and
greedy energy saving) scheduling model is proposed by using
heuristic and greedymethod.1emodel first obtains the power
consumption and time of the tasks on each GPU, and then the
energy optimization problem is transformed into a scheduling
problem. HGES consists of the following steps:

(1) Power measurement and task execution time ac-
quisition: HIOKI3334 power meter is used to obtain
the energy consumption of the task by measuring the
current and voltage. 1is study does not change the
running time of the task, so the running time of the
task is the actual running time of the task in the
experimental environment.

(2) Task scheduling: in the environment of multiple
identical GPUs, the average power consumed by
randomly processing a certain number of tasks is the
same. 1e difference lies in the speed of the overall
execution time. 1erefore, the problem of energy
saving can be transformed into the problem of time
minimization. In this paper, HGES method is
designed to solve the problem.

(3) Verification: in order to verify the effectiveness of
HGES. First, analyze its performance. 1en, its ef-
fectiveness, rationality, and feasibility are verified by
experiments.

1e contributions of this paper are as follows:

(1) 1is paper analyzes the essence of energy saving
problem in heterogeneous systems with multiple
identical GPUs and transforms it into scheduling
problem.

(2) Based on the 0-1 programming, HGES scheduling
method is proposed by heuristic and greedy method.
It calculates the average time and variance of all tasks
to be executed according to the time of task exe-
cution and then divides all tasks in each GPU into
high-value tasks and low-value tasks according to
average value and variance; after sorting the high-
value tasks, greedy method is used to assign the high-
value tasks first and then the low-value tasks.

(3) 1e experimental results show that the HGES
method on different platforms can save more energy
than that of existing methods. Compared with 0-1
programming method under best solution, HGES
can get result faster.

1e rest of the paper is structured as follows. Section 2
shows related works; heuristics from 0-1 programming are
introduced in Section 3; Section 4 presents the HGES
method; our proposed method is verified and compared in
Section 5; Section 6 summarizes the work of this paper.

2. Related Works

1e research on energy saving in task scheduling can be
divided into two categories: energy saving scheduling
technologies based on task characteristics and energy saving
technologies for task scheduling.1ey are described in detail
as follows.

1e first is energy saving scheduling technology based on
task characteristics. [9, 10] point out that the storage re-
quirements of tasks, task migration, and the improvement of
scheduling strategy are helpful to the improvement of
system performance. Based on this, Zhan et al. [11] research
the energy optimization of hybrid scratchpadmemory which
consists of SRAM and nonvolatile memory. 1en, they
propose data allocation for energy optimization which is
composed of program analysis stage and data allocation
stage. After the GPU supports the concurrent kernel exe-
cution feature, it provides a solution for energy saving
technology. Li et al. [12] have obtained the parameter Ri by
running the CUDA profiler tool in advance to determine the
kernel category and have used the complementary charac-
teristics of the task category as inspiration to implement
concurrent kernel execution for energy saving. Jiao et al. [13]
have proposed a static estimation power-performancemodel
by using the method of predicting the ratio of block number,
and it has guided energy saving of GPU by establishing the
relationship between the ratio of block number and energy
consumption among concurrent kernels; however, this
method requires to convert task code. Inspired by the
implementation of energy saving with complementary
characteristics of task categories by [12], Li et al. [14] use the
established energy saving regression prediction model and
scheduling method to achieve the goal of energy saving after
classifying tasks. Li et al. [15] have compared the energy
consumption of the concurrent kernel and the sequential
kernel, and choose a way to perform tasks with less energy
consumption; for the acquisition of energy, the energy es-
timation model and the performance estimation model are

2 Computational Intelligence and Neuroscience

used. Wen et al. [16] have proposed a graph-based algorithm
to schedule co-run kernel in pairs to optimize the system
performance. Workloads are represented by a graph (ver-
tices stand for distinct kernels, while edges between two
vertices represent the corresponding two kernels and co-
execution can deliver a better performance than run them
one after another). Edges are weighted to provide infor-
mation of performance gain from co-execution. Wen and
Oboyle [17] have proposed a runtime framework to detect
whether to merge OpenCL kernels or to schedule them to
themost appropriate devices separately by using a prediction
model based on machine learning at runtime, so as to
schedule multi-user OpenCL tasks to the most appropriate
devices in heterogeneous systems.

1e second is the energy saving technologies for task
scheduling. Compared to a uniprocessor, multiprocessors
have been shown to reduce the power problem. For saving
energy of multi-processor architectures, task migration is an
effective method. Based on this, Rupanetti and Salamy [18]
propose a three-part framework to reduce energy which is
task allocation technique, task migration, and task sched-
uling scheme based on the earliest deadline first method. Liu
and Luk [19] obtain the task and processor resource pa-
rameters by running tasks in advance and then use the linear
programming to achieve energy saving scheduling of
LINPACK program in each processor, but this method
requires manually rewriting the code of the target processor.
According to the analysis method proposed by [21], Barik
et al. [20] obtain the task characteristics and execution time
parameters to adjust the load rate for achieving the purpose
of reducing energy consumption of processor. After that, Ma
et al. [22] have proposed a two-layer energy management
framework with dynamic allocation layer and frequency
regulation layer, compared four dynamic allocation
schemes, and analyzed their advantages and disadvantages.
Li et al. [23] point out the deficiency of researches on the
energy and thermal issues of real-time applications with
precedence-constrained tasks on heterogeneous systems and
then propose both energy/thermal-aware task scheduling
approach by assigning tasks in an energy/thermal-aware
heuristic way and reducing the waiting time between parallel
tasks. Bansal et al. [24] combine both the dynamic voltage
scaling (DVS) and dynamic power management (DPM)
techniques to save energy while scheduling preference-
oriented fixed-priority periodic real-time tasks and then
propose preference-oriented energy-aware rate-monotonic
scheduling and preference-oriented extended energy-aware
rate-monotonic scheduling algorithms to maximize energy
savings while fulfilling preference value of tasks. Silberstein
and Maruyama [25] have considered the energy of tasks on
each processor, and they construct a minimum energy
consumption scheduling method for multiple interdepen-
dent tasks according to the directed acyclic graph and verify
the feasibility of the method when the processor has no
overhead. Jang et al. [26] have studied the energy optimi-
zation of single task in multi-processor environment and
multi-tasks of adaptive power-aware allocation scheme and
propose the optimal task allocation algorithm under single
task and the optimal voltage/frequency adjustment scheme

under multi-tasks. Although the energy saving method
under multi-tasks is studied, more attention is paid to
voltage/frequency adjustment. For dynamic random access
memory (DRAM)-based mainmemory subsystem is a major
contributor to the energy consumption of mobile devices,
Zhong et al. [27] propose direct read (DR). Swap by using
NVMs byte addressability which guarantees zero memory
copy for read-only requests when accessing a page in swap
area. 1e research of [28] shows that the use of shared
memory architecture in mobile devices can improve the
cooperation among processors, accelerate the calculation of
PCA (principal components analysis), and effectively reduce
the energy of mobile devices. Khalid et al. [29] have pro-
posed an OSCHED scheduling method in the case of un-
balanced computing power of processors, which
comprehensively considers the computing power of devices
and the computing requirements of tasks to achieve load
balancing of tasks among various processors. Hamano et al.
[30] have proposed an energy saving method for dynamic
scheduling. 1e task with the smallest energy delay product
(EDP) is selected, and then, it is assigned to the corre-
sponding processor, but the method considers that the
power of the scheduled task is constant. Huang [31] points
out that processing elements are idle when the required data
are not received which will lead to the issue of low utilization
of processing elements. Choi et al. [34] have proposed an
estimated-execution-time (EET) scheduling to predict the
remaining execution time of programs according to the
remaining execution time of tasks and pointed out the
deficiency of the alternate assignment (AA) scheduling, first
free (FF) scheduling, and performance history (PH)
scheduling in [32, 33]. 1at is, PH scheduling does not
consider the remaining time of the application currently
executed by each device, which will lead to overutilization of
a single device. According to the methods proposed in
[32–34], the scheduling tasks are extended to multiple tasks
in [35, 36], and a 0-1 programming method is proposed to
allocate tasks to solve the problem of excessive utilization of
single processor. However, the results obtained by this
method are greatly affected by parameter values.

In summary, although the energy saving research of
heterogeneous systems has made great progress, there are
still some deficiencies. In view of the existing problems and
research deficiencies, this paper proposes HGES method to
alleviate the problem.

3. Heuristics from 0-1 Programming

In [36], authors use 0-1 programming by formalizing the
problem into formulas (1)–(6) to solve the low power
scheduling problem in heterogeneous system. 1ey assume
that the currently available processor resources in the system
are GPUi (0≤ i≤ n), CPU, and motherboard, and then the
energy consumption of the system Esystem can be expressed as
the sum of the energy consumption of all GPUs (EGPU), CPU
(ECPU), and motherboard (EMotherboard) in the system and
further expressed as the product of their respective power
(PGPU, PCPU, EMotherboard) and time (T). For a group of tasks
to be scheduled on the same number of GPUs, the tasks to be

Computational Intelligence and Neuroscience 3

scheduled will generate different sequences according to
different scheduling algorithms without changing the task
structure, but the power of a single task will not be changed;
that is, the average power consumption of the task sequence
to be scheduled remains unchanged. 1erefore, the Esystem
can be further expressed as the product of average power
consumption P and time T which can be expressed by

ESystem �
n

i�1
EGPUi

+ ECPU + EMotherboard

�
n

i�1
P

GPUi
+ PCPU + PMotherboard

⎛⎝ ⎞⎠ × T

� P + PCPU + PMotherboard(× T.

(1)

In order to minimize the energy of system when exe-
cuting the program sequence, the average power con-
sumption P and time T must be as small as possible. For
different scheduling methods, the average power con-
sumption is certain. 1erefore, in order to minimize the
energy consumption of the system, it is necessary to min-
imize the execution time T. When using 0-1 programming to
solve this problem, we define the following symbols. Let m
represent the number of GPU in systems; let n represent the
number of programs to be processed in the system. Let Tij
represent the consumed time by the jth program running on
the ith GPU (0≤ j≤N; 0≤ i≤M). Let xij represent assigning
ith processor to complete the jth program, so the value of xij
is as follows:

xij �
1, assign ith GPU to execute jth program

0, not assign ith GPU to execute jth program.
 (2)

1e goal of the problem we solve is to choose a suitable
combination that minimizes the time interval among each
processor when executing tasks.We use the first processor as
the baseline, so the objective function is the minimum ex-
ecuting time difference between other processors and the
first processor.1erefore, the objective function to minimize
the task execution time among processors can be shown in

f � m
n

j�1
T1jx1j −

m

k�2

n

t�1
Tktxkt. (3)

According to the requirements of the problem, each
program has only one processor to run, so we get the
processor constraint as shown in (4).

m

i�1
xij � 1, j � 1, 2, . . . , n, (4)

Q

n
t�1 T1t

m
< �

n

j�1
Tij ∗ xij, i � 1, 2, . . . , n. (5)

When assigning a task to a processor, the time to
complete all tasks should be as equal as possible. We cannot
unlimitedly reduce performance for saving energy, so we
add constraint of performance to the objective function. Due
to the randomness of the execution time of the program, it is

not suitable for most scenes for allocating tasks to the each
GPU in an equal time manner, respectively. In order to
better adapt to the real environment, we allow unequal
distribution of time on each GPU. For this, the total time of
tasks allocated to a single processor in the system is not more
than the average time that is calculated by total time of tasks
divided by number of processors, so we use the performance
tuning parameter Q to fulfill this purpose. 1e range of Q is
0.01–1. Considering above factors, we obtain the time
constraint as shown in (5).

min f � m
n

j�1
T1jx1j −

m

k�2

n

t�1
Tktxkt

s.t.
m

i�1
xij � 1(j � 1, 2, . . . , n)

Q

n
t�1 T1t

m
< �

n

j�1
Tij ∗ xij(i � 1, 2, . . . , n)

xij � 0 or 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

In summary, when using 0-1 programming to solve
above problem, it can be described as (6). In order to better
understand it, letm be 4, n is 11, Tij is consumed time by the
11 programs running on the 4 GPUs, and xij assigns ith
processor to complete the jth program.1e constraint xij � 0
or 1 and

m
i�1 xij � 1(j � 1, 2, . . . , n) guarantee each of 11

tasks assigned to only one GPU; the constraint Q
n
t�1

T1t/m< �
n
j�1 Tij ∗xij(i � 1, 2, . . . , n) guarantees feasible

solutions under different parameters Q. 1e objective
function ensures that the optimal solution can be found in
the feasible solution.

Figure 1 shows the impact of theQ parameter changes on
the result of 0-1 programming when 20 tasks are scheduled.
1e abscissa is the value of Q parameter, and the ordinate
represents energy consumption. It can be seen from the
figure that with gradual increase in the value ofQ, the energy
consumption is gradually reduced.1erefore, the reasonable
value of Q has a great influence on the energy consumption
of the system. Since the solution obtained by 0-1 pro-
gramming is greatly affected by the Q parameters, unrea-
sonable Q parameter often results in nonhigh-quality
solution for solving the problem. In the process of solving 0-
1 programming, the feasible solution satisfying the con-
straint conditions is first calculated, and then the optimal
solution satisfying the objective function is considered.
Analyzing the solution obtained, we find that there are time-
consuming tasks assigned to each processor, regardless of
the value of the Q parameter. Figure 2 shows the result of
assigning tasks using 0-1 programming with a Q parameter
of 0.4 (sub-figure (a)) and a Q parameter of 0.9 (sub-figure
(b)). It can be seen from the figure that different Q pa-
rameters affect the scheduling results. 1e reason for this
phenomenon is that the obtained feasible solution must
meet the constraint conditions, and the time-consuming
tasks will be evenly allocated to each processor so that the
obtained feasible solution minimizes the objective function.

Based on the inspiration of the 0-1 programming, we
should first seek the tasks satisfying the constraint conditions

4 Computational Intelligence and Neuroscience

and then select the tasks within them which can minimize the
objective function. In the process of finding tasks that satisfy
the constraints, the execution time of task allocated to each
processor should bemade as equal as possible tominimize the
objective function. 1erefore, the cumulative task’s execution
time of processors should be considered when assigning tasks.
For the tasks with long execution time have a greater impact
on the constraint conditions, so the tasks with longer exe-
cution time should be allocated first. In allocating tasks to
suitable processors that satisfy the objective function, the
greedy method is used to comprehensively consider the total

time of the processor’s allocated tasks and the time and energy
of the tasks to be allocated to find processors that meet the
objective function. After the tasks with longer execution time
are assigned, the tasks with smaller execution time are allo-
cated according to the same rules.

4. HGES Approach

Inspired by the above 0-1 programming, we call the method
to solve this problem as heuristic and greedy energy saving
approach (HGES). 1e main idea first assigns all tasks to each

Task20
Task19
Task18
Task17
Task16
Task15
Task14
Task13
Task12
Task11

Task10
Task9
Task8
Task7
Task6
Task5
Task4
Task3
Task2
Task1

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

Ti
m

e

GPU2 GPU3GPU1

(a)

Task19
Task18
Task17
Task16
Task15
Task14
Task13
Task12
Task11

Task20 Task10
Task9
Task8
Task7
Task6
Task5
Task4
Task3
Task2
Task1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Ti

m
e

GPU2 GPU3GPU1

(b)

Figure 2: Patterns of 0-1 programming for assigning tasks.

0

150

300

450

En
er

gy
 (J

)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1
Q Value

Figure 1: 1e influence of Q parameter on optimization results.

Computational Intelligence and Neuroscience 5

processor; secondly, tasks are divided into two parts according
to the execution time in each processor. 1e tasks with long
execution time in each processor are assigned first. When a
task is assigned, then it will be deleted from all task list of other
processors to be allocated. 1is process is repeated until all
tasks with long execution time are allocated; thirdly, the task
with short execution time is assigned to each processor, and
when the task is assigned, it will be deleted from all task list of
other processors to be allocated. 1is process is repeated until
the short execution tasks are assigned.1e allocation rule is to
select the task with the smallest product of the processor’s
cumulative time and the energy consumption of the corre-
sponding task to be allocated among the K smallest cumu-
lative execution time of m processors.

For scheduling, the scheduling parameters of P tasks
should be obtained first; therefore, we establish a two-di-
mensional array GPU_Time_Energy_i[P][] for each pro-
cessor i to store the time and energy consumption of tasks,
which are, respectively, GPU_Time_Energy_i[P][0] and
GPU_Time_Energy_i[P] [1]. 1e variable AccumPer_i is
used to store the sum of the execution time of the assigned
tasks to each processor i. AVEi and SDi are used to estimate
the average execution time and the corresponding standard
deviation of each processor i under n tasks, and equation (7)
is used to calculate the criterion Criti to distinguish the
length of execution time. Criti is used to separate tasks that
affect performance constraints. 1e tasks with a long exe-
cution time corresponding to the processor number i are put
in the6_i array, and the remaining tasks are put in the Tm_i
array. Each 6_i array is sorted in descending order, and
they are scheduled according to greedy method. 1e steps of
greedy method are as follows. Firstly, select the K processors
with the smallest cumulative sum of time, and secondly,
assign the task to the processor with the smallest product of
the cumulative time of K processor and the energy con-
sumption of the corresponding task to be allocated. After the
corresponding6_i of each processor is scheduled, the same
rules are used to schedule Tm_i.

Criti � AVEi + SDi. (7)

According to the above ideas, Figure 3 shows the flow of
the HGES method. 1e specific steps are as follows:

Step 1: All P tasks are allocated to each processor i, and
the corresponding time and energy are, respectively,
stored in GPU_Time_Energy_i[P][0] and GPU_Ti-
me_Energy_i[P] [1]; the performance accumulator
AccumPer_i is initialized to 1 for each processor i and
the task allocation sequence AllocTask_i[] to null.
Step 2: Average execution time AVEi and the standard
deviation SDi of the P tasks in each processor i are
calculated.
Step 3: Execution time of tasks that are higher than the
Criti in the GPU_Time_Energy_i[P][0] of each processor
i is stored in 6_i[], and they are sorted in descending
order. 1e sorted task index list is Sort_6_i[pth_i]. 1e
list of remaining tasks is Tm_i[ptm_i]; pth_i and ptm_i
are the subscripts of the corresponding task list.

Step 4: Determine whether the assignment of P tasks is
complete. If complete, terminate the algorithm; if not, the
Sort_6_i[] or Tm_i[] corresponding to the K processors
with the minimum cumulative task execution time is
selected. Calculate K values according to the following
steps. Determine whether Sort_6_i[] has been allocated
completely, that is, whether pth_i is greater than the
maximum subscript of Sort_6_i[], Maxpth. If it is less,
judge whether the current task has been allocated, that is,
whether GPU_Time_Energy_i[Sort_6_i[pth_i]][0] is
equal to 0. If it is equal to 0, that means that the task has
been allocated to other processors, and pth_i needs to be
increased by one to determine whether the next task is
allocated; if it is not equal to 0, calculate the product of the
accumulated time of processor and the corresponding
power consumption of current task, namely, Accum-
Per_i∗GPU_Time_Energy_i[Sort_6_i[pth_i]] [1], and
assign the calculation result to TTE_i. If pth_i is greater
than the maximum subscript Maxpth of Sort_6_i[], it
means that Sort_6_i[] has been allocated completely and
it is necessary to determine whether Tm_i[] has been
allocated completely, that is, whether ptm_i is greater than
the maximum subscript of Tm_i[], Maxptm. If it is
greater, it indicates Tm_i[] has been allocated completely
and all tasks in the processor have been allocated. Assign
the Max_Value value to TTE_j so that it does not par-
ticipate in task allocation. If it is less than, judge whether
the task has been allocated, that is, whether GPU_Ti-
me_Energy_j[Tm_j[ptm_j]][0] is equal to 0. If it is equal to
0, it means that the task has been allocated to other
processors, and ptm_i needs to be increased by one to
determine whether the next task is allocated. If it is not
equal to 0, calculate the product of the accumulated time
of processor and the corresponding power consumption
of current task, namely, AccumPer_i∗GPU_Time_
Energy_i[Tm_j[ptm_j]][0], and assign the calculation
result to TTE_j.
Step 5: Among K TTE_i or TTE_j, select the processor
number minENumGPU corresponding to the smallest
value, and determine whether minENumGPU comes
from 6_i[]. If so, accumulate corresponding time to
the corresponding processor; that is, add GPU_Ti-
me_Energy_minENumGPU[6_i[pth_i]][0] to Accum-
Per_minENumGPU. Assign the corresponding task to
the list of the corresponding processor, namely,
TaskAlloc_minENumGPU�6_i[pth_i]. 1is task will
not be considered in the next allocation, and the ex-
ecution time of all processors corresponding to this
allocated task will be assigned to zero; that is, set
GPU_Time_Energy_minENumGPU [6_i[pth_i]][0] to
0. 1en, add one to the corresponding subscript to
prepare for the next task; that is, add one to pth_i. At
this point, one task has been assigned. 1erefore, the
parameter Counter indicating the number of assigned
tasks is added by one; if minENumGPU comes from
Tm_i[], the processing process is the same as that of the
task from 6_i[]. 1e difference is that the processed
data come from Tm_i[].

6 Computational Intelligence and Neuroscience

1e pseudocode of the specific HGES method is shown in
Algorithm 1. 1e input of Algorithm 1 is P tasks and
NumGPU processors; the output is program sequence to be
executed on eachGPU,AllocTask_NumGPU[]. In the first line
of Algorithm 1, the execution time, power consumption,
average execution time, and standard deviation of execution
time of P tasks on each GPU are obtained. Lines 2 to 10 use
average execution time and standard deviation to filter tasks
with long execution time and tasks with short execution time;
tasks with long execution time for each processor are placed in
6_i[], and tasks with short execution time are placed in Tm_i

[]. Line 11 gets the total number of long execution time and
short execution time of tasks. 1e 12th to 14th lines sort6_i
[], and the sorted 6_i[] is represented by Sort_6_i[]. Lines
15 through 27 assign P tasks according to the allocation rules.
Among them, the 16th line adopts the bubble sorting idea to
select K processor with the smallest cumulative time. Algo-
rithm 2 is its specific implementation, which can be com-
pleted by once traversing. 1e return value is K_GPUIndex[]
for the corresponding K processor number.1e 17th line gets
GPU number, task index, and the task index in array6 or Tm
array corresponding to the smallest product of the K

Assign all P tasks to each processor i, and their time and energy are stored
respectively in GPU_Time_Energy_i[p][0], GPU_Time_Energy_i[p][1];

�e performance accumulator AccumPer_i is initialized to 1 for each
processor itask allocation sequence AllocTask_i[] to null;

Begin

Execution time of tasks that are higher than the sum of AVEi and SDi in the
GPU_Time_Energy_i[P][0] of each processor i are stored in Th_i[] and they are sorted in

descending order Sort_Th_i[pth_i]. �e list of remaining tasks is Tm_i[ptm_i];

Average execution time AVEi and the standard deviation
SDi of the P tasks in each processor i are calculated

pth_i > Maxpth?

N

Y

TTE_i=AccumPer_i*PU_Time_
Energy_i[Sort_�_i[pth_i]][1]

N

TTE_j=AccumPer_j*PU_Time_
Energy_j[Tm_i[ptm_i]][1]

End

ptm_j >
Maxptm ?

Select mimimum value among TTE_i, TTE_j and
record the corresponding GPU number as minENumGPU

minENumGPU
from �_i[] ?

AccumPer_minENumGPU+=
GPU_Time_Energy_minENumGPU[�_i[pth_i]][0];

TaskAlloc_minENumGPU=�_i[pth_i];
GPU_Time_Energy_minENumGPU[�_i[pth_i]][0]=0

pth_i++ ; Counter++;

N

AccumPer_minENumGPU+=
GPU_Time_Energy_minENumGPU[Tm_i[ptm_i]][0];

TaskAlloc_minENumGPU=Tm_i[ptm_i];
GPU_Time_Energy_minENumGPU[Tm_i[ptm_i]][0]=0

ptm_i++; Counter++;

Counter < P?

Y

ptm_j = MaxPtm

Select the Th_i[] and Tm_i[] corresponding to the
processor with the smallest value of k AccumPer_i

TTE_j=Max_Value

Y

GPU_Time_Energy_
i[Sort_�_i[pth_i]][

0] == 0 ?

GPU_Time_Energy_
j[Tm_i[ptm_i]][0]

 == 0 ?

Y

N
pth_i++ ptm_i++

Y

N

Y

N

Figure 3: Flowchart of HGES method.

Computational Intelligence and Neuroscience 7

accumulated time of GPU, and the energy of current task in
Sort_6_i[] or Tm_i[]. Algorithm 3 is its specific imple-
mentation.1e return value ret_GPUIndex is the processor to
be allocated, ret_taskindex is the subscript number of the task
in Sort_6_i[] or Tm_i[], and thortm indicates whether
ret_taskindex is in Sort_6_i[] or Tm_i[]. Lines 18 to 21
represent that ret_taskindex is in Sort_6_i[] and the task is
assigned to the corresponding processor (line 19). Line 20
accumulates the assigned task execution time to the execution
time accumulator of the corresponding processor. Line 21
clears the time of the assigned task corresponding to all
processor lists, indicating that the task has been assigned to
the corresponding processor and cannot be assigned to other
processors in the next assignment. Lines 22–26 are the
ret_taskindex in Tm_i[], and the processing is similar to lines
18–21.1e difference is that the task to be processed is inTm_i
[]. 1e 28th line returns the obtained result.

Algorithm 2 uses the bubble sorting idea to select the K
processor number with the smallest cumulative execution
time. 1e input is the cumulative execution time of each
processor; the output is the K processor number with the
smallest cumulative execution time. Line 1 initializes related
variables. Lines 2–8 traverse the cumulative time of each
processor; lines 3–7 are used to get K return values; lines 4–6
filter the NumGPU−K processor number of the maximum
value, where the maximum value is stored in the high
variable; line 9 returns the remaining K processor number.

Algorithm 3 gets the task number and processor number
with the smallest product of accumulated time and energy of its
task among the K processor output by Algorithm 2. Lines 1–12
process the tasks in Sort_6_i[] corresponding toK processors.
Lines 2–7 select the subscript of the unassigned task in
Sort_6_i[]. Lines 8–11 calculate the product of the cumulative
time of the corresponding processor and the energy of the task
corresponding to the subscript obtained from lines 2–7. Lines
13–23 deal with the tasks in Tm_i[]. Lines 14–19 select the
subscript of the unassigned task in Tm_i[]. Lines 20–22 cal-
culate the product of the energy consumption of the task which
is pointed by the subscript obtained by lines 14–19 and the
cumulative time of the corresponding GPU. 1e 24th line
calculates the product of the energy consumption of current
task and the cumulative time in the K− 1 GPU. Lines 25–30
select the processor number with the smallest product among
the K processors. Lines 31–36 return the processor number,
task index, and whether the task is in Sort_6_i[] or Tm_i[].

For the efficiency of HGES, in the case of problem size n,
the time complexity of acquiring task time, power con-
sumption, AVEi, and SDi is O(n); the time complexity of
filtering feasible solutions is O(NumGPU ∗ n); the time
complexity of sorting6_i[] is O(nlogn); the time complexity
of assigning tasks according to heuristic and greedy methods
is O(2∗NumGPU ∗ n). Generally, the number of processors
in the system NumGPU is often constant. In summary, the
time complexity of the HGES method is O(nlogn).

5. Experiment

In order to verify the effectiveness and adaptability of HGES
method, we choose two platforms for verification, named

platform A and platform B. 1e hardware experimental
environment of platform A includes i5-7500 CPU and 3
NVIDIA GeForce GTX 1060 graphics cards. 1e system
memory is 8GB. 1e architecture of GTX 1060 card is
Pascal. GTX 1060 has 6GB GPU memory and 10 SMs
(streaming multiprocessors), each containing 128 CUDA
(Compute Unified Device Architecture) cores, 1280 CUDA
cores in total. Single card can provide 4.4 TFLOPS (floating
point operations per second) computing capabilities. 1e
hardware experimental environment of platform B includes
i5-7500 CPU and 3 NVIDIA GeForce GTX 2080 graphics
cards. 1e system memory is 8GB. 1e architecture of GTX
2080 card is Turing. GTX 2080 has 8GB GPU memory and
46 SMs, each containing 64 CUDA cores, 2944 CUDA cores
in total. Single card can provide 10.6 TFLOPS computing
capabilities. 1e software experimental environment is
Windows 10, VS2015 and CUDA9.2. All the hardware and
software experimental environments are listed in Table 1.

For better verified HGES, six typical CUDA benchmark
tasks are selected to better verify the algorithm and different
input sizes and different numbers are selected to simulate.
1ese benchmarks are, namely, matrix multiplication (MM),
histogram (HG), scalar products (SP), BlackScholes (BS),
vectorAdd (VA), and mergeSort (MS). 1eir specific pa-
rameters are shown in Table 2.

For getting the energy, HIOKI 3334 AC/DC powermeter
is selected to measure the energy of the system. For the
number of tasks is less than that of GPUs, PH and EET
methods almost all degenerate into FIFO methods, resulting
in a little performance difference. For this purpose, these
experiments are unnecessary to be done. 1e HGES ap-
proach in this paper is implemented as follows. Firstly, the
pseudocode in Algorithm 1 through 3 is running in VS2015.
Secondly, we reprogram the task order based on the output
result of HGES by the first step. For measuring the energy,
the energy consumptions of the algorithm itself and the
energy consumption of the running task are two parts of the
approached energy, so we, respectively, record them as
Energy 1 and Energy 2; finally, Energy 1 adds Energy 2 are
the energy of HGES.

Figures 4 and 5 show the time difference between HGES
and 0-1 programming in scheduling results of platforms A
and B under different parameters and different numbers of
tasks. 1e abscissa in the figures represents the values of
different Q parameters under 0-1 programming, and the
ordinate represents time. 1e subfigures (a), (b), (c), and (d)
show the time difference of 10, 20, 40, and 80 tasks, re-
spectively. 1e red star in each figure represents the time
difference of the scheduling results obtained by the HGES
method. From the overall perspective of Figures 4 and 5, as
the Q parameter gradually approaches 1, the time difference
of the scheduling results gradually decreases; when the pa-
rameter Q is set to 0.9, the time difference of the scheduling
results is the smallest; when the Q parameter is 1, (a), (b), (c),
and (d) in Figures 4 and 5 cannot get the optimal solution.
1e trend in these figures shows that the optimal solution
obtained by the 0-1 programming is affected by the Q pa-
rameter. 1e smaller the Q value, the worse the scheduling
effect. When the Q is 1, there is no solution. Compared with

8 Computational Intelligence and Neuroscience

0-1 programming, the time difference of HGES under dif-
ferent tasks in different platforms is the smallest. In Figures 4
and 5, when the number of scheduling tasks is 10 and the Q
sets 0.1, the time difference of 0-1 programming is 5.22 s in
Figure 4 and 2.259 s in Figure 5. When Q sets 0.9, the time
difference is 0.573 s in Figure 4 and 0.3667 s in Figure 5. 1e
time difference of HGES is 0.445 s in Figure 4 and 0.3424 s in
Figure 5 under the 10 scheduling tasks. When the scheduling
quantity is 20 tasks, the time difference of 0-1 programming
is 7.86 s in Figure 4 and 5.417 s in Figure 5 when Q is 0.1.
When Q is 0.9, the time difference is 0.536 s in Figure 4 and
0.361 s in Figure 5. 1e time difference of HGES is 0.365 s in
Figure 4 and 0.233 s in Figure 5. In the case of scheduling 40
tasks, the time difference of 0-1 programming is 9.709 s in
Figure 4 and 7.367 s in Figure 5 when Q is 0.1. WhenQ is 0.9,
the time difference is 0.974 s in Figure 4 and 0.756 s in
Figure 5. 1e time difference of HGES is 0.271 s in Figure 4
and 0.173 s in Figure 5. When scheduling 80 tasks, the time
difference of 0-1 programming is 22.8 s in Figure 4 and 12.3 s
in Figure 5 whenQ is 0.1.WhenQ is 0.9, the time difference is
2.53 s in Figure 4 and 2.1 s in Figure 5. 1e time difference of
HGES is 0.203 s in Figure 4 and 0.129 s in Figure 5. In
Figures 4 and 5, the results of HGES method are similar
under different numbers of scheduling tasks. From the ex-
perimental data, HGES has obvious effect on reducing the
time difference when scheduling tasks.

Figures 6 and 7 show the energy consumption com-
parison between HGES and 0-1 programming in scheduling
results of platforms A and B under different parameters and
different numbers of tasks. 1e abscissa in figures represents
the different values of Q parameters under the 0-1 pro-
gramming, and the ordinate represents the energy con-
sumption. Sub-graphs (a), (b), (c), and (d) show the energy
consumption of HGES and 0-1 programming under 10, 20,
40, and 80 tasks, respectively. Each red star in the sub-graph
represents the energy of the scheduling results obtained by
HGESmethod. From the overall perspective of Figures 6 and
7, as the Q parameter gradually approaches 1, the energy is
gradually reduced; when the parameter Q sets to 0.9, the
energy consumption is the smallest. When the Q parameter
is 1, the 0-1 programming in sub-graphs (a), (b), (c), and (d)
cannot be solved. 1e trend in the figure shows that the
optimal solution obtained by the 0-1 programming is af-
fected by the Q parameter. 1e larger the Q value, the lower
the energy consumption. When the Q is 1, there is no so-
lution. Compared with 0-1 programming, HGES method
consumes the least energy consumption under different
tasks in Figures 6 and 7. In the experiment, when the number
of scheduling tasks is 10 and Q is 0.1, the energy of 0-1
programming is 456.21 J in Figure 6 and 323.6 J in Figure 7.
WhenQ is 0.9, the energy is 321.13 J in Figure 6 and 237.5 J in
Figure 7. 1e energy of HGES is 313.12 J in Figure 6 and

Input: 1e set of P programs to be executed, the number of GPUs NumGPU
Output: Program sequence to be executed on each GPU (AllocTask_NumGPU[])
Algorithm:

(1) getTime_Energy_AVE_SD(P, NumGPU)
(2) for i 0, NumGPU do//Filter feasible solutions
(3) for j 0, P do
(4) if 1e time of the jth task in the ith processor>Criti
(5) put task number j to 1_i [] array//Only store the task number (subscript)
(6) else
(7) put task number j to Tm_i array
(8) end if
(9) end for
(10) end for
(11) record the number in 6_i and Tm_i as NumIn6, NumInTm
(12) for i 0, NumGPU do//Sort
(13) use sort(6_i) function to sort each 6_i array and store the result to Sort_6_i[]
(14) end for
(15) for i⟵ 0, i<P do//Filter K processor number with the smallest cumulative time
(16) K_GPUIndex[] select_Min_Time(AccumPer_i, K)
(17) (ret_GPUIndex, ret_taskindex, thortm) select_Min_Energy(Sort_1_i, Tm_i, K_GPUIndex)
(18) if thortm is 0//ret_taskindex is from 6 array
(19) put the task number Sort_6_ret_GPUIndex[ret_taskindex] to AllocTask_ret_GPUIndex[]
(20) add time of ret_taskindex in Sort_6_ret_taskindex to AccumPer_ret_GPUIndex
(21) assign the time of ret_taskindex in Sort_6_ret_taskindex in other GPU to 0
(22) else// ret_taskindex is from Tm array
(23) put the task number Tm_ret_GPUIndex[ret_taskindex] to AllocTask_ret_GPUIndex[]
(24) add time of ret_taskindex in Tm_ret_taskindex to AccumPer_ret_GPUIndex
(25) assign the time of ret_taskindex in Tm_ret_taskindex in other GPU to 0
(26) end if
(27) end for
(28) return AllocTask_0[], . . ., AllocTask_NumGPU− 1[].

ALGORITHM 1: 1e pseudocode of HGES.

Computational Intelligence and Neuroscience 9

Input: Each GPU cumulative time (AccumPer_i, 0≤ i ≤ NumGPU− 1), K
Output: 1e K GPU numbers with minimum value among AccumPer_i
Function select_Min_Time (AccumPer_i, K):

(1) Temp⟵ {0, 1, . . ., NumGPU− 1}, j⟵ 0
(2) for i⟵ 0, NumGPU− 1 do
(3) if j<NumGPU-K− 1
(4) if high>AccumPer_i
(5) Temp⟵Temp− high
(6) end if
(7) end if
(8) end for
(9) return Temp

ALGORITHM 2: Selecting K GPU number with the smallest cumulative execution time.

Input: Sort_1_i, Tm_i (0≤ i <�NumGPU−1), K_GPUIndex
Output: the GPU index, task index, and the task index in array 6 or Tm
Function select_Min_Energy(Sort_6_i, Tm_i, K_GPUIndex)

(1) if pth_K_GPUIndex<NumIn6//1e task number is in the 6 array
(2) while the time of pth_K_GPUIndex in Sort_6_K_GPUIndex is 0//skip the assigned tasks
(3) pth_K_GPUIndex ++
(4) if pth_K_GPUIndex>Max number in 6 array− 1//1e task number is not in the 6 array
(5) break
(6) end if
(7) end while
(8) if pth_K_GPUIndex≤NumIn6− 1
(9) Energytemp_K_GPUIndex⟵AccumPer_K_GPUIndex∗the energy of task number pth_K_GPUIndex
(10) flag_K_GPUIndex⟵ 1;
(11) end if
(12) end if
(13) if flag_K_GPUIndex is 0//1e task number is in the Tm array
(14) while the time of pth_K_GPUIndex in Tm_K_GPUIndex is 0//skip the assigned tasks
(15) ptm_K_GPUIndex++
(16) if ptm_K_GPUIndex>NumInTm − 1
(17) break
(18) end if
(19) end while
(20) if ptm_K_GPUIndex≤NumInTm− 1
(21) Energytemp_K_GPUIndex⟵AccumPer_GPUIndex1∗the energy of task number ptm_K_GPUIndex
(22) end if
(23) end if
(24) //1e above calculation traverses K_GPUIndex array
(25) for i⟵ 1, NumGPU− 1 do//Select the minimum product
(26) if Energytemp_i<MinEnergy
(27) assign the GPU number i to Return_GPUIndex
(28) assign the Energytemp_i to MinEnergy
(29) end if
(30) end for
(31) if Return_TempGPUIndex is from 6 array
(32) assign 0 to flag_ Return_TempGPUIndex
(33) return Return_GPUIndex, pth_Return_GPUIndex, 0
(34) else
(35) return Return_GPUIndex, ptm_Return_GPUIndex, 1
(36) end if

ALGORITHM 3: Getting the task and GPU number with the smallest product of accumulated time and energy of its task.

10 Computational Intelligence and Neuroscience

235.4 J in Figure 7. When 0-1 programming schedules 20
tasks and the Q is 0.1, its energy is 596.16 J in Figure 6 and
427.2 J in Figure 7. When Q is 0.9, its energy is 418.74 J in
Figure 6 and 318.5 J in Figure 7. 1e energy of HGES under
20 tasks is 393.73 J in Figure 6 and 291.7 J in Figure 7. When
0-1 programming schedules 40 tasks and Q is 0.1, its energy
is 1,453.42 J in Figure 6 and 1,044.4 J in Figure 7. When Q is
0.9, its energy is 1,012.82 J in Figure 6 and 761.9 J in Figure 7.
1e energy consumption of HGES under 40 tasks is 945.84 J
in Figure 6 and 703.3 J in Figure 7. When 0-1 programming
schedules 80 tasks and Q is 0.1, its energy is 1,801.86 J in
Figure 6 and 1278.5 J in Figure 7. WhenQ is 0.9, its energy is
1,227.45 J in Figure 6 and 909.9 J in Figure 7. 1e energy
consumption of HGES under 80 tasks is 1,140.76 J in Fig-
ure 6 and 848.6 J in Figure 7. From the experimental data,
HGES is more effective than 0-1 programming in energy
saving.

Figures 8 and 9 show the performance comparison
between HGES and the 0-1 programming itself. 1e abscissa
in the figure represents the different Q parameters of 0-1
programming, and the ordinate represents the time. Sub-
graphs (a), (b), (c), and (d) show the time of HGES and 0-1
programming under 10, 20, 40, and 80 tasks, respectively.
Each red star in the sub-graph represents the time of the
HGES. Looking at each figure as a whole, as the Q value
increases, the time consumed by 0-1 programming in-
creases. In the sub-figure (b) and (d) of Figures 8 and 9, as
the Q value increases, the time-consuming effect of 0-1
programming is the most significant. 1is phenomenon also
appears in the sub-figure (c) of Figure 9. In the sub-figure (a)
of Figures 8 and 9, the time consumed by 0-1 programming
is relatively flat. In the subfigure (c) of Figure 8 when Q
values are 0.1 to 0.4 and 0.6–0.8, the consumed time tends to
increase. When Q values are 0.4 to 0.6 and 0.9, the time

consumption decreases. However, the consumed time of 0.9
is more than that of 0.4 to 0.6. 1e HGES is the least time-
consuming in all experiments. In the case of 10 tasks in
Figure 8, the minimum consumed time of 0-1 programming
is 0.011 s when Q is 0.2; the maximum consumed time is
0.031 s whenQ is 0.1. 1e consumed time of HGES is 0.001 s,
which improves the processing speed, respectively, 11 times
and 31 times compared with that of 0-1 programming when
Q is 0.2 and 0.1. In Figure 9, the consumed time of HGES is
0.001 s, which improves the processing speed, respectively,
10 times and 23 times compared with that of 0-1 pro-
gramming when Q is 0.2 and 0.9. In the case of 20 tasks in
Figure 8, the minimum consumed time of 0-1 programming
is 0.03 s when Q is 0.1. 1e maximum consumed time is
0.9146 s when Q is 0.9. 1e consumed time of HGES is
0.0016 s, which improves the processing speed, respectively,
18.75 times and 517.62 times compared with that of 0-1
programming when Q is 0.1 and 0.9. In Figure 9, the
consumed time of HGES is also 0.0016 s, which improves the
processing speed, respectively, 37 times and 585 times
compared with that of 0-1 programming when Q is 0.1 and
0.7. In the case of 40 tasks in Figure 8, the minimum
consumed time of 0-1 programming is 0.103 s when Q is 0.1.
1e maximum consumed time is 0.346 s when Q is 0.9. 1e
consumed time of HGES is 0.019 s, which improves the
processing speed, respectively, 5.42 times and 18.21 times
compared with that of 0-1 programming when Q is 0.1 and
0.9. In Figure 9, the consumed time of HGES is also 0.019 s,
which improves the processing speed, respectively, 5.6 times
and 50.5 times compared with that of 0-1 programming
when Q is 0.4 and 0.9. In the case of 80 tasks in Figure 8, the
minimum consumed time of 0-1 programming is 0.402 s
whenQ is 0.1.1emaximum consumed time is 2.368 s when
Q is 0.7. 1e consumed time of HGES is 0.047 s, which

Table 1: 1e hardware and software environments.

Hardware platform A Hardware platform B Software environment
CPU I5-7500 I5-7500

Windows10 +VS2015 +CUDA 9.2

System memory 8GB 8GB
GPU GeForce GTX 1060 GeForce GTX 2080
GPU memory 6GB 8G
GPU
architecture Pascal Turing

SM 10 46
CUDA cores
per SM 128 64

Table 2: Benchmark tasks.

Application Description Input data range
Matrix multiplication
(MM) Using tiling approach to make use of shared memory to ensure data reuse 200∗5120 through

8100∗68400
Histogram (HG) 64-bin histogram calculation of arbitrary-sized 8-bit data array 64M through 2048M
Scalar products (SP) Scalar products of a given set of input vector pairs 16M through 384M

BlackScholes (BS) Evaluation fair call and put prices for a given set of European options by
Black–Scholes formula

20000000 through
98000000

vectorAdd (VA) Implements element by element vector addition 20M through 400M
mergeSort (MS) Bottom-level merge sort (binary search-based) 2M through 32M

Computational Intelligence and Neuroscience 11

improves the processing speed, respectively, 8.55 times and
50.38 times compared with that of 0-1 programming whenQ
is 0.1 and 0.7. In Figure 9, the consumed time of HGES is
0.046 s, which improves the processing speed, respectively,
11.1 times and 21.2 times compared with that of 0-1 pro-
gramming when Q is 0.1 and 0.4. It can be seen from the
experimental data that HGES has a great advantage in
processing speed. Figures 10 and 11 show the energy
comparison between HGES and the 0-1 programming. 1e
trend shown in Figures 10 and 11 is similar to that in
Figures 8 and 9, and it will not be repeated here.

Figures 12 and 13 show the comparison of allocation
time of HGES and 0-1 programming with different pa-
rameters in each processor.1e abscissa in figures represents
the variousmethods, which are the different parameters of 0-

1 programming and the HGES method; the ordinate is the
ratio of processor allocation time. It can be seen from figures
that with the increase in the value of Q parameter, the more
balanced the execution time of each processor is, and there is
no solution whenQ is taken as 1. WhenQ is 0.9 in Figure 12,
the proportion of task execution time of each processor is
30%, 33.07%, and 37.59%, respectively. 1e HGES method
makes the proportion of task execution time of each pro-
cessor to be 33.69%, 33.08%, and 33.23%, respectively. When
Q is 0.9 in Figure 13, the proportion of task execution time of
each processor is 30%, 30.03%, and 39.97%, respectively.1e
HGES method makes the proportion of task execution time
of each processor to be 33.69%, 33.08%, and 33.23%, re-
spectively. In conclusion, HGES is more balanced in task
allocation than that of 0-1 programming.

0
1
2
3
4
5
6

Ti
m

e

0.2 0.4 0.6 0.8 1.00.0
Q Value

10

(a)

0

2

4

6

8

Ti
m

e

0.2 0.4 0.6 0.8 1.00.0
Q Value

20

(b)

0

2

4

6

8

10

Ti
m

e

0.2 0.4 0.6 0.8 1.00.0
Q Value

40

(c)

0
4
8

12
16
20
24

Ti
m

e

0.2 0.4 0.6 0.8 1.00.0
Q Value

80

(d)

Figure 4: Comparison of time difference between HGES and 0-1 programming in scheduling results of platform A.

0

1

2

3

4

Ti
m

e

0.2 0.4 0.6 0.8 1.00.0
Q Value

10

(a)

0

1

2

3

4

5

6

Ti
m

e

0.2 0.4 0.6 0.8 1.00.0
Q Value

20

(b)

0
1
2
3
4
5
6
7
8

Ti
m

e

0.2 0.4 0.6 0.8 1.00.0
Q Value

40

(c)

0
2
4
6
8

10
12
14

Ti
m

e

0.2 0.4 0.6 0.8 1.00.0
Q Value

80

(d)

Figure 5: Comparison of time difference between HGES and 0-1 programming in scheduling results of platform B.

300

330

360

390

420

450

En
er

gy

0.2 0.4 0.6 0.8 1.00.0
Q Value

10

(a)

400

480

560

En
er

gy

0.2 0.4 0.6 0.8 1.00.0
Q Value

20

(b)

900

1050

1200

1350

1500

En
er

gy

0.4 0.6 0.8 1.00.2
Q Value

40

(c)

1200

1350

1500

1650

1800
En

er
gy

0.2 0.4 0.6 0.8 1.00.0
Q Value

80

(d)

Figure 6: Energy comparison between HGES and 0-1 programming in scheduling results of platform A.

12 Computational Intelligence and Neuroscience

240
255
270
285
300
315
330

En
er

gy

0.2 0.4 0.6 0.8 1.00.0
Q Value

10

(a)

0.2 0.4 0.6 0.8 1.00.0
Q Value

270
300
330
360
390
420
450

En
er

gy
20

(b)

0.4 0.6 0.8 1.00.2
Q Value

40

700
770
840
910
980

1050

En
er

gy

(c)

800

900

1000

1100

1200

1300

En
er

gy

0.2 0.4 0.6 0.8 1.00.0
Q Value

80

(d)

Figure 7: Energy comparison between HGES and 0-1 programming in scheduling results of platform B.

0.00

0.01

0.02

0.03

0.04

0.05

Ti
m

e

0.2 0.4 0.6 0.8 1.00.0
Q Value

10

(a)

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e

0.2 0.4 0.6 0.8 1.00.0
Q Value

20

(b)

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e

0.2 0.4 0.6 0.8 1.00.0
Q Value

40

(c)

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e

0.2 0.4 0.6 0.8 1.00.0
Q Value

80

(d)

Figure 8: Performance comparison of HGES and 0-1 programming itself of platform A.

0.00

0.01

0.02

0.03

0.04

0.05

Ti
m

e

0.2 0.4 0.6 0.8 1.00.0
Q Value

10

(a)

0.2 0.4 0.6 0.8 1.00.0
Q Value

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e

20

(b)

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e

0.2 0.4 0.6 0.8 1.00.0
Q Value

40

(c)

0.2 0.4 0.6 0.8 1.00.0
Q Value

0.0

0.5

1.0

1.5

2.0

2.5
Ti

m
e

80

(d)

Figure 9: Performance comparison of HGES and 0-1 programming itself of platform B.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

En
er

gy

0.2 0.4 0.6 0.8 1.00.0
Q Value

10

(a)

0

5

10

15

20

En
er

gy

0.2 0.4 0.6 0.8 1.00.0
Q Value

20

(b)

0
4
8

12
16
20
24

En
er

gy

0.2 0.4 0.6 0.8 1.00.0
Q Value

40

(c)

0
5

10
15
20
25
30
35
40
45
50

En
er

gy

0.2 0.4 0.6 0.8 1.00.0
Q Value

80

(d)

Figure 10: Energy comparison between HGES and 0-1 programming itself in platform A.

Computational Intelligence and Neuroscience 13

Figures 14 and 15 show the performance and energy
comparison of PH, EET, and HGES under 80 tasks. 1e
abscissa of (a) and (b) in each figure is the different
scheduling methods.1e ordinate in (a) represents time, and

the ordinate in (b) represents energy consumption. Sub-
figures (a) in Figures 14 and 15 show the time of each
method; from figures, we can see HGES method is more
balanced than PH and EET methods in assigning tasks. In

10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

En
er

gy

0.2 0.4 0.6 0.8 1.00.0
Q Value

(a)

20

0.2 0.4 0.6 0.8 1.00.0
Q Value

0

4

8

12

16

20

En
er

gy
(b)

40

0.2 0.4 0.6 0.8 1.00.0
Q Value

0
4
8

12
16
20
24

En
er

gy

(c)

80

0

5

10

15

20

25

En
er

gy

0.2 0.4 0.6 0.8 1.00.0
Q Value

(d)

Figure 11: Energy comparison between HGES and 0-1 programming itself in platform B.

GPU2
GPU1
GPU3

Ex
ec

ut
io

n
Ti

m
e R

at
io

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

H
G

ES

Q
_0

.1

Q
_0

.4

Q
_0

.5

Q
_0

.6

Q
_0

.7

Q
_0

.8

Q
_0

.9

Q
_1

Q
_0

.2

Q
_0

.3

Figure 12: Comparison of allocation time of HGES and 0-1 programming with different parameters of platform A.

GPU2
GPU1
GPU3

Ex
ec

ut
io

n
Ti

m
e R

at
io

 (%
)

Q
_0

.5

Q
_0

.7

Q
_0

.4

Q
_0

.2

Q
_0

.6

Q
_0

.3

Q
_1

Q
_0

.9

H
G

ES

Q
_0

.1

Q
_0

.8

0.0

0.2

0.4

0.6

0.8

1.0

Figure 13: Comparison of allocation time of HGES and 0-1 programming with different parameters of platform B.

14 Computational Intelligence and Neuroscience

Figure 14, the time difference of executing tasks between the
processor with the highest time and the processor with the
lowest time of PH is 9.52 s; the time difference of executing
tasks between the processor with the highest time and the
processor with the lowest time of EET is 5.39 s; the time
difference of executing tasks between the processor with the
highest time and the processor with the lowest time of HGES
is 0.2036 s. In Figure 15, the time difference of executing
tasks between the processor with the highest time and the
processor with the lowest time of PH is 6.018 s; the time

difference of executing tasks between the processor with the
highest time and the processor with the lowest time of EET is
3.518 s; the time difference of executing tasks between the
processor with the highest time and the processor with the
lowest time of HGES is 0.13 s. 1ese show that the HGES is
more effective than PH and EET in assigning tasks. Sub-
figures (b) in Figures 14 and 15 show the energy of each
method and its executing tasks. From figures, we can see
HGES consumes the least energy in scheduling tasks than
that of other methods. In Figure 14, PH consumes 1465.20 J

GPU1
GPU2
GPU3

0

2

4

6

8

10

12

14

16
Ti

m
e

EET HGES PH

(a)

GPU1
GPU2
GPU3

0

200

400

600

800

1000

1200

1400

En
er

gy

EET HGES PH

(b)

Figure 14: Performance and energy comparison of HGES, PH, and EET in platform A.

GPU1
GPU2
GPU3

0

2

4

6

8

10

Ti
m

e

EET HGES PH

(a)

GPU1
GPU2
GPU3

EET HGES PH
0

150

300

450

600

750

900

1050

En
er

gy

(b)

Figure 15: Performance and energy comparison of HGES, PH, and EET in platform B.

Computational Intelligence and Neuroscience 15

energy; EET consumes 1355.61 J energy; HGES consumes
1140.76 J energy.1eHGES saves 22.14% energy than that of
PH and 15.84% energy than that of EET. In Figure 15, PH
consumes 1057.16 J energy; EET consumes 986.82 J energy;
HGES consumes 848.65 J energy. 1e HGES saves 19.72%
energy than that of PH and 14.01% energy than that of EET.
In conclusion, HGES is more effective than PH method and
EET in task allocation and energy saving.

6. Conclusion

Today’s society is increasingly advocating sustainable de-
velopment, and the energy consumption of heterogeneous
systems has become an important issue that people are
concerned about. 1is paper studies the energy saving
problems of heterogeneous systems composed of multiple
identical GPUs, analyzes the reasons for their energy con-
sumption, summarizes the characteristics of the solution
obtained by the 0-1 programming, lists the shortcomings of
the current method, and adopts heuristic and greedy
methods to solve the energy saving problem of heteroge-
neous systems composed of multiple identical GPUs. Based
on this, the HGES scheduling method is proposed. Firstly,
HGES assigns all tasks to each processor in the system, and
the average value and standard variance of execution time
are calculated. 1en, the tasks are divided into high-value
part and low-value part according to the average and
standard variance value.1e high-value part is allocated first
according to the accumulated time of each processor, and
then the low-value part is allocated after the allocation of the
high-value part. In order to verify the effectiveness and
rationality of HGES, experiments were conducted with
different numbers and different input tasks and different
methods are used to compare.1e experimental results show
that the HGES has better effect on performance and energy
saving.

Data Availability

1e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

1e authors declare that they have no conflicts of interest.

Acknowledgments

1is work was supported in part by the National Natural
Science Foundation of China under Grant Nos. 61772352,
61272104, 61472050, and 61862051; National Key Research
and Development Project of China under Grant Nos.
2020YFB1711800 and 2020YFB1707900; the Science and
Technology Foundation of Guizhou Province under Grant
No. [2019]1447; the Science and Technology Foundation of
Sichuan Province under Nos. 2019YFG0400, 2020YFG0479,
2020YFG0322, and 2020GFW035; the Provincial Key Sup-
ported Research and Development Project of Sichuan under
Grant No. 2019-YF05-01790-GX; the Philosophy and Social
Science Planning Youth Project of Guizhou Province under

Grant No. 18GZQN36; the Top-Notch Talent Program of
Guizhou Province under Grant No. KY[2018]080; the Nature
Science Foundation of Educational Department under Grant
Nos. [2022]094 and [2022]100; and the Nature Science
Foundation of Qiannan Normal University for Nationalities
under Grant Nos. 2020qnsyzd03, QNSY2018JS013,
QNSYRC201714, and QNSYRC201715. 1e authors also
acknowledge group of embedded real-time system for their
effective advice and constructive suggestions.

References

[1] P. Tafidis and J. Bandeira, “Interregional European cooper-
ation platform to promote sustainable transport through ICT:
an overview of best practices,” in Proceedings of the 10th
international conference on PErvasive technologies related to
assistive environments, pp. 255–260, ACM Press, Island of
Rhodes, Greece, June 2017.

[2] C. Louche, T. Busch, P. Crifo, and A. Marcus, “Financial
markets and the transition to a low-carbon economy: chal-
lenging the dominant logics,” Organization & Environment,
vol. 32, no. 1, pp. 3–17, 2019.

[3] P. R. Shukla, J. Skea, E. Calvo Buendia et al., Climate Change
and Land: An IPCC Special Report on Climate Change, De-
sertification, Land Degradation, Sustainable Land Manage-
ment, Food Security and Greenhouse Gas Fluxes in Terrestrial
Ecosystems, Intergovernmental Panel on Climate Change,
Technical Report, 2019.

[4] B. Guo and Y. Shen, Principle and Application of Green
Computing, Science Press, Beijing, China, 2013.

[5] J. Cao and M. Huan, “Study on the mechanism of energy
structure optimization to low-carbon economy,” in Pro-
ceedings of the Sixth International Forum on Decision Sciences,
pp. 229–242, Springer, Singapore, September 2020.

[6] M. S. Raisinghani and E. C. Idemudia, “Green information
systems for sustainability,” Greenpeace Business, pp. 565–579,
2019.

[7] B. Guo, Y. Shen, and Z. Shao, “1e redefinition and some
discussion of green computing,” Chinese Journal of Com-
puters, vol. 32, no. 12, pp. 2311–2319, 2009.

[8] R. Chen, Z. Shao, D. Liu, Z. Feng, and T. Li, “Towards efficient
NVDIMM-based heterogeneous storage hierarchy manage-
ment for big data workloads,” in Proceedings of the 52nd
annual IEEE/ACM international symposium on Micro-
architecture(MICRO’52), pp. 849–860, ACM Press, Columbus
OH, USA, October 2019.

[9] B. Chen, B. Chen, Y. Wang, D. Liu, Z. Shao, and Y. Guan,
“Brentuximab vedotin for relapsed or refractory Hodg-
kin’s lymphoma,” Drug Design, Development and
6erapy, vol. 9, no. 6, pp. 1729–1733, 2015.

[10] R. Chen, Q. Guan, C. Ma, and Z. Feng, “Delay-based I/O
request scheduling in SSDs,” Journal of Systems Architecture,
vol. 98, pp. 434–442, 2019.

[11] J. Zhan, Y. Li, W. Jiang, J. Yu, and J. Yu, “Branch-aware data
variable allocation for energy optimization of hybrid
SRAM+NVM SPM☆,” Journal of Systems Architecture,
vol. 109, Article ID 101797, 2020.

[12] T. Li, V. K. Narayana, and T. El-Ghazawi, “A Power-Aware
Symbiotic Scheduling Algorithm for Concurrent GPU Ker-
nels,” in Proceedings of the 21th International Conference on
Parallel and Distributed Systems, pp. 562–569, IEEE Press,
Melbourne, Australia, December 2015.

16 Computational Intelligence and Neuroscience

[13] Q. Jiao, M. Lu, and H. P. Huynh, “Improving GPGPU Energy-
Efficiency through Concurrent Kernel Execution and DVFS,”
in Proceedings of the 2015 IEEE/ACM International Sympo-
sium on Code Generation and Optimization, pp. 1–11, IEEE
Press, San Francisco, CA, USA, Febraury 2015.

[14] J. Li, B. Guo, Y. Shen, D. Li, and Y. Huang, “Kernel scheduling
approach for reducing GPU energy consumption,” Journal of
computational science, vol. 28, pp. 360–368, 2018.

[15] D. Li, S. Byna, and S. Chakradhar, “Energy-aware Workload
Consolidation on GPU,” in Proceedings of the 40th Interna-
tional Conference on Parallel Processing Workshops,
pp. 389–398, IEEE Press, Taipei, Taiwan, September 2011.

[16] Y. Wen, M. Oboyle, and C. M. P. Fensch, “MaxPair: Enhance
OpenCL Concurrent Kernel Execution by Weighted Maxi-
mum Matching,” in Proceedings of 23nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming(PPoPP’18), pp. 40–49, ACM Press, Vienna, Aus-
tria, February 2018.

[17] Y. Wen and M. Oboyle, “Merge or separate?: multi-job
scheduling for OpenCL kernels on CPU/GPU platform,” in
Proceedings of the 22nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPOPP’17),
pp. 22–31, ACM Press, Austin, USA, February 2017.

[18] D. Rupanetti and H. Salamy, “Task allocation, migration and
scheduling for energy-efficient real-time multiprocessor ar-
chitectures,” Journal of Systems Architecture, vol. 98, pp. 17–
26, 2019.

[19] Q. Liu and W. Luk, “Heterogeneous Systems for Energy
Efficient Scientific Computing,” in Proceedings of the Inter-
national Symposium on Applied Reconfigurable Computing,
pp. 64–75, Springer Press, Hong Kong, China, March 2012.

[20] R. Barik, N. Farooqui, and B. T. Lewis, “A Black-Box Ap-
proach to Energy-Aware Scheduling on Integrated CPU-GPU
Systems,” in Proceedings of the 2016 International Symposium
on Code Generation and Optimization, pp. 70–81, ACM Press,
Barcelona, Spain, March 2016.

[21] R. Kaleem, R. Barik, and T. Shpeisman, “Adaptive Hetero-
geneous Scheduling for Integrated GPUs,” in Proceedings of
the 23th International Conference on Parallel Architecture and
Compilation Techniques, pp. 151–162, IEEE Press, Edmonton,
Canada, August 2014.

[22] K. Ma, Y. Bai, X. Wang, W. Chen, and X. Li, “Energy con-
servation for GPU-CPU architectures with dynamic workload
division and frequency scaling,” Sustainable Computing: In-
formatics and Systems, vol. 12, pp. 21–33, 2016.

[23] T. Li, T. Zhang, G. Yu, J. Song, and J. Fan, “Minimizing
temperature and energy of real-time applications with pre-
cedence constraints on heterogeneous mpsoc systems,”
Journal of Systems Architecture, vol. 98, pp. 79–91, 2019.

[24] S. Bansal, R. K. Bansal, and K. Arora, “Energy-cognizant
scheduling for preference-oriented fixed-priority real-time
tasks,” Journal of Systems Architecture, vol. 108, Article ID
101743, 2020.

[25] M. Silberstein and N. Maruyama, “An exact algorithm for
energy-efficient acceleration of task trees on CPU/GPU ar-
chitectures,” in Proceedings of the 4th Annual International
Conference on Systems and Storage, ACM, New York, NY,
USA, June 2011.

[26] J. Y. Jang, H. Wang, E. Kwon, J. W. Lee, and N. S. Kim,
“Workload-aware optimal power allocation on single-chip
heterogeneous processors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 6, pp. 1838–1851, 2016.

[27] K. Zhong, D. Liu, L. Liang et al., “Energy-Efficient in-memory
paging for smartphones,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 35, no. 10,
pp. 1577–1590, 2016.

[28] O. Valery, P. Liu, and J.-J. Wu, “A collaborative CPU-GPU
approach for principal component analysis on mobile het-
erogeneous platforms,” Journal of Parallel and Distributed
Computing, vol. 120, pp. 44–61, 2018.

[29] Y. N. Khalid, M. Aleem, R. Prodan, and M. A. Islam, “E-
OSched: a load balancing scheduler for heterogeneous mul-
ticores,” 6e Journal of Supercomputing, vol. 74, no. 10,
pp. 5399–5431, 2018.

[30] T. Hamano, T. Endo, and S. Matsuoka, “Power-aware Dy-
namic Task Scheduling for Heterogeneous Accelerated
Clusters,” in Proceedings of the 2009 IEEE International
Symposium on Parallel & Distributed Processing, pp. 1–8, IEEE
Press, Rome, Italy, May 2009.

[31] C. H. H. Huang, “Hierarchical and dependency-aware task
mapping for network-on-chip based embedded systems,”
Journal of Systems Architecture, vol. 108, Article ID 101740,
2020.

[32] C. Gregg, M. Boyer, and K. Hazelwood, “Dynamic Hetero-
geneous Scheduling Decisions Using Historical Runtime
Data,” in Proceedings of the Workshop on Applications for
Multi-And Many-Core Processors, Springer Press, San Jose,
Canada, 2011.

[33] V. Jimenez, L. Vilanova, I. Gelado, M. Gil, G. Fursin, and
N. Navarro, “Predictive runtime code scheduling for het-
erogeneous architectures,” in International Conference on
High-Performance Embedded Architectures and Compilers
(HiPEAC 2009), pp. 19–33, Springer Press, Paphos, Cyprus,
January 2009.

[34] H. J. Choi, D. O. Son, S. G. Kang, J. M. Kim, H.-H. Lee, and
C. H. Kim, “An efficient scheduling scheme using estimated
execution time for heterogeneous computing systems,” 6e
Journal of Supercomputing, vol. 65, no. 2, pp. 886–902, 2013.

[35] J. K. Li, B. Guo, Y. Shen, and D. Li, “Low-power scheduling
framework for heterogeneous architecture under perfor-
mance constraint,” KSII Transactions on Internet and Infor-
mation Systems, vol. 14, no. 5, pp. 2003–2021, 2020.

[36] J. Li, J. Li, M. Li et al., “Minimizing energy of heterogeneous
computing systems by task scheduling approach,” Journal of
Circuits, Systems, and Computers, vol. 29, no. 12, Article ID
2050194, 2020.

Computational Intelligence and Neuroscience 17

