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Recent image captioning models based on the encoder-decoder framework have achieved remarkable success in humanlike
sentence generation. However, an explicit separation between encoder and decoder brings out a disconnection between the image
and sentence. It usually leads to a rough image description: the generated caption only contains main instances but neglects
additional objects and scenes unexpectedly, which reduces the caption consistency of the image. To address this issue, we proposed
an image captioning system within context-fused guidance in this paper. It incorporates regional and global image representation
as the compositional visual features to learn the objects and attributes in images. To integrate image-level semantic information,
the visual concept is employed. To avoid misleading decoding, a context fusion gate is introduced to calculate the textual context
by selectively aggregating the information of visual concept and word embedding. Subsequently, the context-fused image
guidance is formulated based on the compositional visual features and textual context. It provides the decoder with informative
semantic knowledge. Finally, a captioner with a two-layer LSTM architecture is constructed to generate captions. Moreover, to
overcome the exposure bias, we train the proposed model through sequence decision-making. ,e experiments conducted on the
MS COCO dataset show the outstanding performance of our work. ,e linguistic analysis demonstrates that our model improves
the caption consistency of the image.

1. Introduction

Image captioning, which analyses and converts the image
content into a natural language description automatically, is
drawing considerable attention in the artificial intelligence
field. As a typical multimodal task, the image captioning
system combines both computer vision and natural language
processing. ,erefore, it should not only recognize the sa-
lient image objects and other visual properties (attributes,
locations, and relations) but also depict the image content
with natural and coherent descriptions [1]. Over the past few
years, image captioning task has been applied on a wide area
of aspects, such as assistance for visually impaired people [2].

For current image captioning system, the encoder-de-
coder architecture has been a widely adopted pipeline for its
conspicuous performance. In general, it employs a con-
volutional neural network (CNN) to encode the image into a

set of feature vectors and a long short-termmemory (LSTM)
network to generate the captions. Moreover, to steer the
model into focusing and capturing informative visual fea-
tures on a particular image region, the attentionmechanisms
are introduced as well [3–5].

,e encoder-to-decoder framework has achieved re-
markable advances in humanlike caption generating, but
there are still some issues to be concerned.

First, to capture the visual and textual information
simultaneously, some prior networks [3, 4] were designed
to learn the sentence structure at a global level. Strictly, the
generated caption can only depict the image roughly be-
cause during decoding, the network may discard some
useful image objects or scenes unexpectedly. ,is reduces
the consistency between image and text description. As a
solution, the guidance vector is adopted [6–8]. In [6], the
time-independent guidance was implemented as a joint

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 9743123, 9 pages
https://doi.org/10.1155/2022/9743123

mailto:zjp@cust.edu.cn
https://orcid.org/0000-0002-2461-1055
https://orcid.org/0000-0003-0824-538X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9743123


text-image embedding. However, as pointed out in [7],
their approach is short of consideration from two aspects:
(1) from the view of computer vision, visual evidence is not
always essential for the decoder because the description
sentence usually contains salient objects that correspond to
visual features; (2) the explicit separation between encoder
and decoder usually leads to a representational disconnect
between the learned feature vectors and generated captions.
To handle these issues, they constructed a semantic image
guidance, which is conditioned on textual context and
image features. It provides the decoder with semantic in-
formation from n-gram word and sentence levels. ,rough
this, the generated captions include richer image instances
than [6]. Nevertheless, their approach neglects the infor-
mation about motions and locations of image objects. In
addition, although the sentence-level guidance achieved
the best performance, it is not a very efficient approach
because of the prepositions, articles, and conjunctions in
the sentence. Considering the fact that the instances in
region image are not always corresponding to the words in
the vocabulary, in [8], they concatenated the global image
representation with the visual concept [9] as the guidance
vector. ,e visual concept is a set of frequent words that
describe the salient image objects, which enhances the
correlation between image and text at regional level.
However, there is a latent drawback: an inappropriate word
in visual concept will mislead the language model to
generate unexpected captions.

Second, as indicated in [10], for the models trained with
maximum likelihood estimation (MLE), the vanilla encoder-
decoder framework may cause the problem of exposure bias.
,e error accumulation caused by MLE probably results in a
word mismatching during caption generating. To address
this issue, the reinforcement learning (RL) strategy is in-
troduced in the image captioning task. However, due to the
high variance of gradient estimation, it is extremely difficult
to train the model with RL strategy directly. To meet this
criterion, the self-critical sequence training (SCST) frame-
work [11] is proposed to apply the RL strategy by sequence-
level training. During the inference stage, SCST utilizes the
generating samples as the baseline to normalize the rewards.
Consequently, the network can use nondifferentiable se-
quence-level metrics (e.g., CIDEr [12]) to evaluate the
language quality rather than the cross-entropy loss in word
level. Based on this framework, a number of approaches
were proposed [13–15]. Particularly, in [14], they proposed
the CAVP to accomplish the visual decision-making task.
,e CAVP captures the visual context that is crucial for
compositional reasoning and attends to complex visual
compositions over time. ,rough this, it significantly
boosted the caption consistency to image content.

,erefore, to boost the caption consistency of image by
utilizing reasonable semantic information and informative
visual features, an image captioning system within context-
fused guidance (CFG) is proposed in this paper. ,e main
idea is illustrated in Figure 1.,eCFG utilizes compositional
visual features for multilevel image learning.

By the context fusion gate, CFG adaptively combines the
visual concept and word embedding. Using the context-

fused image guidance, our model can generate captions with
comprehensive descriptions. In short, the main contribu-
tions in this paper are as follows:

(1) An image captioning system using sequential deci-
sion-making is proposed for a comprehensive cap-
tion generation.

(2) A context-fused image guidance is formulated to
improve the caption consistency of image. It selec-
tively aggregates the semantic information from the
visual concept and word embedding.

(3) Evaluation on the MS COCO dataset shows that our
approach outperforms most standard metrics. ,e
linguistic analysis demonstrates that our method
enhances the correlation of generated captions and
images.

2. Related Works

2.1. Image Captioning. In the past few years, image cap-
tioning systems based on encoder-decoder framework have
been deeply investigated [3, 16]. In [16], they employed a
CNN to encode the image and a recurrent neural network to
output a sequence of words. Subsequently, many works were
proposed to improve and extend this framework. In [17],
they proposed a recurrent fusion network (RFNet) to exploit
the complementary information from multiple encoders to
understand the image comprehensively. In [18], they
extracted the image features at multiple levels to learn ac-
curate subject predictions. As a very recent investigation
[19], the editing network generates the image description by
refining an existing caption rather than generating a new
caption from scratch.

Inspired by the attention mechanism applied in ma-
chine translation, several attention-based image cap-
tioning systems were proposed. In [3], they integrated the
decoder with the proposed hard and soft attention
mechanism to capture the highlighting spatial image
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Figure 1: ,e main idea of our proposed network. ,e compo-
sitional visual feature consists of the image representation at re-
gional and global level. At each decoding step, the context gate
calculates the textual context by dynamically aggregating the visual
concept and word embedding.,e context-fused image guidance is
formulated on the compositional visual features and fused textual
context.
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regions. In [4], they constructed a combined bottom-up
and top-down attention mechanism. It calculates the
attention feature vectors of the objects and other salient
regions in image. In [5], the attention-on-attention
module employs an attention gate to transform the result
from a standard attention mechanism. Moreover, to
improve the semantic representation of the generated
captions, some approaches also focused on utilizing
specific semantic attribute, such as the visual concept [9].
In [8], the guidance vector is equipped with the visual
concept to provide the decoder with high-level semantic
information. In [20], they proposed a hierarchical at-
tention network to enhance the caption richness by in-
corporating the visual concept and other visual features.

2.2. Sequential Decision-Making. ,e models trained on
vanilla CNN-LSTM framework often result in the problem
of exposure bias [10]. To mitigate this, the reinforcement
learning was applied on image captioning by introducing
sequential decision-making: agent takes account of the ac-
tions, states, and rewards in further sequences. In the case of
image captioning, the action corresponds to choosing the
next word and image; the state can be the visual context,
previous prediction, and other information.,e rewards can
be any evaluation metric, such as BLEU-N [21] and CIDEr
[12]. Several works have applied the sequential decision-
making. In [10], the REINFORCE is used to optimize a user-
specified evaluation metric during training directly. How-
ever, it lacks adequate generalities to other evaluation
metrics. In [11], the self-critical sequence training (SCST)
framework is proposed. In SCST, the generated captions are
evaluated at sentence level. Afterwards, in [13], they in-
corporated a discriminative loss component into the
training objective to produce the caption with high dis-
criminability. To capture crucial compositional information
in image, CAVP [14] was proposed to capture complex

visual compositions over time. Recently, the B-SCST [15]
extended the SCST framework for image captioning models
by incorporating Bayesian inference. From the distribution
obtained by a Bayesian DNN model, B-SCST generates the
baseline reward by averaging predictive quality metrics.

3. Proposed Approach

In this section, we introduce the proposed CFG network in
detail. As the architecture presented in Figure 2, our model
consists of five components: (1) a text encoder, which en-
codes the visual concept; (2) an image encoder, which en-
codes the region image features; (3) an attention module,
which calculates the attentive compositional visual features;
(4) a guidance formulation module, which obtains the fused
textual context through the context gate and calculates the
context-fused image guidance; and (5) a captioner, which is
an extension of the top-down captioner [4] for caption
generating.

3.1.TextEncoder. As the visual concept reveals the objects in
images explicitly, we introduce it to offset the separation
between image and text. In this paper, the visual concept is
denoted as A � a1, a2, . . . , am , aj ∈ Rm ×E, where m is the
count of the words in visual concept and E is the dimension
of word embedding. Specifically, as the word aj is isolated,
therefore a unidirectional LSTM is employed as the text
encoder to deal with A as follows:

w � LSTM(E(A)), (1)

where E(·) is the word embedding layer and w ∈ Rm × H,
where H is the size of hidden state. w indicates the encoding
semantic vectors of each word in A. It will be used to cal-
culate the fused textual context in the guidance formulation
module.
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Figure 2: ,e overview of our proposed network. For the visual concept set A � a1, a2, . . . , am , a unidirectional LSTM is adopted to
obtain the encoded vector w. ,e region image feature r is extracted by a Faster R-CNN, and the image representation r is obtained by the
max pooling applied on r. In decoder, a two-layer LSTM architecture is adopted. st indicates the fused textual context. Both Vcomp and
context-fused guidance gt are passed into the language LSTM along with the hidden state hv

t from attention LSTM. ,e input vector X
consists of r, w the word embedding, and the hidden state of language LSTM.
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3.2. Image Encoder. For the given image I, to learn the visual
information about objects, attributes, and relations, a pre-
trained Faster R-CNN [22] is adopted to extract the region
image representation r as follows:

r � W
I
[CNN(I)], (2)

where r � r1, r2, . . . , rk , ri ∈ R2048, presents the semantic
information of an image region and k indicates the number
of selected ROIs according to the ranking scores. To reduce
the calculate consumption, a transformation matrix
WI ∈ RH×2048 is applied on r to convert its dimension to
r ∈ Rk×H. Consistent with prior works, the image repre-
sentation at global level is formulated by a mean-pooling
operation as follows:

r �
1
k



k

i�1
ri, (3)

where r ∈ RH. Both r and r are used to compute the attentive
compositional visual features.

3.3. Compositional Visual Features. ,e compositional vi-
sual features contain the image information at regional and
global levels. As shown in Figure 2 (framed in blue), for the
image feature vectors r and r, an additive attention mech-
anism is applied to reduce the variance caused by sampling
diverse image regions. Without loss of generality, we first
introduce the general formulation of the attention com-
putation used in this paper:

fatt π, q, ht(  � softmax w
T
π tanh W

π
qq + W

π
hht  , (4)

where π indicates the attentive weight of the query vector q,
and ht stands for the hidden state output from LSTM unit.
wT

π , Wπ
q , and Wπ

h are the parameters to be learned. Ac-
cordingly, for the region image feature r, the attention
computation is presented as follows:

αt � fatt π � α, q � r, h
v
t( . (5)

Here, the parameters wT
α ∈ R

D, Wα
r ∈ R

D×H, and
Wα

h ∈ R
D×H in this case, D indicates the dimension of at-

tention layer, and hv
t is the hidden state from attention

LSTM. ,en, the attentive region image feature zr
t is

computed as follows:

z
r
t � 

k+1

i�1
αi,t · r, (6)

where zr
t ∈ R

H. Particularly, in contrast to previous works
that only integrate the global image representation in the
first LSTM layer, similar to equation (5), zr

t is computed as
the attentive vectors of r. ,en, we combine zr

t with zr
t

as the compositional visual features:

Vcomp � z
r
t ; z

r
t , (7)

where [; ] indicates the vector concatenation. ,e attentive
compositional visual feature zc

t is obtained as follows:

βt � fatt π � β, q � Vcomp, h
v
t ,

z
c
t � 

k+1

i�1
βi,t · Vcomp,

(8)

where the trained parameters wT
β ∈ R

D, W
β
V ∈ R

D×H, and
W

β
h ∈ R

D×H here. In comparison to zr
t , the decoder can

capture more comprehensive visual information from zc
t at

each decoding step. Additionally, zc
t is also utilized to

modulate the guidance vectors.

3.4. Guidance Formulation. In [7], Zhou et al. conditioned
the guidance information on the current word We(yt)

and used the text-conditional image feature V as the
guidance:

gt � tanh V⊙We yt( ( , (9)

where We(·) is a text-conditional embedding matrix.
,rough this, the model can focus on a part of the semantic
image feature when capturing a specific word. In this paper,
we extend this formulation with the visual concept vector w.
Intuitively, if modulating the semantic image guidance gt on
w only, it may mislead the generating process because of the
latent inappropriate word in visual concept set. Hence, it is
essential to adaptively incorporate the semantic information
from word embedding and visual concept. Inspired by [23],
a context fusion gate is introduced. ,e structure is pre-
sented in Figure 3. By this component, our model can learn
how much to attend to the context from two different
sources. Utilizing the word embedding and visual concept,
the context fusion gate is defined as follows:

st � ft ⊙ Wwz
w
t(  + 1 − ft( ⊙ tanh Wt E yt(  ( , (10)

where st is the fused textual context. Ww ∈ RE×H and
Wt ∈ RE×E are the weight matrix; ⊙ indicates the ele-
mentwise multiplication.,e factor ft ∈ (0, 1) is calculated by
a sigmoid activation function σ as follows:

st

ft

w0 w1 wmwm-1

1-ft

attention

+

htν E (y)

Figure 3: An illustration of the context gate. ft is the scalar factor,
st is the fused textual context, and E(y) indicates the word em-
bedding vectors.
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ft � σ Wf z
w
t ; E yt(   , (11)

where Wf is the transformation matrix. zw
t indicates the

attentive semantic vector, which is computed as follows:

ct � fatt π � c, q � w, h
v
t( ,

z
w
t � 

m+1

i�1
ci,t · w,

(12)

where the parameter wT
c ∈ R

D, W
c
w ∈ RD×H, and

W
c

h ∈ R
D×H. ,rough this, zw

t is equipped with the attentive
visual information. Taking Vcomp and st, the context-fused
image guidance is formulated as follows:

gt � tanh Vcomp ⊙Ws st(  , (13)

where Ws ∈ RE×H is a transformationmatrix. In comparison
to equation (9), the context-fused image guidance gt con-
tains richer visual and textual context. It will be passed into
the captioner as a time-dependent variable.

3.5. Captioner. ,e captioner consists of two separated LSTM
networks: attention LSTM (AttLSTM) and language LSTM
(LangLSTM). ,e input of AttLSTM is defined as the con-
catenation of previous word embedding vector E(yt−1), the
previous hidden state hl

t−1 from the LangLSTM, the visual
concept vector w, and the image representation r. ,at is,

Xt � h
l
t−1; r; w; E yt−1(  ,

h
v
t � AttLSTM Xt, h

v
t−1( ,

(14)

where hv
t is used to attend over the visual features and se-

mantic vectors, respectively. AttLSTM provides the
LangLSTM with the feature vectors at the global level. In
LangLSTM, the network focuses on generating the caption
with both compositional, image feature Vcomp and context-
fused image guidance gt:

X
L
t � Vcomp; h

v
t ; gt ,

h
l
t+1 � LangLSTM X

L
t , h

l
t .

(15)

,en, we apply a multilayer perceptron (MLP) following
by a softmax layer on hidden state hl

t to obtain the prob-
ability distribution of each words as follows:

yt ∼ pt � softmax MLP h
l
t  , (16)

where each value of pt indicates the probability of corre-
sponding word in vocabulary. Overall, our proposed net-
work takes full advantage of image and text information to
generate captions elaborately.

3.6. Training Strategy. Consistent with prior works [11], the
sequence-level training strategy in this paper can be
decomposed into two stages: the standard supervised
learning with cross-entropy (XE) loss and the reinforcement
learning with a self-critical reward.,e XE loss is formulated
as follows:

L(θ) � − 
N

t�1
log pθ yt|y1: t−1( , (17)

where N is the length of a generated caption, y1: t−1 is a target
ground-truth sequence, and θ indicates the model parameters.
,e supervised model is trained by minimizing this value.
,en, the one with best performance is chosen as the initial
network for next training stage. During reinforcement learning,
the negative expected reward is minimized as follows:

L(θ) � −Eys ∼ pθ
r y1: T(  , (18)

where r(·) is the standard metric evaluation (CIDEr [12] in
this paper). According to SCST [11], the gradient of L(θ) can
be approximated as follows:

∇θL(θ) ≈ − r y
s
1: T(  − r y1: T( ( ∇θlog pθ y

s
1: T( , (19)

where ys
1: T is the caption sampled from the word distri-

bution and y1: T is the generated caption by greedy
searching. ,e resulting reward signal r(ys

1: T)−r(y1: T) can
be treated as a baseline score.,e probability of each word in
the sampled captions will be increased if r(ys

1: T) is higher
than r(y1: T), and vice versa.

4. Experiments

In this section, the dataset and evaluation metrics are in-
troduced first. ,en, the implementation details and the
comparing models are described. Finally, we discuss the
quantitative and qualitative experiments.

4.1. Dataset and Metrics. ,e MS COCO dataset [24] is one
of the most popular benchmark datasets for image cap-
tioning task. ,ere are 82,783 images in training set, 40,504
images in validation set, and 40,775 images in test set, re-
spectively. For a fair comparison, the dataset using “Kar-
pathy” split (http://cs.stanford.edu/people/karpathy/
deepimagesent/) is adopted in this paper. It contains
113,287 images for training, 5000 images for validation, and
5000 images for test, respectively. ,e statistics of these two
splits are summarized in Table 1. ,e COCO evaluation
toolkit (https://github.com/tylin/coco-caption) is used to
report the captioning performance across following metrics:
BLEU-N (N� 1, 2, 3, 4) [21], METEOR [25], ROUGHE-L
[26], CIDEr [12], and SPICE [27]. In particular, SPICE is
defined over the tuples divided into several categories, such
as objects, relations, and attributes. It shows a reasonable
correlation with human judgments. All of these metrics with
a larger score indicate a better effect.

4.2. Implementation Details

4.2.1. Preprocessing. For the region image representation, we
use the bottom-up features provided by [4] which extracted
top k� 36 features in each image as salient regions. ,e
visual concept is detected by a pretrained model [9]. Only
object attribute (nouns) is preserved. We convert all the
sentences to lowercase, replace the punctuation with space,
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and preserve the captions with a length less than 16. ,e
words that occurred less than five times are removed. As a
result, there are 10,369 words left in the vocabulary.

4.2.2. Parameter Settings. Only top five attributes in visual
concept set are preserved, namely,m� 5.,e dimension E of
word embedding layer is set to 1000. ,e attention layer size
D is set to 1024. For AttLSTM and LangLSTM, the di-
mension H of hidden state and memory cell is set to 1300.
During supervised learning with XE loss, Adam optimizer
[28] is adopted with the initial learning rate 5e− 4. We
shrink it by 0.8 every 3 epochs. During reinforcement
training, the Adam optimizer [28] is initialized with learning
rate 5e− 5. We trained the network for 30 epochs with batch
size 80 during the first stage. During sequence-level training,
we trained the model for 50 epochs with batch size 100. If
there is no improvement for 5 epochs during XE training
and 8 epochs during sequence-level training, the process is
stopped.,e whole training takes about 30 hours on a Linux
server with an NVIDIA RTX 2080Ti GPU.

4.2.3. Model for Comparison. ,e following models are
chosen for comparison: (1) NIC [16], which is a vanilla
CNN-LSTM image captioning model; (2) SCST [11], which
uses nondifferentiable metric for optimization; (3) up-down
[4], which employs a bottom-up attention mechanism; (4)
RFNet [17], which outputs the captions through multiple
connections of CNN and LSTM; (5) HAN [20], which uses
the hierarchy features to extend the caption richness; and (6)
RAtt-Soft [29], which integrates the visual relationship at-
tention and region features to enhance caption generating.

In particular, as the visual features in [7] are extracted by
a different CNN, to investigate the performance of different
guidance formulation, we also conduct a study on the fol-
lowing ablation models: (1) CFGV, which only preserves the
compositional visual feature and removes the visual con-
cepts, context fusion gate, and context-fused image guid-
ance. (2) CFGE, which adopts the guidance defined in
equation (9) and removes the visual concept, and context
fusion gate. It is a 1-gram word-level guidance. (3) CFGA, in
which the factor ft is removed. ,e fused textual context st is
computed by a vector addition directly. ,eir performance
will be discussed in the Ablation Studies section.

4.3. Quantitative Analysis. ,e evaluation results on the test
portion of the Karpathy splits are summarized in Tables 2 and
3. All the scores were inferred by beam searching with size 3.
For the cross-entropy loss training (Table 2), our model

achieves competitive scores with RAtt-Soft [29]. For the se-
quence-level optimization (Table 3), our model obtains the
scores with advantages across all metrics except for ROUGE-L
and SPICE. Optimized by CIDEr, the scores of CFG on all
metrics are increased in Table 3. Especially the score on CIDEr
is improved from 114.0 to 125.4. ,e comparison results in-
dicate our model can effectively improve the captioning per-
formance by leveraging the compositional visual feature and
context-fused image guidance. Besides, by sequence-level
training, our network can significantly promote the results on
each evaluation metric and outperform other models. How-
ever, it also should be noted that our model fails to achieve an
advantage score on SPICE metric on both Table 2 and Table 3.
As mentioned, SPICE is defined over the objects, relations and
attributes. In [29], RAtt-Soft utilizes the scene graph and visual
relation features to precisely map visual relationship infor-
mation to the semantic description. ,is indicated a limitation
of our proposed network.

4.4. Qualitative Analysis. For an intuitive presentation of the
image captioning effect of the model with different guidance
formulation, some examples are shown in Figure 4. Compared
to CFGE, the full model CFG can understand the image with
detected salient objects (with a rainbow, holding a racket, next to
glass of beer, and with luggage), but CFGE neglects these in-
stances and focuses on the main content of the images. In
addition, CFG can better recognize the object remote control,
while CFGEmistakes it as computer keyboard. For the last image,
CFG exactly describes the image with clear objects pizza,
broccoli, and vegetables, while CFGE just captures the object
broccoli and depicts the image at a general level. ,ese examples
demonstrate that, in comparison to the guidance modulated on
text-conditional embedding, the context-fused guidance is more
advantageous to boost the model to depict the image com-
prehensively.Nevertheless, there are also several shortages in our
proposed network, shown as the images presented in red frame.
For the first image, our CFG succeeds in depicting the image
with main instances, but it misunderstands the “desk” as “table”
and generated inappropriate relation information “standing
around a table.” Similarly, in the last image, our model depicts
the image with an incorrect position phrase “in the water.” ,is
indicates our network is insufficient to reason accurate rela-
tionships, especially amongmultiply image objects. One possible
solution is to introduce the scene graph [30], which contains
complex structural representation of image and sentences.

In Figure 5, we visualized the probabilities of the words
the generated sentence and visual concept set, along with the
object attention map, respectively. It can be found that the
visual concepts are well applied to generate the captions. In
the first example, the salient instances (man, horse, filed, and
cows) are captured and the predicted words are highly
corresponding to the detected visual concepts with high
probabilities. ,e image content is well depicted by the
generated sentence.,is indicates that ourmodel can exploit
the high-probability visual concept to generate the relevant
words in captions. For the second image, the weights of
“bike” (0.34) and “sunset” (0.33) are much lower those of
“man” (0.86) and “dock” (0.93), but our model can also

Table 1: Statistics of the MS COCO dataset.

Split Default Karpathy
Subset Image Caption Image Caption
Training 82,783 414,113 113,287 566,738
Validation 40,504 202,654 5000 25,010
Test 40,775 — 5000 25,010
,e symbol “—” indicates the data are not public.
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reason them as the appropriate words in the caption, which
enhances the comprehensiveness of text description. ,is
shows the advantage of the context fusion gate. By selectively
fusing the information of the visual concept and word

embedding, it can address the issue of misleading decoding
as much as possible. Moreover, both these samples dem-
onstrate that our model is able to keep a better consistency
with the image content.

Table 2: Performance comparisons on MS COCO Karpathy test split under cross-entropy training.

Cross-entropy loss
Metric BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE-L CIDEr SPICE
NIC [16] — — — 29.6 — 52.6 94.0 —
SCST [11] — — — 30.0 25.9 53.4 99.4 —
Up-down [4] 77.2 — — 36.2 27.0 56.4 113.5 20.3
RFNet [17] 76.4 60.4 46.6 35.8 27.4 56.8 112.5 20.5
HAN [20] 77.2 61.2 47.7 36.2 27.5 56.6 114.8 20.6
RAtt-Soft [29] 79.2 61.8 47.6 36.9 28.3 60.9 114.3 20.8
CFG 77.1 61.5 47.9 36.8 27.7 56.7 114.0 20.8
,e best results (%) are highlighted in boldface. ,e symbol “—” indicates the results are not reported.

Table 3: Performance comparisons on MS COCO Karpathy test split under CIDEr-D score optimization.

Sequence-level optimization
Metric BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE-L CIDEr SPICE
NIC [16] — — — 31.9 — 54.3 106.3 —
SCST [11] — — — 34.2 26.7 55.7 114.0 —
Up-down [4] 79.8 — — 36.3 27.7 56.9 120.1 21.4
RFNet [17] 79.1 63.1 48.4 36.5 27.7 57.3 121.9 21.2
HAN [20] 80.9 64.6 49.8 37.6 27.8 58.1 121.7 21.5
RAtt-soft [29] 80.4 63.4 48.9 37.5 28.5 61.6 122.1 22.1
CFG 80.5 64.7 50.2 38.3 28.2 58.3 125.4 21.6
,e best results (%) are highlighted in boldface. ,e symbol “—” indicates the results are not reported.

CFG: a herd of zebras grazing in a
field with a rainbow. 

CFGE: a herd of zebras grazing in a 
field. 

CFG: a pizza sitting on a cutting 
board next to a glass of beer.

CFGE: a pizza sitting on top of a 
wooden cutting board. 

CFG: a glass of water sitting next to 
a remote control. 

CFGE: a glass of beer and a remote 
on a table. 

CFG: a woman standing on a 
tennis court holding a racket. 

CFGE: a woman standing on a 
tennis court. 

CFG: a man standing in front of a 
train with luggage. 

CFGE: a man standing in front of a 
train. 

CFG: a close up of a pizza with
broccoli and vegetables. 

CFGE: a close up of a plate of 
food with broccoli. 

CFG: a group of people standing CFG: a group of people sitting on a 
around a table with a cake. bench in the water. 

CFGE: a group of people standing CFGE: a group of people sitting on 
around a table. a bench. 

Figure 4: Generated captions by the models with different guidance formulation. ,e positive cases are framed in blue and the failed cases
are framed in red.
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4.5. Ablation Studies. ,e evaluation results of the ablations
are given in Table 4. Compared to CFGV, CFGE boosts the
SPICE from 20.3 to 20.5 on cross-entropy training category,
respectively. It suggests the effect of the text-conditional
guidance to improve image captioning. In comparison to
CFGE, CFGA achieved weak advantage results on cross-
entropy training. After CIDEr optimization, the scores of
BLEU4 and SPICE are boosted from 37.8 to 38.1 and 21.1 to
21.4, respectively. Among these models, CFG still achieved
the best performance across all metrics. Particularly, the
CDIEr score was significantly improved after sequence-level
training. ,ese indicate the following: (1) the introduced
visual concept is helpful to boost image captioning. (2) ,e
compositional visual feature and fused textual context are
effective to improve the captioning quality. (3) ,e context
fusion gate is beneficial to integrate the context from dif-
ferent sources for a better image captioning performance.

5. Conclusions

In this paper, an image captioning system within fused
context guidance is proposed to enhance caption consis-
tency of image. By the compositional visual feature, context
fusion gate, and context-fused image guidance, our model
further boosts the caption consistency of image. Extensive
experiments demonstrate that our proposed model

significantly improves the baseline method and outperforms
other comparison approaches, which suggests the effect of
the explicit consideration of using context-fused guidance.

However, the visual relation bias is not well handled. In
the future, we will extend our network with scene graph,
because it provides a unified representation that connects
the objects, attributes, and their relationship in an image or a
sentence. It is more advantageous for the model to employ
the scene graph to depict an image with an accurate text
description about object relationships.
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