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The improvement of small target detection and obscuration handling is the key problem to be solved in the object detection task.
In the field operation of chemical plant, due to the occlusion of construction workers and the long distance of surveillance
shooting, it often leads to the phenomenon of missed detection. Most of the existing work uses multiple feature fusion strategies to
extract different levels of features and then aggregate them into global features, which does not utilize local features and makes it
difficult to improve the performance of small target detection. To address this issue, this paper introduces Point Transformer, a
transformer encoder, as the core backbone of the object detection framework that first uses a priori information of human skeletal
points to obtain local features and then uses both self-attention and cross-attention mechanisms to reconstruct the local features
corresponding to each key point. In addition, since the target to be detected is highly correlated with the position of human skeletal
points, to further boost Point Transformer’s performance, a learnable positional encoding method is proposed by us to highlight
the position characteristics of each skeletal point. The proposed model is evaluated on the dataset of field operation in a chemical
plant. The results are significantly better than the classical algorithms. It also outperforms state-of-the-art by 12 percent of map

points in the small target detection task.

1. Introduction

In recent years, the application of computer vision in
chemical safety has developed rapidly. In the field operation
of chemical plant, the most important element is safety,
which often leads to very serious consequences due to the
illegal construction by workers. With the development of
deep learning, using this method to solve the safety problems
in the field operation of chemical plant has become popular
research nowadays. In surveillance video analysis, object
detection algorithms, such as YOLO [1] and SSD [2], are
often used to detect and identify construction sites using a
large amount of training data, which can significantly im-
prove the on-site safety protection level, as well as providing
timely warnings for detected violations. However, in the field
operation of chemical plant, the application scenario is very
different from the traditional object detection task, where the

equipment worn by workers needs more attention from the
model because a large number of targets to be detected are
highly relevant. It is difficult to solve this problem using
classical object detection algorithms such as YOLO.

Many recent studies have introduced feature fusion
modules [3] to improve the recognition rate of object de-
tection algorithms in small targets and occlusion phe-
nomena. By merging shallow local features and deep global
features [4], the model can focus on both local features and
global semantic information. These strategies have been
widely used in object detection algorithms and have the
potential to significantly improve the performance of al-
gorithm on dataset, such as COCO [5]. In order to further
improve the detection performance, many studies have
introduced attention mechanism modules [6, 7] to recon-
struct local features at occluded locations. By designing the
attention mechanism, the model can make better use of local
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features in reasoning and determining the occluded regions.
However, these strategies and improvements are only for the
general scene application. They do not consider the special
characteristics in the field operation of chemical plant. The
objects to be detected are mainly focused on the construction
workers, and how to extract the local features of the con-
struction workers is the key to improving the recognition
performance of our algorithm.

As shown in Figure 1, most of the targets to be detected
in our research are highly related to construction workers
and show a clear dependence on the skeletal point locations
of workers, e.g., helmets are always worn on the head and
gloves are always worn on the hand, which can be used as a
priori knowledge for the detection task. Based on this, we use
the trained OpenPose [8] model to extract 25 skeletal point
positions of the human body as a priori information for the
local features of subsequent model reconstruction. This local
feature extraction method has been used to reconstruct
human local features in many ReID [9, 10] studies. For
example, Wang et al. [11] used human skeletal point features
to solve the partial occlusion phenomenon, and inspired by
this, human skeletal point local feature extraction will also be
applied to our network structure.

First of all, in the backbone design, feature extraction
methods such as traditional ResNet [12] and EfficientNet
[13] are not used. Although these backbones have achieved
excellent results in many classical challenges, the relatively
deep network also impacts the construction of local features,
which makes it difficult to improve the detection perfor-
mance of small targets. We chose the popular transformer
[14] architecture as the core feature extraction module to
address this problem. Although the attention mechanism
module can be used to reconstruct each local feature area
better, most of the areas in our task are background, and we
want the workers themselves to be given more attention by
the model. Consequently, when the transformer module was
designed, the method of gated positional encoding was
introduced to focus on extracting local features in the human
skeletal point region. Compared to the classic transformer
architecture, we designed the module to focus on recon-
structing features in the human skeletal points while
downplaying irrelevant features such as the background.

Although the traditional self-attention [15] approach can
reconstruct each part of the features by weight calculation
when the attention mechanism module is designed, it is
difficult to capture the interrelationship between the local
features. In LoFTR [16], self-attention is used to reconstruct
local features, and cross-attention is used to highlight the
relationship between different key points. Inspired by this,
the cross-attention method is also introduced to highlight
the relational properties of different skeletal point regions
when the human skeletal point region features are recon-
structed. When construction workers work together, the
tools and equipment they use are nearly the same, and the
cross-attention approach also allows the characteristics of
the construction scene and the collaborative work to be
learned by the model.
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Since transformer architectures are inherently insensitive
to position information, it is often necessary to introduce
positional encoding [17] features. Transformer architectures
often use a fixed positional encoding method to highlight the
characteristics of different regions, but these methods only
give a unique identifier to each local feature region and do not
have learning capabilities. In our study, most of the targets to
be detected show obvious positional relationships. For ex-
ample, the helmet must be at the top of the protective goggles.
Based on this, a learnable positional encoding method is
proposed by us. On one hand, the importance of position
information is highlighted so that the model can better learn
the position relationship between different objects. On the
other hand, due to the different importance of human skeletal
point features at different positions, for example, a large
number of targets to be detected are concentrated on the
hands and head, and a few on the human torso. Therefore, it is
also possible to differentiate depending on the position of the
target to be detected.

Based on our knowledge, there is currently no research
on applying human skeletal points as local features in object
detection algorithms for the field operation chemical plant
scene. To solve the problem of small target detection and
covering in this scene, we propose a novel end-to-end object
detection framework with a transformer as the core back-
bone for feature extraction, and an improved attention
mechanism is designed to highlight the relationship between
local features. Additionally, since location information is
particularly important in our research scenario, a learnable
positional encoding method is also introduced to highlight
the location relationship properties between the targets to be
detected. The main contributions of our research are
summarized as follows:

(i) A new type of end-to-end object detection backbone
is proposed that optimizes the local feature ex-
traction through the features of human skeleton
points while designing and improving the attention
module to improve the model’s detection
performance.

(ii) Multiple attentional mechanisms are proposed to
reconstruct the local features of human skeletal
points and their interdependence information by
using  self-attention  and  cross-attention,
respectively.

(iii) In the transformer structure, a learnable positional
encoding method is proposed to optimize the fea-
ture reconstruction of each local skeletal point by
utilizing a weighting mechanism of the local
features.

2. Related Works

2.1. Object Detection Models. This section introduces some
fundamental concepts in the field of object detection and
then elaborates and illustrates several popular attention
mechanism modules and positional encoding methods.
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FIGURE 1: An example of labeling data, it can be seen from the figure that a large number of targets to be detected are highly correlated with

construction personnel.

2.2. Back Bone Design. The object detection algorithm is
composed of four primary modules that were developed
during the process. (1) Operations for data augmentation and
preprocessing. (2) Design of backbone in feature extraction
module. (3) Feature fusion module. (4) Output module. The
data augmentation module is primarily used to increase the
amount of training data and enhance the model’s general-
izability. The backbone is generally trained by classical clas-
sification models, such as those obtained by using ResNet on
the ImageNet dataset, and the feature fusion module is mainly
used to increase the diversity of features, such as the SPP [18]
layer in YOLOVS. The output layer mainly uses the learned
features to get the prediction results.

Almost all object detection algorithms perform data
augmentation [19, 20]operations on the training data to
expand the amount of data. For example, by applying CutMix
operations to the data, the data is rotated and scaled in
EfficientDet [21], and the overall Map is significantly im-
proved. In YOLOV5 [19] Mosaic Data Augmentation op-
erations are also used to increase the amount of training data.
Utilizing data augmentation can significantly improve the
model’s generalizability and minimize the risk of overfitting.

Numerous object detection algorithms choose DenseNet
[22, 23] and EfficientNet [13] as core feature extraction
modules for backbone design. On one hand, these models
perform well across all classical datasets. On the other
hand, due to the abundance of pre-trained models, dif-
ferent pre-trained models can be selected based on the
difference of application scenarios. However, because these
models require more convolutional layers to achieve a
larger receptive field, they tend to focus on global features
and ignore some local features. As a result, the traditional
backbone design method is better suited to large target

detection tasks and will be significantly less effective at
detecting small targets. Given that the majority of the
targets in our task are related to construction workers and
fall under the category of small target detection tasks, we
will design and implement a new end-to-end network
structure for the backbone selection.

2.3. Transformer Encoder. Both feature concatenation and
fusion methods are widely used in the design of feature
fusion modules, for example, the FPN [21, 24]method is used
in mask R-CNN [25] to extract multiple layers of features,
and SPP [18] is used in YOLOV5 to obtain richer features.
The advantage of these methods is that they allow for the
simultaneous use of deep and shallow features, which im-
proves the model’s detection performance of targets of
various sizes. However, because these methods do not take
into account the application scenario and do not select the
appropriate features based on the characteristics of the
detected target, we chose the transformer architecture,
which is better suited for local feature reconstruction. The
transformer architecture has demonstrated excellent per-
formance in a variety of computer vision tasks, including
object detection in DETR [26] using the transformer’s en-
coder and decoder, and as the backbone of the Swin
transformer [27, 28]in detection and classification scenarios,
significantly improving model performance. The attention
mechanism module is at the heart of the transformer ar-
chitecture, as it recombines the features of each region by
calculating the weight relationship between each local fea-
ture. The advantage of this approach is that the model can
pay more attention to local features and also learn more
about the relational properties between regions.



2.4. Positional Encoding Method. Due to the insensitivity of
the transformer architecture to position information, ad-
ditional position feature is typically added to highlight local
features. BERT [29] uses a fixed positional encoding method
to emphasize contextual information, while VIT [15] uses
absolute positional encoding method to improve the model’s
classification performance. Typically, the obtained positional
features must be fused with local features, which introduces
position information into each local feature. However, be-
cause positional features are fixed, they cannot be updated
for learning purposes, limiting their usefulness. In this task,
we will enhance the positional encoding method in order to
highlight the positional characteristics of various local
features.

3. Methodology

Our proposed framework is illustrated in Figure 2 and
consists of the following points: a transformer encoder-
based feature extraction backbone (A), which is used to
extract features from the input image, mainly involving two
attention mechanism modules, self-attention and cross-at-
tention; a gated position encoding computation module (G),
which is used to highlight the positional characteristics
between different skeletal points; and a Head-Attention
module (H), which uses the positional characteristics of
skeletal points to enhance the detection effect of the output
layer.

3.1. Revisiting Transformers and Small Target Detection Task.
Classical object detection algorithms use ResNet, Effi-
cientNet, etc. as the backbone [30] of feature extraction,
which uses numerous layers of convolution in order to
obtain a larger receptive field and then extracts features at
different levels for the obtained different levels of feature
maps. Although global features can be extracted at different
scales by using operations such as FPN [24], the backbone
with convolutional layers as the core is still insensitive to
local features and it is difficult to obtain the relational
properties between different regions.

The advantage of designing a backbone based on self-
attention is that it can extract features for each local location;
in turn, the problem of insensitivity to small targets in
convolution is improved. The traditional transformer ar-
chitecture first divides the input image according to a given
region, for example, 16 * 16 as the base unit for local feature
reconstruction in VIT [15]. In order to use the transformer
module to process the input image (x € RF*WXC), we re-
shape it and get the sequence input (x; € RY X120y N
represents the length of the sequence, and L represents the
size of each token. But the problem of doing this is that if the
input image is large and the selected window is small, it
makes the computation inefficient, but if a larger window is
set, it is difficult to mention the fine-grained extraction of
local features, which has become one of the main problems
of transformer framework nowadays. It is difficult to handle
more fine-grained local feature extraction due to the limi-
tation of computational magnitude. In our task, some large
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targets such as fire extinguishers and scaffolds are easily
detected, which makes our main research problem focus on
the construction workers’ bodies, and these objects to be
detected are usually highly correlated with human skeletal
point locations. Based on this, the human skeletal point
information will be used to highlight the characteristics of
local features, thus allowing the model to focus more on
small targets in the human body.

In the field operation chemical plant scene, if the ap-
plication scenario involves only a single construction job,
there is usually not much occlusion, which also makes the
detection task relatively easy. However, in our task, it is
almost always a multi-person collaborative work scenario of
multi-people collaborative construction, which makes many
local features easily obscured from each other. To solve the
problem, inspired by LoFTR [16], both self-attention and
cross-attention feature extraction methods are chosen to be
applied to local feature computation, which can reconstruct
local features by self-attention on one hand and extract
relational properties between skeletal points by cross-at-
tention on the other hand. For self-attention layers, the input
features are key points at different locations of the same
person. For cross-attention layers, the input features are key
points that differ from person to person. All attention
mechanism calculation methods are calculated by

Attention (Q,K,V) = softmax(QKT)V, (1)

where Q indexes query vectors, K indexes key vectors, and V
is the value vectors.

3.2. Local Feature Extraction. We first obtain the skeletal
point positions of all construction workers by a trained pose
estimation model [31, 32], 25 keypoints are obtained, all
consisting of 2D coordinates. The feature map obtained after
the backbone is expanded into a sequence for subsequent
calculation of the attention mechanism module. The tra-
ditional transformer calculates self-attention on the entire
sequence. However, in our task, we need to pay more at-
tention to local features, that is, the regions corresponding to
the key points. Based on this, we map the key points to the
expanded sequence (downsampling ratio consistent with the
backbone), which corresponds to part of the token in the
corresponding sequence. In the calculation of self-attention,
except for the tokens where the key points are located, the
weights calculated from other positions are truncated, and
the maximum is not over 0.05. The reason for this is that we
do not want the model to consider too many background
features. In the calculation of cross-attention, we design a
mask mechanism, only the tokens corresponding to the key
points will be updated. After the attention mechanism, we
reshape the entire sequence to get its feature map (consistent
with the size of the feature map in the last layer of the
backbone).

A set of learnable weight parameters is designed by us to
weight each local feature corresponding to each skeletal
point. The reason for this is that most of the small targets to
be detected in our dataset are concentrated on the hands and
head, while the large targets to be detected are mainly on the
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torso. In order to improve the detection of small targets, we
want the model to focus more on the hand and head lo-
cations and slightly on the body and leg locations. Based on
this, we designed an additional set of learnable gated pa-
rameters to combine the local features and weighted the
features at the location of skeletal points before calculating
attention with other local features.

In the process of calculating self-attention, the difference
with the original VIT method is that we weight the features at
the locations of skeletal points and the weight parameters are
learnable, which has the advantage of making the model
more focused on the areas where small target objects exist,
which is the core of our research problem. We do not use the
same or random weights for the initialization of all skeletal
points, but rather give larger weights for the hands and head,
initialized to 10, and smaller weights for the body and leg key
points, initialized to 2. For the location of other non-human
skeletal points, it is consistent with the traditional trans-
former architecture. The self-attention method based on
gated parameters allows the model to utilize more prior
knowledge and focus on local feature extraction of the
human body.

When constructing local features, it is difficult to
highlight the location relationship between skeletal points if
only the self-attention method is used; for example, the
helmet is always located above the glove location, and if one
worker in the current construction scene is wearing gloves
and helmet, all other workers should also be required to wear
gloves and helmet. In chemical scenes, usually all workers in
an area wear the same work equipment, but due to the small
target and the existence of obscuration and other problems,
there are frequently some missed tests phenomenon. In

order to make full use of the positional features between
objects, we additionally add the cross-attention module to
optimize local feature extraction. As shown in Figure 3, for
each skeletal point region of the construction worker, the
attention between it and other construction workers’ skeletal
points is calculated in the same way as the traditional self-
attention, and the superimposed features are averaged if
there are multiple people in the figure. In the experiment, we
will discuss the effects brought by these two attention
mechanism modules separately.

3.3. The Prominent Role of Positional Encoding. The ad-
vantage of using a transformer as a backbone for feature
extraction is that it has strong reconstruction ability for local
features, but such methods as self-attention are insensitive to
positional information which only gives a unique identifier
to each region and does not have an actual feature repre-
sentation. In the field operation chemical plant scene, po-
sitional information is particularly important, e.g., tools are
always held in the hands and safety buckles are always tied
on the body, and there are obvious location characteristics
between these objects and human skeletal points. Based on
this, we introduced an additional learnable positional
encoding method to highlight the importance of local fea-
tures when designing the transformer architecture. This
module is only for self-attention calculation and initializes
the position encoding of the sequence expanded by the
output feature map of the backbone. Different from the
initialization method in VIT, the position encoding we
designed is learnable, not a fixed parameter. In addition, it is
not only related to its absolute position, but also needs to
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consider the characteristics of K and V corresponding to its
token. Inspired by Wang et al. [17], for the positional
encoding features as shown in Figure 4, we learn positional
information for Q, K, and V, respectively, and its learned
positional features are weighted together with the recon-
structed features computed in self-attention, and the posi-
tional encoding method is computed in the same way as in
Axial-DeepLab [17].

y=

PEN i (0)

softmaxp(qz:kp + qz:r;_o + kirﬁ_o)(vp + r;_o),

(2)

where r’;_o € R% represents the learnable positional
encoding for K, and r”_, € R%« is the same for V.

In Medical Transfgrmer [33], the positional encoding
method is initialized randomly because the features at each
location do not have a priori knowledge, but in our task, it is
obvious that the location of human skeletal points has a more
important role. Based on this, we do not choose a random
approach when initializing the positional features, but per-
form a Gaussian initialization centered on each key point,
which will result in a larger weight value for the region where
the skeletal points are located and a smaller weight value for
the other locations, which also matches the distribution of the
objects to be detected in our task. Since the targets to be
detected are highly concentrated in the hands and heads, we
also give larger weight values when initializing their positional
feature and the rest of the skeletal point locations are ini-
tialized with the same Gaussian initialization method.

3.4. Improvement of the Output Layer. Since the position
encoding feature is very sensitive to the features corre-
sponding to the keypoints, we use a fully connected layer to

its probability map to weight the output layer. In the object
detection task, multiple anchor sizes and multiple output
layers are usually designed to make the model adaptable to
different size targets. Though the network structure is
designed to focus on the attention method and emphasize
the importance of positional information, the local features
corresponding to the skeletal points cannot be well utilized if
the output layer is still chosen similar to the YOLOV5 head-
layer, which only predicts the features at different levels
separately, so we perform an additional weighting calcula-
tion for the output features. As presented in 3.3, the
learnable positional encoding features are multiplied with
each output layer feature in YOLOV5 as shown in Figure 5.
This enables more attention to be paid to the human skeletal
point area; thus, improving the detection performance.

4. Experiments

In this chapter, we evaluate our proposed method in the field
operation chemical plant scene. We set up several sets of
ablation experiments and analyze them in comparison with
the corresponding performance of the mainstream object
detection algorithms presently. We will present the exper-
imental setup and results in the following sections.

4.1. Datasets Description. The data we selected came from the
scene of field operation chemical plant, and because the sur-
veillance video was blurred, so we chose to shoot the con-
struction site in person. All videos were shot with 1080p
explosion-proof equipment. To make the data more diverse, we
chose different angles and distances for the same construction
scene. All video data were cut into images at 100 frames intervals
to build a dataset and annotated it, and all data were manually
annotated using the LabelMe toolkit. The overall dataset consists
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of 2400 annotated images, but since our research focuses on the
presence of small targets and occlusions, some easy-to-detect
data samples were excluded from the original dataset. The
dataset was randomly split where the training set consisted of
1281 images and the test set consisted of 200 images. For the
selection of labels, there are 19 categories of labeled objects in
total, including helmets, goggles, gloves, construction equip-
ment, fire extinguishers, and signs. However, since objects such

as fire extinguishers and scaffolds are usually easier to be de-
tected, we only kept the objects related to construction workers
in the labels, and the total number of labels is 13.

4.2. Influence of Different Attention Methods. In this part, we
conduct a comparative experimental analysis of different
design approaches for the attention mechanism module. In



the next experiments, we choose the evaluation method
consistent with the COCO benchmark [5]. Firstly, all human
skeletal point locations are obtained using the OpenPose
model. Next in the backbone selection, we conducted the
following experiments, respectively: (1) directly using the
native YOLOV5 model; (2) using only the basic transformer
encoder as the feature extraction backbone; (3) using both
self-attention and cross-attention as the feature extraction
backbone. In the above experiments, all attention mecha-
nism modules do not use positional encoding features.
Table 1 shows that if only the traditional object detection
algorithm is used, it is difficult to get better performance in
the dataset with mostly small targets, and when using
transformer as the backbone, although the detection effect
can be slightly improved on small target objects, the overall
map value is not significantly improved. When both self-
attention and cross-attention modules are used, the detec-
tion performance is not only improved by 5.6 percentage
points on small targets, but also the overall map value is
improved by 3.1 percentage points. This can be attributed to
the fact that by using multiple attention mechanism strat-
egies allows the model to learn richer and more reliable local
features, and by cross-attention also allows the model to
learn the relational properties between different local
features.

4.3. Influence of Position Encoding Method. Since the targets
to be detected shows an obvious dependence on the location
of human skeletal points, we designed a learnable positional
encoding method. In the next experiments, we will analyze
the performance of different positional encoding methods
on the results which are used with self-attention and cross-
attention as the base backbone. First, we used the traditional
transformer positional encoding method that is consistent
with VIT, and Table 2 shows that the introduction of po-
sitional encoding method can increase the overall Ap value
of the model by up to 1.3 percentage points, which has a
significant impact on the detection performance. Further-
more, the traditional positional encoding method was
replaced with a learnable gated positional encoding method,
and the gated values (weights) were initialized to 0.05 for Q,
K, and V. Since the method of positional encoding is ran-
domly initialized at the beginning of training, which may
lead to instability occurred during model training, on the
basis of that, a smaller initial value was chosen for this
parameter. From Table 2, it can be concluded that the use of
our proposed gated positional encoding method can im-
prove the overall detection performance by 2.4 percentage
points. On the effect of detection for small target objects, the
improvement is 1.9 percentage points relative to the tra-
ditional positional encoding method. This can be attributed
to the fact that, for the detection task of the equipment worn
by the construction personnel, a large number of targets to
be detected show obvious characteristics of positional re-
lationships, and by training the learnable positional
encoding method, the model can better learn the positional
dependencies between different objects.
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TaBLE 1: Influence of different backbone design on feature
encoding.

Backbone design AP AP50 AP75 APs APm APl
YOLOV5-X 314 401 332 17.3 38.7 535
Transformer encoder 31,6 404 33.7 18.6 39.6 49.8
Self-attention and cross-

345 421 371 242 421 456

attention

TaBLE 2: Ablation studies of positional encoding method.

Positional-encoding AP AP50 AP75 APs APm API

method
Without positional 345 421 371 242 421 456
encoding
2D positional encoding 358 43.6 389 257 422 451
Learnable gated positional ;¢ o o 403 276 441 444

encoding

4.4. Influence of the Output Layer. In this part, we will
compare and analyze the effect of the output layer of the
object detection algorithm on the results. Three output layers
are selected in YOLOV5 for regression and classification
tasks after concat features from different layers, respectively,
using different receptive field features for the prediction of
different size targets. In our design, positional-encoded
weight mapping is additionally introduced on top of it to
further highlight the degree of influence of different skeletal
point locations on the results in the output layer. From
Table 3, it can be seen that the output layer with the po-
sitional-encoded weight mapping improves the detection of
small targets by 1.7 percentage points. This can be attributed
to the fact that, although multiple attention and location
encoding strategies are used in the backbone module, some
features and information are lost if not emphasized in the
output stage. The combination of positional-encoded weight
mapping with the output layer can significantly improve the
detection performance of our model for small target de-
tection tasks.

4.5. Comparison with the SOTA Model. To highlight the
effectiveness of our proposed method, in this chapter, we will
compare and analyze our method with the current SOTA
object detection algorithms. In order to analyze the effec-
tiveness of the transformer module in the field operation of
chemical plant, we conduct an experimental comparison
with EfficientDet and FCOS. Since the detection perfor-
mance of EfficientDet is directly related to the levels of
EfficientNet, we select EfficentNet-B0 and EfficentNet-B3 as
backbones to observe their effect on small target detection
task. In order to prove the importance of local features in the
small target detection task, we choose to compare with the
Transformer-based Deformable DETR method and select
ResNet50 as its backbone. In the data preprocessing stage, all
models use the same data augmentation strategy, and for the
fairness of the experiment, all models do not use multi-scale
input, and all input sizes are 640 * 640. Due to the instability



Computational Intelligence and Neuroscience 9
TaBLE 3: Influence of positional-feature-mapping on head-layer.
Head-layer type AP AP50 AP75 APs APm APl
YOLOV5-X head-layer 36.9 45.1 40.3 27.6 441 444
Positional-feature-mapping head-layer 37.2 45.5 40.7 29.3 42.1 432
TaBLE 4: Comparison with the SOTA model.
Method AP AP50 AP75 APs APm APl
FCOS 28.1 39.5 31.3 16.5 35.7 48.1
EfficentNet-B0-based EfficientDet 27.9 38.6 30.8 16.8 34.5 46.6
EfficentNet-B3-based EfficientDet 30.8 40.8 33.6 17.0 36.2 49.1
Transformer-based Deformable DETR 33.5 42.7 36.1 19.4 41.5 51.7
YOLOV5-X 31.4 40.1 33.2 17.3 38.7 53.5
Our proposed model 37.2 45.5 40.7 29.3 421 43.2

of the label balancing method during training, we did not use
this method for all models. From Table 4, it can be seen that
although the EfficientDet model has a good performance in
large target detection, it cannot effectively identify small
targets. In addition, when the levels of backbone layers
increased, the small target detection performance is not
improved. Although the transformer is used as the entire
encoder and decoder modules in Deformable DETR, there
are still problems in the small target detection task in the
field operation of chemical plant. Even if two-stage training
is performed on Deformable DETR, it is difficult to improve
its small target detection performance. Through the above
comparison experiments, it can be found that for the small
target detection problem in the field operation of chemical
plant, not only the feature relationship between regions
needs to be considered in the selection of network structure,
but also the local feature extraction module is required to
strengthen the model’s local perception ability.

4.6. Training Details. The overall training process of the
model is consistent with YOLOV5, using ADAM [34] as the
optimizer and choosing a moment value of 0.9, an initial
learning rate of 0.01, and a learning rate decay and early stop
strategy. All network structures are used in YOLOV5-X
structure except backbone design. All experiments are based
on the same evaluation criteria used in the COCO dataset
after 300 epochs of iterations of RTX3090.

5. Conclusions

In the field operation of chemical plant, there are often small
target detection tasks and construction workers obscure
each other. How to perform local feature extraction becomes
the key to improve the detection performance. To solve this
problem, we propose the point transformer, which first uses
self-attention and cross-attention for local feature recon-
struction of human skeletal points. In addition, since the
target to be detected in our task is highly correlated with the
location of the skeletal points of the construction workers,
we designed a learnable positional encoding method to
highlight the importance of location information in order to
make better use of this priori information. It is shown in

experiments on the scene of field operation chemical plant
dataset that the proposed point transformer outperforms
present-day classical object detection algorithms. Our ap-
proach can be seen as an application of optimizing the
performance of small target detection tasks using local
features of the human body. However, this has not yet been
exploited due to the obvious synergistic relationship be-
tween the movement changes of the skeletal points during
the construction work, which exhibits graph structural
properties. Our future work will aim at using the graph
model to construct local features of the human body to
further improve the detection performance [35].

Data Availability
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