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�e purpose of this study was to investigate the state estimation problem for the multisensor descriptor fractional systems. Firstly,
the descriptor fractional order system was transformed into two nondescriptor fractional order subsystem based on the singular
value decomposition method; then, the descriptor fractional Kalman �lters for the subsystems were proposed based on projection
theory, which e�ectively solved the state estimation problem of the descriptor fractional order system with singular matrix; on this
basis, the track fusion fractional Kalman �lter of the multisensor descriptor fractional system is proposed by using the track fusion
algorithm.�e state estimation accuracy of multisensor descriptor fractional order systems is greatly improved. Simulation results
show the e�ectiveness of the proposed algorithm.

1. Introduction

Descriptor system theory is an independent branch of
modern control theory, which began to form and gradually
developed in the 1970s. It has important application in the
mechanical system [1] and circuit system [2]. Due to the
complexity and uncertainty of its system, the research on
descriptor systems is relatively slow. With the passage of
time, the research on normal systems has become more and
more perfect, and people begin to pay attention to descriptor
systems. In just a few decades, descriptor systems have also
made good progress [3, 4]. A fractional descriptor reduced-
order nonlinear observers for a class of fractional descriptor
continuous-time nonlinear systems was proposed by Kac-
zorek [3]. Necessary and su�cient conditions for the pos-
itivity of descriptor linear and su�cient conditions for
nonlinear systems were established by Kaczorek [4]. A new
algorithm for generalized second order systems was pro-
posed by using nonpolynomial spline technique [5].

�e fractional order Kalman �lter combines the con-
ventional integer order Kalman �lter with the fractional
order algorithm to obtain a Kalman �lter suitable for
fractional order systems [6–8]. �e fractional Kalman �l-
ters were proposed by Koh et al. [9–11]. �e State

estimation problem was solved for the fractional-order
systems with coloured measurement noise [12, 13]. Re-
cently, many fractional Kalman �lters with unknown in-
formation were presented. �e unknown prior
information, polytopic uncertainties in the �nite frequency
domain, and the direct and networked measurements were
considered by Liu et al. [14–16]. �e time-delay in the
observation signal and unknown input were studied in refs
[17, 18]. For the nonlinear fractional Gaussian system, the
fractional particle �lters were systematically investigated in
refs [19, 20]. At present, the descriptor fractional system
has been widely applied to many �elds such as electrical
circuits [21, 22] and sensor fault estimation [23]. However,
the �ltering problem is seldom studied for the descriptor
fractional system.

Multisensor information fusion �ltering theory is an
important branch of multisensor information fusion, which
is a new frontier subject [24, 25]. It is the cross �eld of
multisensor data fusion and Kalman �ltering theory [26].
Track fusion algorithm is a globally suboptimal weighted
state fusion algorithm. Compared with other algorithms,
although it can not get the optimal solution, it is also used by
more and more people because of its simplicity, conve-
nience, and small amount of calculation [27].
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In this paper, based on the existing fractional filtering
theory, a descriptor system track fusion fractional Kalman
filter is proposed, which will effectively solve the problem of
state estimation and fusion estimation of descriptor frac-
tional order systems. )e simulation results show the ef-
fectiveness and feasibility of the proposed algorithm.

)e remainder of this paper is arranged as follows: in
Section 2, the linear discrete descriptor fractional system is
provided, and it is transformed into two normal subsystems.
)e local and track fusion fractional Kalman filters for the
descriptor systems are introduced in Section 3, and the
simulation example analysis is presented in Section 4. Fi-
nally, the conclusion is drawn in Section 5.

2. Problem Formulation

Consider the multisensor linear discrete descriptor frac-
tional systems with L sensors.

EΔc
x(k + 1) � Aαx(k) + w(k), (1)

x(k + 1) � Δc
x(k + 1) − 

k+1

j�1
(−1)

j
cjx(k + 1 − j), (2)

yi(k + 1) � Cix(k + 1) + vi(k + 1), i � 1, . . . , L, (3)

where c is the fractional order, x(k) ∈ Rn and yi(k) ∈ Rm are
the state and the measurement of i th sensor, Aα and Ci are
constant matrices.

ck � diag
p1

k
  . . . . . .

pn

k
   ,

Δc
x(k + 1) �

Δc
x

(1)
(k + 1)

⋮

Δc
x

(n)
(k + 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(4)

where p1, . . . pn denotes the orders of state equation, n de-

notes the dimension of state equation, pl

j
  denotes com-

bination
pl

j
  �

1, j � 0,

pl(pl − 1) . . . (pl − j + 1)/j!, j> 0,
 l � 1, . . . , n.

Assumption 1. E is a singular matrix, i.e. rankE< n,
detE � 0.

Assumption 2. )e system is regular, i.e. ∃z ∈ C (complex
domain), we have det(zE − Aα)≠ 0.

Assumption 3. w(k) and vi(k) are uncorrelated white noise
with zero mean and variance matrices Qw and Ri, i.e.

Ε w(j)w
Τ
(j)  � Qw,

Ε w(k)w
Τ
(j)  � 0,

Ε vi(j)v
Τ
(j)  � Ri,

Ε vi(k)v
Τ
(j)  � 0,

Ε vi(k)v
Τ
(j)  � 0.

(5)

with E as the mean sign and T as the transpose symbol.

Assumption 4. )e system is completely observable, i.e.,

rank
zE − Aα

Ci

  � n,

rank
E

Ci

  � n.

(6)

Assumption 5. )e initial state x(k) is independent with
w(k) and vi(k).

In order to deduce the Kalman estimator for the de-
scriptor fractional systems, we must transform the de-
scriptor systems into normal systems at first.

From Assumption 1 and 2, it follows that the non-
singular matrices P and Q are yielded.

PEQ �
S1 0

S2 0
 ,

PAαQ �
T1 0

T2 T3
 ,

CiQ � Ci1 Ci2 .

(7)

where S1 is a nondissimilar lower triangular matrix,
T1 ∈ Rn1×m1 is a quasilower triangular matrix, T3 ∈ Rn2×n2 is a
nondissimilar lower triangular matrix, n1 + n2 � n and it is
defined as follows:

x(k) � Q
x1(k)

x2(k)
 ,

Pw(k) �
w1(k)

w2(k)
 ,

(8)

then (1) and (3) are transformed into the following
subsystems:

Δc
x1(k + 1) � �Aαx1(k) + S

−1
1 w1(k). (9)

yi1(k) � �Cix1(k) + ηi(k), (10)

x2(k) � T
−1
3 S2S

−1
1 T1 − T2 x1(k)

+ T
−1
3 S2S

−1
1 w1(k) − T

−1
3 w2(k).

(11)
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where
�Aα � S

−1
1 T1,

�Ci � Ci1 + Ci2T
−1
3 S2S

−1
1 T1 − Ci2T

−1
3 T2,

ηi(k) � Ci2T
−1
3 S2S

−1
1 w1(k) − Ci2T

−1
3 T2w2(k) + vi(k).

(12)

From (9), (10) and (12), we known that the input noise
and the measurement noise are correlated, i.e.,

Si � Ε w1(k)ηΤi (k)  � Q1 Ci2T
−1
3 S2S

−1
1 
Τ
, (13)

with Q1 as the variance of w1(k).
Formally adding a term equal to zero to the right of (9), it

follows that

Δc
x1(k + 1) � �Aαx1(k) + S

−1
1 w1(k)

+ Ji yi1(k) − �Cix1(k) − ηi(k) .
(14)

with undetermined n1 × m matrix Ji, setting Aαi � �Aα − Ji
�Ci,

wi1(k) � S−1
1 w1(k) − Jiηi(k), we have the following state

equation:

Δc
x1(k + 1) � Aαix1(k) + Jiy1(k) + w1(k), (15)

and the measurement equation is also (10). Noting Εw1(k) �

0 that, and

Ε w1(k)ηT
i (j)  � S

−1
1 Qw1 Ci2T

−1
3 S2S

−1
1 
Τ

− JiQηi δkj.

(16)

Making Ji as

Ji � S
−1
1 Qw1 Ci2T

−1
3 S2S

−1
1 

T
Q

−1
ηi . (17)

we have E[w1(k)ηT
i (j)] � 0, i.e. w1(k) and ηi(t) are un-

correlated, it is easily known that the covariance matrix of
w1(k) is

E w1(k)w
T
(j)  � S

−1
1 Qw1 S

−1
1 

T
− S

−1
1 Qw1 Ci2T

−1
3 S2S

−1
1 

T
Q

−1
ηi Ci2T

−1
3 S2S

−1
1 S

−1
1 Qw1 

T
 δkj. (18)

so w1(k) is a white noise with zero mean and variance
matrix S−1

1 Qw1(S−1
1 )T − S−1

1 Qw1(Ci2T
−1
3 S2S

−1
1 )TQ−1

ηi Ci2T
−1
3 S2

S−1
1 (S−1

1 Qw1)
T and is uncorrelated with white noise ηi(k).

)e descriptor fractional Kalman filtering problem is to
find the local and track fusion linear minimum variance
estimator xi(k|k) � x

T
i1(k|k) x

T
i2(k|k)  and x0(k|k) �

x
T
01(k|k) x

T
02(k|k)  for the state x(k) based on the mea-

surements yi(1), . . . , yi(k).

3. Track Fusion FractionalKalmanFilter for the
Descriptor System

Lemma 1 (sec [11]). (Aαi,
�Ci) is a completely observable yes.

Proof. See Ref. [11]. □

Theorem 1. For the fractional subsystem 1 (2), (10), and (15)
with white uncorrelated noises, we have the local recursive
fractional Kalman filter.

xi1(k|k) �xi1(k|k − 1)

+ Ki1(k) yi1(k) − �Cixi1(k|k − 1) ,
(19)

Δc
xi1(k|k − 1) � Aαixi1(k − 1|k − 1) + Jiyi1(k − 1) (20)

xi1(k|k − 1) �Δc
xi1(k|k − 1)

− 
k

j�1
(−1)

j
cjxi1(k − j|k − j),

(21)

Pi1(k|k − 1) � Aαi + c1 pi1(k − 1 | k − 1) Aαi + c1 
T

+ 
k

j�2
cjPi1(k − 1|k − 1)c

Τ
j ,

(22)

Pi1(k|k) � I − Ki1(k)�Ci Pi1(k|k − 1), (23)

Ki1(k) � Pi1(k|k − 1)�C
T

i
�CiPi1(k|k − 1)�C

T

i + Qηi 
−1

.

(24)

with the initial value xi1(0|0) � x01, Pi1(0|0) � P01.

Proof. Applying the projection theorem yields to the linear
minimum mean square error estimation [11],

xi1(k|k −1) � Ε x1(k)|Y
(k−1)
i 

� Ε

Aαix1(k −1) + Jiyi1(k −1) + wi1(k −1)−



k

j�1
(−1)

j
cj x1(k − j)|Y

k−1
i 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Aαi
Ε x1(k −1)|Y

k−1
i  + Ji

Ε yi1(k −1)|Y
k−1
i 

− 
k

j�1
(−1)

j
cj

Ε x1(k − j)|Y
(k−1)
i .

(25)

where Y
(k)
i denotes the state space constructed by

yi1(1), . . . , yi1(k), and Ε[x1(k)Y
(k−1)
i ] denotes the projec-

tion of x1(k) based on Y
(k−1
i .

Computational Intelligence and Neuroscience 3



From the linear properties of conditional expectation, we
have the following equation [11]:

xi1(k|k − 1) � Aαixi1(k − 1|k − 1) + Jyi1(k − 1)

− 
k

j�1
(−1)

j
cjxi1(k − j|k − j).

(26)

)en, it is easy to obtain that (19) and (20).

From Ref. [11], it follows that

yi1(k|k − 1) � Ε yi1(k)|Y
(k−1)
i  � Ε�Cix1(k) + ηi(k)|Y

(k−1)
i

� �Cix1(k|k − i).

(27)

Furthermore, applying (2) yields

xi1(k|k) � Ε x1(k)|Y
(k)
i  � Ε x1(k)|Y

(k−1)
i  + Ε xi1(k|k − 1)y

Τ
i1(k|k − 1)  × Ε yi1(k|k − 1)y

Τ
i1(k|k − 1) 

− 1
yi1(k|k − 1)

Ε xi1(k|k − 1)y
Τ
i1(k|k − 1)  � Ε xi1(k|k − 1) yi1(k) − yi1(k|k − 1)( 

Τ
  � Pi1(k|k − 1)�C

T

i

Ε yi1(k|k − 1)y
Τ
i1(k|k − 1)  � Ε yi1(k) − yi1(k|k − 1)(  yi1(k) − yi1(k|k − 1)( 

Τ
 

� �CiP1(k|k − 1)�C
T

i + Qηi.

(28)

with xi1(k|k − 1) � x1(k) − xi1(k|k − 1), yi1(k|k − 1) �,
y1(k) − yi1(k|k − 1), Pi1(k|k − 1) �Ε[(x1(k) −xi1(k|k − 1)

(x1(k) − xi1(k|k − 1))Τ].

Furthermore, it is obtained that

xi1(k|k) � xi1(k|k − 1) + Pi1(k|k − 1)�C
T

i
�CiPi1(k|k − 1)�C

T

i + Qηi . yi1(k) − �Cixi1(k|k − 1) . (29)

Taking
Ki1(k) � Pi1(k|k −1)�C

T

i (�CiPi1(k|k −1)�C
T

i + Qηi)as the gain
matrix of fractional Kalman filter, we have (19) and (24).

x1(k) − xi1(k|k − 1) � Aαix1(k − 1) + Jiyi1(k − 1) + wi1(k − 1) − 
k

j�1
(−1)

j
cjx1(k − j) − Aαixi1(k − 1|k − 1)

+ Jiyi1(k − 1) + 
k

j�1
(−1)

j
cjxi1(k − j|k − j)

� Aα − c1  x1(k − 1) − xi1(k − 1|k − 1)(  − 
k

j�2
(−1)

j
cj x1(k − j) − xi1(k − j|k − j)(  + wi1(k − 1).

(30)

With Ε[(x1(m) − xi1(min −1|min − 1) × (x1(m)−

xi1(min− 1|min − 1))Τ] � 0, m≠ n, Ε(x1(m)−Ε[(x 1(m) −

xi1(min − 1|min − 1) ×(x1(m) − xi1(min − 1|min− 1))Τ] �

0 wΤi1(k − 1)] � 0, m � 1, · · · , k − 1.
)en, we have the following equation:

Pi1(k|k − 1) � Ε x1(k) − xi1(k|k − 1)(  x1(k) − xi1(k|k − 1)( 
Τ

 ,

� Aαi − c1 Pi1(k|k) Aαi − c1 
Τ

− 
k

j�2
cjPi1(k − j|k − j)c

Τ
j + Qηi.

(31)

so we have (22).
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x1(k) − xi1(k|k) � x1(k) − xi1(k|k − 1) − Ki1(k) yi1(k) − �Cixi(k|k − 1) ,

� x1(k) − xi1(k|k − 1) − Ki1(k) x1(k) + ηi(k) − �Cixi1(k|k − 1) ,

Pi1(k|k) � E x1(k) − xi1(k|k)(  x1(k) − xi1(k|k)( 
T
,

� I − Ki1(k)�Ci Pi1(k|k − 1) I − Ki1(k)�Ci 
T

+ Ki1(k)Pi1(k|k)Ki1(k) � I − Ki1(k)�Ci Pi1(k|k − 1).

(32)

)en, we have (23). )e proof is completed. □

Theorem 2. For the subsystems 2 (2), (10), and (15) with
uncorrelated noise noises, we have the local recursive frac-
tional Kalman filter.

x2(k|k) � T
−1
3 S2S

−1
1 T1 − T2 x1(k|k),

P2(k|k) �T
−1
3 S2S

−1
1 T1 − T2 P1(k|k) T

−1
3 S2S

−1
1 T1 − T2  

T
.

(33)

Proof. Applying the projection theorem, is easy to obtain
based on (11).

Using the track fusion algorithm, )eorem 1 and 2, we
can easily obtain the two sensor track fusion state estimator.

xom(k|k) � P
−1
im(k|k) + P

−1
jm (k|k)

− 1
P

−1
im(k|k)xim(k|k) + P

−1
jm(k|k)xjm(k|k) , m � 1, 2. (34)

and the estimation error covariance is

P0m(k|k) � P
−1
im(k|k) + P

−1
jm(k|k) 

− 1
, m � 1, 2. (35)

If the fusion system is composed of L sensors, it can be
easily extended to the general form. □

Remark 1. From (39), we have P−1
0m(k|k)>P−1

im(k|k), then we
can easily obtain the relationship Pom(k|k)<Pim(k|k). It
shows the estimation accuracy of track fuser is higher than
that of local estimators.

Theorem 3. For the fractional subsystem 1 (2), (10), and (15)
with white uncorrelated noises, we have the track fusion
recursive fractional Kalman filter.

x01(k|k) � P01(|kk) 
L

i�1
P

−1
i1 (|kk)xi1(|kk),

P01(k|k) � 

n

i�1
P

−1
i1 (|kk)⎡⎣ ⎤⎦

− 1

.

(36)

Proof. It is easily obtained by applying the track fusion
algorithm to )eorem 1. □

Theorem 4. For the subsystem 2 (2), (10), and (15) with
uncorrelated noise noises, we have the track fusion recursive
fractional Kalman filter.

x02(k|k) � T
−1
3 S2S

−1
1 T1 − T2 x01(k|k),

P02(k|k) � T
−1
3 S2S

−1
1 T1 − T2 P01(k|k) T

−1
3 S2S

−1
1 T1 − T2  

T

(37)

Proof. It is easily obtained based on )eorem 2 and 3. □

4. Simulation Example Analysis

Considering the canonicality of generalized fractional order
systems,

−2 0 0 0

−1 1.2 0 0

1 0 0 0

0.5 −0.9 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Δc
x(k + 1) �

−1 0 0 0

−0.38 1.08 0 0

1 0.5 −2 0

0 −1 −0.7 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(k) +

0.5

1

0.5

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ w(k),

yi(k + 1) � 1 −2 2 1 x(k + 1) + vi(k + 1), i � 1, 2, 3.

(38)
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where w(k) and v(k) are uncorrelated white noises with zero

means and variances

1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and R1 � 0.5, R2 � 0.5,

R3 � 3, n1 � 0.8, n2 � 1.1, S1 �
−2 0
1 −1.2 , S2 �

1 0
0.5 −0.9 , T1 �

1 0
−0.38 1.08 , T2 �

1 0.5
0 −1 , T3 �

−2 0
−0.7 1 , C1 � 1 −2 , and C2 � 2 1 . )e problem is

to find the local descriptor fractional Kalman filter for the
subsystem 1 xi(k|k) � [xi1(k|k), xi2(k|k) and track fusion
descriptor fractional Kalman filter x0(k|k) � [x01(k|k),

x02(k|k), x03(k|k), x04(k|k)]. )e simulation results are
given by Figures 1–6.

From )eorem 1 and 2, we have the local and track
fusion descriptor fractional Kalman filter for the sub-
system 1, which are given by Figures 1–4. From
Figures 1–3 we find that the descriptor fractional
Kalman filter can realize the state estimation for the
state of subsystem 1. Compared with Figures 1–3, it is
shown that the estimation curve in Figure 4 is closer to
the true value curve than that in Figures 1–3. It means
that the track fusion algorithm improves the
estimation accuracy. From [28], we know that the in-
clusion relation of covariance ellipses and the size re-
lation of error variance matrices are necessary and
sufficient conditions for each other. It shows that the
estimation error variance matrix is smaller than that of
each local estimation error variance matrices by Figure 5.
Based on the track fusion estimator of subsystem, the
track fusion fractional Kalman filter for the subsystem 2

0
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Figure 3: Comparison between the true and estimated values of state for the subsystem 1 based on sensor 3. (a)x1(k) and x31(k|k). (b)x2(k)

and x32(k|k).

0
-4

-2

0

2

4

20 40 60 80 100
k (step)

120 140 160 180 200

x11 (t)
estimated x11 (t)

(a)

0
-10

-5

0

5

10

20 40 60 80 100
k (step)

120 140 160 180 200

x12 (t)
estimated x (12t)

(b)

Figure 1: Comparison between the true and estimated values of state for the subsystem 1 based on sensor 1. (a)x1(k) and x11(k|k). (b)x2(k)

and x12(k|k).
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Figure 2: Comparison between the true and estimated values of state for the subsystem 1 based on sensor 2. (a)x1(k) and x21(k|k). (b)x2(k)

and x22(k|k).
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is given by Figure 6. In a word, the presented descriptor
fractional Kalman filtering algorithm are effective and
realizable.

5. Conclusions

Based on the existing fractional filtering theory and the
knowledge of descriptor systems, this paper normalizes the
multisensor fractional order descriptor system, carries out

fractional filtering, and then presents the track fusion
fractional filters, which provides a new form for the filtering
of descriptor systems. )e introduction of the track fusion
algorithm greatly improves the state estimation accuracy for
the multisensor descriptor fractional order systems. Com-
pared with [6], the information fusion state estimation
problem for the multisensor descriptor fractional systems is
solved. )e simulation results show the validity and feasi-
bility of the proposed algorithm.
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Figure 6: Comparison between the true and track fusion estimated values of state for the subsystem 2. (a)x3(k) and x03(k|k). (b)x4(k) and
x04(k|k).
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Figure 4: Comparison between the true and track fusion estimated values of state for the subsystem 1. (a)x1(k) and x01(k|k). (b)x2(k) and
x02(k|k).
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