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Federated learning has received sustained attention in recent years for its distributed training model that fully satis�es the need for
privacy concerns. However, under the nonindependent identical distribution, the data heterogeneity of di�erent parties with
di�erent data patterns signi�cantly degrades the prediction performance of the federated model. Additionally, the federated
model adopts simple averaging in the model aggregation phase, which ignores the contributions of di�erent parties and further
limits the model performance. To conquer the above challenges, we propose a new cross-domain federated data modeling
(CDFDM) scheme by combining the attention mechanism. Firstly, to mitigate the poor model performance caused by data
heterogeneity, we propose a shared model that adjusts the number of shared data assigned to users according to their data size,
which e�ectively alleviates data heterogeneity while avoiding shared data from overwriting the user’s individual data features.
�en, we introduce the attention mechanism in the model aggregation phase, which assigns weights to users according to their
contributions, thus improving the model performance. Finally, we conducted a series of experiments on two real-world datasets
(MNIST and CIFAR-10). �e results show that our CDFDM outperforms existing schemes in both nonindependent identical
distribution conditions. Furthermore, in terms of model prediction accuracy variation during the training phase, our approach is
more stable.

1. Introduction

In recent years, machine learning [1] has achieved notable
results in various �elds, such as recommendation [2] and
tra�c prediction [3]. �e emergence and continual ad-
vancement of neural networks, in particular, have led to
more indepth research in machine learning. Machine
learning’s tremendous performance is strongly reliant on
massive amounts of training data. Nonetheless, these
training data are typically dispersed across multiple parties
that are isolated from one another and pushed to form data
silos. For rising privacy concerns, it is challenging to collect
and organize these data including private information [4].
Federated learning (FL) [5] allows data silos to be broken
down by training cooperatively while ensuring that data are
stored locally for all parties.

FL [6] has garnered considerable attention since its in-
ception for its distributed training property. However, there
are still issues with data heterogeneity in the federated setting.
Persons of di�erent ages, for example, will generate diverse

daily data, and even among people of the same age, factors
such as area and occupation might have an impact on data
distribution, resulting in data heterogeneity between users.
Unfortunately, in that circumstance, the federated model’s
performance su�ers dramatically [7]. As a consequence, we
require a methodology to address the federated model’s
performance degradation caused by data heterogeneity.

Many existing works have investigated the challenge of
nonindependent identical (Non-IID) distribution of data
under federated learning [8]. Many algorithms take Non-IID
into account, as well as changes in communication capa-
bility, computational power, etc. [9, 10]. Simultaneously, due
to the signi�cant heterogeneity of data among users and the
inconsistency of user criteria for model performance, it is
impossible for a single global model to suit the needs of all
participants. Consequently, personalized federated learning
[11] is another approach to dealing with Non-IID. Using
shared model parameters as the initial parameters of the
model to replace the process of random initialization of the
model parameters results in improved prediction at the start
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of the model and speeds up model convergence. However, in
[12], the authors only use the shared model parameters as
initial parameters, with no further use of the shared model
parameters in the subsequent training process. (erefore,
the shared model in this manner is not beneficial for the
model’s parameter learning.

Although the aforementioned approaches improve the
federated learning model from various angles, there are still
certain issues that must be addressed. Not only is there data
heterogeneity among various parties but the amount of data
preserved by each party varies due to storage and compu-
tational restrictions. Once the parties’ data patterns and
amounts change, so does their significance in the global
model. (is is easy to comprehend since local models with
large data volumes will have a greater influence on the global
model. Nevertheless, when aggregating models to obtain the
global model, most methods use averaging, which overlooks
differences in user contributions and results in a limited
model performance increase.

To address the aforementioned issues, we propose a
novel cross-domain federated data modeling scheme
(CDFDM) to address the challenges of data isolation and
heterogeneity across various parties. (e main contributions
are summarized as follows:

(i) We propose a shared model and utilize it as the
initial model parameters to substitute the random
initialization process, which speeds up model
convergence and alleviates data heterogeneity. In
addition, we integrate the shared model into the
global model to fully exploit the value of shared data
and increase the global model’s accuracy.

(ii) In the model aggregation stage, we leverage the
attention mechanism to quantify the differences
between the local model and the global model and
give weights to them based on the quantified results.
(is weight represents the weight of the local model
in the global model after aggregation, and this
method accounts for disparities in the contributions
of distinct objects and effectively improves the
global model’s performance.

(iii) We conduct a series of experiments and compar-
ative analysis to investigate the effects of different
parameters on model performance under common
nonindependent identically distributed partitioning
patterns, and the experimental and analytical results
demonstrate the efficacy of our proposed scheme.

(e rest of the paper is organized as follows: Section 2
presents the research related to our work. Section 3 describes
our proposed federated model in detail followed by the
introduction of the experimental setup and a comparative
analysis of the experimental results in Section 4. Finally, a
summary is given in Section 5.

2. Related Work

(ewidely known aggregation approach in FL, FedAvg [13],
often fails when data are heterogeneous over a local client.

Xu et al. [14] proposed a modified federated averaging
(FedAvg) algorithm later, which was also unable to address
the issue of data heterogeneity. Zhao et al. [12] discovered
that the accuracy reduction can be explained by the weight
divergence and can be quantified by the Earth mover’s
distance (EMD). To tackle the statistical heterogeneity, they
proposed a heuristic approach to improve training accuracy
on Non-IID data by sharing a global subset with all the
devices.

Based on the abovementioned study, Wang et al. [15]
considered that different parties may conduct different
numbers of local steps each and proposed a normalized
averaging method, which eliminates objective inconsistency
while preserving fast error convergence to ensure that the
global updates are not biased. Li et al. [10] improved the local
objective, which directly limits the size of local updates.
Specifically, it introduces an additional regularization term
in the local objective function to limit the gap between the
local model and the global model. Karimireddy et al. [16]
proposed a new algorithm which introduces variance among
the parties and applies the variance reduction technique in
its local updates to account for “client-drift.”

In contrast to the previous studies, Shin et al. [17]
worked at the data layer by directly augmenting raw Non-
IID data while obscuring the features of the original data
through encoding to improve model performance. Li et al.
[18] proposed FedBN to conquer feature shift before model
aggregation, in which the client batch-norm layers are
updated locally without communicating to the server. In
addition, the authors demonstrated that FedBN converges
faster than the classical Fedavg scheme. In [19], the authors
proposed FedAMP, a new method employing federated
attentive message passing to facilitate similar clients to
collaborate more. (e FedAMP not only has stronger
convergence characteristics but also uses a deep neural
network as a personalized model for the client, which further
improves the model performance even more.

In [20], a novel federated learning framework is pro-
posed for learning a shared data representation across clients
and unique local heads for each client to tackle Non-IID,
which can effectively minimize the problem dimension per
client. In [21], a novel weight similarity-based client clus-
tering (WSCC) method is proposed, in which clients are
grouped into different groups based on their dataset dis-
tribution to tackle the nonindependent and identical dis-
tribution. It leverages the cosine distance of the client’s
weight parameters to estimate dynamic clustering iteratively
and automatically without the requirement for auxiliary
models or further data transfer.

Although the approaches discussed above have
approached the problem of nonindependent identical dis-
tribution in federated learning from various angles, they all
use averaging in the aggregation stage, neglecting guest
differences and restricting model performance.

3. Proposed Model

In this section, we first introduce our proposed sharedmodel
and then elaborate on our proposed federated model.
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3.1. Shared Model. In order to alleviate the Non-IID
problem, the method of the shared subset is proposed in
[12]. Firstly, a dataset is selected by a central server, and then
the same proportion of data from the selected dataset is
allocated to all users participating in the training. Users mix
the obtained data with their own data for training, which
helps to ease the problem of data heterogeneity to some
extent. However, in the case of data heterogeneity, different
users have different amounts of data but the amount of
shared data allocated to all users is equal, and the number of
local iterations and global communication of users is the
same in the experimental setup, which inevitably leads to a
certain degree of the diminished role of the local model of
users with small original data in the global model. To
overcome the aforementioned issue, we ameliorate the
method in [12] and propose a new shared model with the
following model architecture as shown in Figure 1.

As illustrated in Figure 1, the central server first selects a
batch of data as a shared dataset and then randomly selects a
portion of data from the dataset to distribute to users. In
order to ensure the balance between shared data and users’
private data, the amount of data allocated to different users
varies and Si denotes the proportion of data received by
users. Users with fewer data will receive fewer shared data,
and our ultimate focus is to minimize the influence of shared
data on the user’s own data features. We assume that the
ratio of shared data received by users to their own original
training data is 0.3.

After the shared data are distributed, the system obtains
the initial parameters ωt of the model through the initial-
ization operation and distributes them to each user, whereωt

denotes the global model parameters for the t th round of
communication. After receiving ωt, users train and update
ωt with their own data to obtain a local model lt+1

k for the
user κ. Following local training, all users upload their local
model to the central server, which performs model aggre-
gation. Because the users’ data are already fused with shared
data, the degree of heterogeneity is relatively reduced, so the
aggregation rule adopts the classical federated average al-
gorithm (FedAvg [13]) as follows:

M
t+1
s ←

1
K



K

κ�1
l

t+1
κ , (1)

where Mt+1
s denotes the shared model parameters obtained

after t + 1 rounds of communication.

3.2. Federated Model. Model aggregation is the most sig-
nificant part of federated learning; to measure the contri-
bution of users in the global model, we used the attention
aggregation approach [22]. (e hierarchical attention fed-
erated aggregation scheme is depicted in Figure 2 , which
displays only one iteration of the process before obtaining
the global model. (e purpose of our iteration and model
aggregation was to find a global model with good gener-
alization performance for all users.

(e abovementioned problem can be regarded as a
parametric solution problem, and in order to make full use

of the shared model, in addition to replacing the random
initialization process with the shared model, the shared
model is also incorporated into the global model, so our
objective optimization function is redefined as follows:

argmin
gt+1
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In equation (2), gt and lk
t+1 denote the global model

parameters at the t th iteration and the local model pa-
rameters of the user κ at the t + 1 th iteration, respectively.
L(·) function is used to find the difference between the two
models. ακ represents the attentive weight of the global
model for user κ. β represents the attention weight of the
shared model Ms, and μ is used to manually adjust the
proportion of the sharedmodel in the global model. It is vital
to note that both ακ and β are not fixed values but will be
trimmed throughout the iterative process until the model
converges or the iteration ends.

We assume that the model parameters have l layers, and
we utilize the Euclidean distance between the global model
and the local model to express the difference between them,
as shown in equation (3). gi denotes the parameter at the
layer i of the global model. Similarly, lk

i indicates the pa-
rameter value of the local model of user κ at layer i.

si
κ 

1
i�1 � gi

− l
i
κ

����
����. (3)

After obtaining the difference between the local model
and the global model through equation (3), we then utilize
the softmax to calculate the attention weight of the user κ at a
layer i. We repeat the abovementioned procedure to obtain
the weight value of the user κ at each layer and finally obtain
ακ, as shown in equation (4). Similar to the preceding step, in
order tomake full use of the sharedmodel, we also obtain the
weight value β for the shared model.

αi
k �

e
si
κ


k
k�1 e

si
κ

. (4)

After obtaining ακ and β, we derive the corresponding
gradient from equation (2), as follows :

∇ � 

κ

κ�1
ακ gt − l

κ
t+1(  + μβ gt − Ms( . (5)

For all the K users who participated in the training, the
algorithm optimization process is shown in the following
equation, where λ denotes the step size. (e global model
gt+1 is finally obtained after the t + 1 iteration.

gt+1←gt − λ 
k

k�1
αk gt − l

k
t+1  + μβ gt − Ms( ⎛⎝ ⎞⎠. (6)

4. Evaluation of Experiments

In this section, we describe the datasets and parameters used
in the experiments, followed by comparison and analysis of
the experimental outcomes.
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4.1. Datasets. In this work, we test the performance of our
proposed model using two publicly available datasets,
MNIST [23] and CIFAR-10 [24]. Both MNIST and CIFAR-
10 datasets contain ten di�erent types of images and are
mostly used for image classi�cation tasks. �e MNIST
dataset contains 70000 gray pictures, 60000 of which are
used as the training set to train the neural network model
and the remaining 10000 as the test set to test the model’s
performance. �e CIFAR-10 dataset contains 60000 colored
images separated into ten di�erent categories. 50000 photos
are used to train the network model in the experiment, while
the remaining 10000 images are utilized to test the model’s
performance.

In order to model the heterogeneous data distribution,
the training data are divided among users according to their
classes throughout the training process, and there are two
primary types of data division as follows: (1) 1-class Non-IID
categorizes the complete dataset by category, and each user
receives data from C classes, where C ∈ 1, 10{ } and (2) 2-
class Non-IID categorizes and sorts the images according to
the category they belong to, then each user is randomly

assigned y images, where the value of y ranges from 120 to
600, and the remaining images are �nally distributed to the
user with the least number of images. �e above two data
partitioning models not only simulate the heterogeneous
situation of user data patterns but also take into account the
di�erence in user data volume, which is more realistic.
Additionally, in the 2-class Non-IID, we divide the user data
into two parts, one from the sorted dataset and the other
taken at random from the entire disordered dataset. �e
percentage of data drawn from the sorted dataset is con-
trolled by P. Assuming that the number of photos allocated
to a user in the Non-IID (2) is 350 and P is equal to 0.8 at this
moment, only 280 images are drawn from the sorted dataset,
while the remaining 70 images are drawn from the full
disordered dataset.

4.2. Experimental Setting. In this work, we train the dataset
with a convolutional neural network to train the dataset
whose architecture is consistent with that in [13]. We use the
following notations in our experiments for our algorithm:
we utilize SGD as the model optimizer, and B represents the
batch size in SGD for each round of training. E is the number
of rounds of local iterations executed by federated learning
users. For example, if E equals 10, all users involved in
training will �rst execute 10 rounds of local training before
passing the model parameters to the central server. �e
following parameters are used for our experiments: for
MNIST dataset, B� 10 and 100, E� 1 and 5, learn rate η
� 0.01, and decay rate� 0.995; for CIFAR-10, B� 10 and 100,
E� 1 and 5, learn rate η� 0.1, and decay rate� 0.992. Besides,
μ is used to control the scale of the shared model, which can
be adjusted according to the actual situation.We set the total
number of users participating in training N to 100 and then
randomly select users with proportion f from 100 users for
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Figure 1: �e shared model.
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training and model update in each round, with default f
equal to 0.1, that is, 10 users are randomly selected from 100
users for local training and used for global model update in
each round.

�e meanings and settings of some basic parameters in
the experiment are shown above. �e batch size and the
number of local iterations both have a signi�cant impact on
the model performance. �ere are also some more pa-
rameters that need to be mentioned. In the �rst data division
method, each user can get C classes of images, where C can
be any integer between 1 and 10. In order to observe the
e�ect of C on the model performance, we conduct the
following experiments for the parameter C.

4.3.Results andAnalysis. To demonstrate the e�ectiveness of
our proposed scheme, we conducted a series of experiments
and thoroughly studied the experimental results. First, we
conducted experiments in the two previously indicated data
partition types, and the results are given in Figure 3. Above
all, we can observe that the initial model performance of our
scheme is superior to the other two schemes. �e greater
initial performance of our scheme is mostly due to our
shared model, which allocates shared data to users according
to their data volume, highlighting the local model more than
the undi�erentiated allocation method in [12] and thus
yielding better results. In contrast, the FedAvg scheme uses
random initialization to obtain the initial model, resulting in
the worst starting performance. Moreover, Figure 3 shows
that our scheme is more stable than the other two schemes,
notably in Figure 3(b), where the volatility of the other two
schemes is more visible.

In order to verify the e�ect of batch size B and the
number of local iterations E on the model performance, we
conducted experiments with di�erent parameters of the two
cases, and the experimental results are presented in Figure 4.
It should be noted that, except for modifying the values of B

and E, all other parameters remain unchanged as can be seen
from the tests shown in Figure 3.

Figure 4(a) depicts the prediction accuracy of our
CDFDM for B and E on the MNIST dataset using two
di�erent data partitioning patterns. We set C to 1 in Non-
IID (1), indicating that the training data for each partici-
pating user contains only one class of images. �e left panel
in Figure 4(a) shows that the model is valid only when
B� 100 and E� 1. After 100 rounds of training, the model
can achieve a prediction accuracy of 94%, while the model
fails under all other three combinations of parameter values.
Speci�cally, due to the high degree of heterogeneity in the
data, if B is set too low, the model cannot get enough in-
formation on the data distribution at each training; hence,
the model will not work when B is set to 10, regardless of
whether E is set to 1 or 5. Increasing the number of local
iterations in federated learning is intended to improve the
user’s local model’s representation of its data distribution
features. When the data heterogeneity is too large, increasing
the number of local iteration rounds causes the global model
derived after aggregation to no longer �t the local data
distribution. Hence, the model will still fail when E is equal
to 5, even if B is set to 100.

We set P to 0.8 in Non-IID (2), which means that 20 % of
the training data for each participating user is selected at
random from the MNIST dataset. When B is set to 10, a
problem similar to the Non-IID (1) setting develops, which is
likewise caused by the small value of B. After 100 rounds of
training, with B set to 100 and E to 1, the model prediction
accuracy can reach 92%. �e di�erence is that when B is set
to 100 and E to 5, the model prediction accuracy rises to 96%.
Figure 4(b) depicts our CDFDM’s model prediction accu-
racy on the CIFAR-10 dataset under two data partitioning
patterns with regard to B and E. Except for the di�ering
datasets, all parameters are consistent with Figure 4(a).
When B is set to 100 and E to 1, the model prediction
accuracy in Non-IID (1) can reach 47% after 100 rounds of
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Figure 3: Accuracy on two datasets. We set C equal to 1 under Non-IID (1) and P to 0.8 in Non-IID (2). (a) MNIST and (b) CIFAR-10.
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training, but the model fails in the other three parameters.
(e right panel of Figure 4(b) shows that when B is set to
100, the prediction accuracy is much higher when E is set to
5 than when E is set to 1. Yet regardless of whether E is 1 or 5,
the model prediction accuracy is lower when B is set to 10.

According to the results in Figure 4, we find that the
trend of our CDFDM’s prediction accuracy is similar for
both datasets and both data partitioning patterns. Fur-
thermore, the influence of the identical B and E settings on
model performance varies when the degree of heterogeneity
of the user data varies in both data partitioning patterns. To

further validate the relationship between CDFDM and B and
E, we performed experiments on model prediction accuracy
where the user training data were heterogeneous to varying
degrees under the two data partitioning patterns, and the
experimental results are presented in Figure 5.

First, we conducted experiments for each of the two data
partitioning patterns on the MNIST dataset, and the results
are presented in Figure 5(a). We set the values of B and E to
100 and 1, respectively, to study the influence of data het-
erogeneity on prediction accuracy. When C is set to 8, the
model prediction accuracy approaches 97% under Non-IID
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Figure 4: Accuracy on two datasets with different batch size (B) and local iteration (E). We set C equal to 1 under Non-IID (1) and P to 0.8 in
Non-IID (2). (a) MNIST and (b) CIFAR-10.
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(1), implying that the user training data used in training
contains 8 different classes of images. And, it is clear that, as
C increases, the model prediction accuracy improves.

A larger value of P in Non-IID (2) represents a smaller
number of randomly selected data from the user training
data, indicating a higher degree of data heterogeneity. (e
model’s prediction accuracy is the highest at P and is set to
0.2, 95% because the data heterogeneity is the lowest at this
point. Following that, we conducted experiments on the
CIFAR-10 dataset, and the results are presented in
Figure 5(b). Under Non-IID (1), after 100 rounds of
training, it can be seen that the model’s prediction ac-
curacy is highest when C is 8, and this accuracy drops as

the value of C lowers, and the model’s prediction accuracy
is poorest when C is 2, and then it shows a continuous
downward trend. In Non-IID (2), the model prediction
accuracy is highest when P is set to 0.2 and declines as P
grows. As the P value rises, so does the heterogeneity of the
user training data, resulting in worse prediction accuracy.
It should be mentioned that while the picture structure of
the CIFAR-10 dataset is more complex than that of the
MNIST dataset, the prediction accuracy of the CIFAR-10
dataset is lower. However, as demonstrated in Figure 5, the
less the heterogeneity of the user training data, the greater
the model’s prediction accuracy under the same B and E
settings.
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Figure 5: Accuracy on two datasets. We fix the batch size B and the local iterations (E) and change the values of C and P in Non-IID (1) and
Non-IID (2). (a) MNIST and (b) CIFAR-10.
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Combining the previous two scenarios, we conclude that
when the data is muchmore diverse, increasing the number of
local iterations or decreasing the number of samples would
produce poorer results. We followed up with a two-step
experiment to corroborate our �ndings. First, we used the
prior step to lower the degree of heterogeneity in the data and
set it up for both data partitioning scenarios.We increased the
total number of categories C assigned to the training data by
the user in the �rst partitioning type, and we increased the
proportion of shared data assigned to the user in the second
partitioning type. �en, we choose one of the two data
partitioning cases with relatively moderate data heterogeneity

to conduct the experiments, and the results are shown in
Figure 6. For the �rst type of data partitioning, we take C� 4,
and the results on both datasets show that increasing the
number of local iterations does not help the model perfor-
mance when the size of samples is small. However, when the
data heterogeneity is minimal and the size of samples is big,
increasing the number of local iterations on the model yields
marginal gains. For the second data partitioning type, we set P
to be 0.6. When the size of samples is small, increasing the
number of local iterations leads to a decrease in the model
performance.When the number of samples is big, the model’s
improvement via local iterations is also small.

1.0

0.8

0.6

0.4

0.2

0 20 40 60 80 100

A
cc

ur
ac

y

Communication Rounds

Accuracy on Non-IID(1)

0 20 40 60 80 100

1.0

0.8

0.6

0.4

0.2

A
cc

ur
ac

y

Communication Rounds

Accuracy on Non-IID(2)

B=10, E=1, P=0.6
B=10, E=5, P=0.6

B=100, E=1, P=0.6
B=100, E=5, P=0.6

B=10, E=1, C=4
B=10, E=5, C=4

B=100, E=1, C=4
B=100, E=5, C=4

(a)

0.5

0.4

0.3

0.2

0 20 40 60 80 100
Communication Rounds

Accuracy on Non-IID(2)

A
cc

ur
ac

y

0.6

0.5

0.4

0.3

0.2

0 20 40 60 80 100
Communication Rounds

Accuracy on Non-IID(1)

A
cc

ur
ac

y

B=10, E=1, C=4
B=10, E=5, C=4

B=100, E=1, C=4
B=100, E=5, C=4

B=10, E=1, P=0.6
B=10, E=5, P=0.6

B=100, E=1, P=0.6
B=100, E=5, P=0.6

(b)

Figure 6: Accuracy on two datasets. We �x the values of C and P in Non-IID (1) and Non-IID (2); we change the batch size B and the local
iterations E. (a) MNIST and (b) CIFAR-10.
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In summary, our proposed federated model achieves not
only improved prediction accuracy but also a more stable
convergence process for both types of data partitioning.
Besides, we demonstrated how the degree of data hetero-
geneity affected model performance by adjusting different
parameters, and we explained why our strategy performs
better.

5. Conclusion

In this paper, we proposed an attention-based strategy for
the federated data modeling scheme CDFDM to address the
problem of low model accuracy in federated learning due to
data heterogeneity. Our scheme included a shared model,
which alleviated the problem of data heterogeneity by dis-
tributing shared data. Simultaneously, in the model aggre-
gation phase of federated learning, we developed an
attention mechanism that can quantify the weight of dif-
ferent users’ local models in the global model and increase
the global model’s prediction accuracy. Finally, we con-
ducted a series of experiments on two real-world datasets,
and the results demonstrated that our scheme outperformed
the other two methods in terms of prediction accuracy.
Furthermore, the experimental results indicated that our
scheme provided better stable model prediction perfor-
mance during the training process.

(e model prediction accuracy of our CDFDM changes
very gradually during the training process, and the exper-
imental results also support this view. However, there is one
problem in practical application and that ourmodel does not
outperform the traditional method in terms of prediction
accuracy. To overcome the aforementioned issue, we will
investigate an upgraded federal learning model in future for
the nonindependent homogeneous distribution problem in
order to increase the model prediction accuracy.
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