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�e trace element boron (Boron, B) is an important factor in crops’ development, pollination, and fertilization. Available boron
(AB) in soil is the main source of boron nutrient absorption for crops. Rapid detection of AB is of great signi�cance for crop
nutrition diagnosis, soil testing and fertilization, precision agriculture development, scienti�c production management, and
guarantee of stable yield and high quality. In this study, we propose a new method to predict soil available boron content using
handheld nonimaging hyperspectroscopy in the visible-near-infrared range (350–1655 nm). As boron content is one of the fewest
soil chemical elements, a rapid and accurate method has yet to be developed to detect and quantify the soil available boron.
Visible-near-infrared ray (VIS-NIR) spectroscopy is widely utilized in the detection and quanti�cation of soil available nutrients.
�ere is, however, scant research on the detection of soil boron based on NIR data, and the performance of current regression
model is still far from satisfactory. Our soil samples were collected from southern Anhui, China, with their NIR spectroscopy
examined and the NIR data pretreated by 29 transformations and modeled with 10 regression algorithms. Of all the tested
methods, SVM_RBF, BPNN, and PLS_RBF algorithms demonstrated the best performance and gave 0.80∼0.82 coe�cient of
determination value. At the same time, Random Forest algorithm (RFA), Successive Projection Algorithm (SPA), and Variable
Importance in Projection (VIP) were used to extract the spectral characteristic wavelength data of soil available boron, and then
the characteristic wavelength data were modeled with three regression algorithms: SVM_RBF, PLS_RBF, and BPNN. A
comparative analysis of the prediction performance (R2, RPD, RMSE, and RPIQ) of the models established at the full band showed
that the RFA-MSC/BPNN model achieved the best performance. Compared with the best full-wavelength model DT/SVM_RBF,
the test set achieved a 3.06% increase in R2, a 7.12% drop in RMSE, a 7.71% gain in RPD, and a 7.78% increase in RPIQ. Our work
sheds lights on how to achieve rapid quanti�cation of the soil available boron concentration.

1. Introduction

As an essential trace element, boron plays a pivotal role in
¦owering, fertilization, yield boosting, and quality of crop
produce [1]. In coarse-textured sandy calcareous soils, boron
can serve as one of the key limiting micronutrients. Boron
de�ciency can be a major constraint on crop production [2]
and is reported in >80 countries for at least 132 crops over
the past 70 years [3]. Boron de�ciency is a global

phenomenon and is recognized as the second most essential
micronutrient constraint on crops [4]. Researches demon-
strated that 21% of the studied soils across 14 countries were
boron de�cient [5]. As boron content is usually the least
among all the chemical elements in soil, a rapid and accurate
detection of the soil available boron carries special weight.
However, currently soil available boron detection methods
(such as curcumin method and azomethine-H method)
mainly depend on chemical analysis and thus are prone to
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low detection efficiency, high cost, sample damage, and
potential environmental pollution.

Hyperspectroscopy mainly uses the characteristics of
electromagnetic energy to analyze soil properties. Visible-
near-infrared light is a kind of electromagnetic wave, and
near-infrared spectroscopy is generated by vibrational and
rotational energy level transitions in the internal movement
of molecules. Present in boric acid molecules and boric acid
ions, the soil available boron is mainly water-soluble and
adsorbable by organic matters, which have unique spectral
characteristics. Visible-near-infrared ray (VIS-NIR) spec-
troscopy can provide a nondestructive, real-time, rapid
method to detect the physical and chemical properties in
crops and soil [6]. VIS-NIR, therefore, is widely utilized in
agriculture in monitoring the organic compounds and
mineral nutrients.

VIS-NIR spectroscopy of soil nutrient elements mainly
focuses on organic matter (OM), nitrogen (N), carbon (C),
and water, and only a few studies have focused on the
quantitative prediction of soil available boron. Mouazen
et al. performed partial least square linear regression (PLSR),
principal component regression (PCR), and back-propaga-
tion neural network (BPNN) comparative analysis on the
accuracy of VNIR spectroscopy (350–2500 nm) in mea-
suring soil properties, using 168 soil samples collected in
Belgium and France for organic carbon (OC), phosphorus
(P), potassium (K), sodium (Na), and magnesium (Mg). It
was found that the prediction models of various attributes
established by using the latent variables of PLS combined
with BPNN were better than the PLSR and PCR models, and
the PCR effect was the worst. Among them, the model
accuracy of OC and Mg was higher, and the R2 values of the
prediction results were 0.84 and 0.82, respectively; the RPD
value was both 2.54 while the K, Na, and P models have
R2 = 0.68–0.74 and RPD= 1.77–1.94; and the prediction ef-
fect is average [7]. Tarin et al. compared partial least squares
discriminant analysis (PLS-DA), random forest (RFA), SG
Simple Smoothing (SGS), SG Smoothed First Derivative
(SG1D), SG Smoothed Second Derivative (SG2D), Mean
Centering (MC), Standard Normal Transformation (SNV),
Multiple Scatter Correction (MSC), Generalized Least
Squares Weighting (GLSW), SG1D+ SNV, and MSC+
SG2D+MC. )e soil spectral modeling performance of
SGS +AS+GLSW with 10 different pretreatment transfor-
mations was evaluated for SOM, pH, NH+

4 , NO
+
3 , and other

soil properties in the Negev Desert of Israel. Results show
that the GLSW-basedmodel has relatively good classification
accuracy, and both PLS-DA and RF are suitable for spectral
modeling analysis [8]. Tahmasbian et al. utilized laboratory-
based hyperspectral image (400–1000 nm) analysis to predict
soil C, N, and their isotopic compositions; the PLSR models
gave coefficient of determination (R2)> 0.8 for all tested
compositions [9]. Tamburini group examined the effects of
moisture and particle size on quantitative determination of
total organic carbon (TOC) in soils by near-infrared spec-
troscopy and discovered that standard normal variate (SNV)
and second derivatives combined with the PLSR regression
algorithm gave the best prediction [10]. Padarian et al. used a
deep convolutional neural network (CNN) to establish NIR

calibration models for OC, TN, cation exchange capacity
(CEC), pH, clay, and sand content in soil and found that
CNN had higher model accuracy compared with traditional
models [11]. Qi et al. used VNIR spectra (350–2500 nm) data
based on regularized linear multitask learning (LMTL) al-
gorithm to model and predict available N, P and K, pH,
water content (WC), OM, and electrical conductivity (EC).
)e performance of LMTL model was compared with the
commonly used single-task algorithm model index based on
PLSR, which shows that LMTL can further improve the
generalization ability of regression model to predict soil
properties [12]. Jin et al. utilized VIS-NIR spectroscopy for
prediction of soil available K content and uncovered that the
boosting algorithms (GBRT and AdaBoost) demonstrated
the best R2 [13].

)ough NIR has attracted enormous attention and has
been studied intensively in soil disciplines over the past
decades [14], the accuracy and universality of the VIS-NIR
model to predict soil available minerals is still not satis-
factory, especially for trace element content. Currently,
Malmir et al. reported the utilization of hyperspectral im-
aging (400–1000 nm) technique to analyze the boron content
in sieved and ground air-dried soils, modeled by the PLSR
algorithm, and reached R2 of 0.62 and 0.53 in sieved and
ground soils, respectively [15]. Airborne HSI and laboratory
mid-infrared spectroscopy (2500–25,000 nm) generated R2

of 0.17∼0.30 for soil boron prediction [16, 17]. In contrast,
the best model for As prediction can be achieved with 5
latent variables in PLS models and yielded Pearson’s coef-
ficient, RMSE, RPD, and SEP of 0.94, 69.65, 2.9, and 66.99,
respectively [18].

In this study, a total of 188 yellow loam samples were
collected fromAnhui province, China.)e nonimaging VIS-
NIR spectrum was examined by indoor analysis, and the
boron content was determined by chemical analysis. )e
spectrum data were transformed by 29 preprocessing
methods, including detrend correction and Savitzky–Golay
(SG) convolution smoothing and further modeled by 10
regression algorithms, such as elastic net, ridge, and support
vector machine (SVM). )e original spectra were pre-
processed by DT, MSC, and SG+ SNV+DT, respectively.
)en, three different variable selection algorithms (RFA,
SPA, and VIP) [19–21] were used to select a small number of
characteristic wavelengths, and SVM_RBF, BPNN, and
PLS_RBF were combined to establish nine models for
comparative analysis.)e established models were evaluated
for the prediction of soil available boron by R2, ratio of
performance of deviation, ratio of performance to IQ, etc.
for the model’s accuracy, reliability, and stability. Our work
is one of the first studies to predict soil available boron in the
200–1700 nm range based on nonimaging hyper-
spectroscopy. Our results provide a reference for remote
sensing monitoring of soil and fertilizer micronutrient el-
ement information.

2. Materials and Methods

2.1. Soil Sample Collection. )e experimental soil samples in
this study were collected from rapeseed fields in southern
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Anhui. As a boron-preferred crop, rapeseed has high de-
mand for boron. Because of its strong boron absorption
capacity, rapeseed is highly sensitive to boron nutrition. A
total of 188 yellow loam soil samples were collected from the
typical mountainous region in southern Anhui, China
(Figure 1). )e geographical coordinates for sampling are
117°29′7″∼118°11′1″ E, 30°8′23″∼30°22′25″ N. Diagonal
sampling method was utilized for sampling with its depth
between 0 and 20 cm. After the removal of plant roots and
grave debris, 1.5 kg pure soil samples were collected,
numbered, air-dried, and ground. Samples> 2mm in di-
ameter were filtered. Each sample was passed through
hyperspectral analysis and boron examination by VIS-NIR
and azomethine-H acid colorimetric analysis.

)e VIS-NIR measurements were performed using a
portable nonimaging spectrometer (Ocean Optics OFS-
1700) with a spectral range 200–1700 nm (Figure 2). )e
spectral resolution is 2 nm for 200–950 nm and 5 nm for
950–1700 nm. )e resampling interval is 1 nm. Measure-
ments between 200 and 349 nm were filtered as noise.

Processed 2mm soil powder particles were placed in a
sample container which was covered with a black cloth to
insulate it from stray light. For each soil sample, 3 sets were
randomly selected for spectrum measurement, and the av-
erage spectra were utilized as the soil spectrum.

2.2. Pretreatment Transformation. A total of 29 methods
were utilized for pretreatment transformation, including the
sole application or combinations of detrend correction (DT),
first derivative transformation (FD), second derivative
transformation (SD), logarithmic transformation (LG),
mean centering (MC), multivariate scattering correction
(MSC), standard normal variable transformation (SNV),
and Savitzky–Golay convolution smoothing (SG) (Table 1)
[22, 23]. Among them, the SG treatment is generally utilized
to remove the edge band from the spectral curve, which
significantly eliminates the influence of high-frequency
noise, enhances the signal-to-noise ratio, and maximally
retains the peak characteristics of the original spectral signal.
Even though FD and SD are effective in eliminating the
linear baseline effect, the noise will be amplified after
treatment. SNV is applied to calibrate the influence of soil
particle size and surface scattering [24], while MC and DT
reduce the spectral offset. )erefore, various treatments,
when combined together, may integrate their strengths and
eliminate their weaknesses.

2.3. Regression Algorithms. Totally, 10 algorithms were
utilized for regression. As a common multiple linear re-
gression algorithm [25], partial least squares (PLS) has been
widely used in data analysis to predict soil properties using
spectra. Support vector regression (SVR) is a popular al-
gorithm in the machine learning field [26]. Different kernel
functions, including linear, polynomial, sigmoid, and radial
basis functions (RBF), are employed to map the inputs to a
high-dimensional feature space.

BPNN is a one-way multilayer perceptual feed-forward
neural network [27], and its powerful learning ability has

been widely used in soil spectral regression modeling
analysis [28, 29]. In this study, a four-layer BPNN model is
selected, including the input layer, the middle two hidden
layers, and the output layer. )e modeling structure of
sample i is shown in Figure 3.

A BP neural network regression model of soil available
boron based on the whole band was constructed by using
1306 wavelengths extracted from hyperspectral data in the
effective band range of 350–1655 nm as the input of the
model. )e number of nodes in the input layer and the
output layer was set to 16 and 1, respectively.)e two hidden
layers in the middle were set to 8 and 4 nodes, respectively.
At the same time, tan-sigmoid is selected as the transfer
function of the hidden layer, and pure-linear is selected as
the transfer function of the output layer. In order to min-
imize the overfitting phenomenon, the Bayesian-regularized
back-propagation algorithm (trainbr) was used for model
calibration and training. )e tuning parameters set the loss
function to be Mean Squared Error, the initial learning rate
to be 0.01, the learning rate to be 0.1, the momentum to be
0.9, and the maximum number of iterations to be 150; the
optimizer is SGD, and SGD is random descent. Table 2
shows the setting of network structure parameters.

Ridge regression estimates the coefficients of multiple-
regression models when linear regression models have
highly correlated independent variables by creating a ridge
regression estimator, which provides a more accurate ridge
parameter approximation.

Lasso regression performs both variable selection and
regularization to enhance the model’s prediction accuracy
and interpretability. )e lasso procedure encourages simple,
sparse models with fewer parameters, and it is well-suited for
models with high multicollinearity levels.

)e elastic net is a regularized regression method that
linearly integrates the penalties of the lasso and ridgemethods
to effectively shrink coefficients (such as in ridge regression)
and set some coefficients to zero (such as in lasso).

2.4. Evaluation Metrics. )e coefficient of determination
(R2), the root mean square error (RMSE), and the ratio of
performance of deviation (RPD) were adapted as prediction
evaluation metrics in this study.
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In the formula, n is the number of predicted samples, yi

is the actual chemical measurement value of the i th sample,
yi is the predicted value of the i th sample, and y is the
average value of yi.
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S.D is the standard deviation. �e models were cate-
gorized into di«erent levels based on di«erent RPD values as
shown in Table 3.

Since the soil’s physical properties and chemical contents
usually demonstrate a biased normal distribution, the ratio of
its performance to IQ (RPIQ) serves as a better indicator than
RPD. RPIQ is the ratio of IQ to RMSE, where IQ is the
di«erence between the third quartile Q3 (75% of samples) and
the �rst quartile Q1 (25% of samples). �e larger the value of
RPIQ is, the better the performance of the model demon-
strates. Nawar andMouazen accessed themodel quality based
on RPIQ values [30]: excellent model (RPIQ≥ 2.5), very good

model (2.5>RPIQ≥ 2.0), better model (2.0>RPIQ≥ 1.7), a
reasonable model (1.7>RPIQ≥ 1.4) and a very poor model
(RPIQ< 1.4).

IQ � Q3 − Q1,
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Figure 1: �e sampling areas for soil collection in southern Anhui, China.
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Figure 2: �e laboratory visible-near-infrared spectroscopy acquisition system.

4 Computational Intelligence and Neuroscience



In summary, this manuscript compares the R2, RMSE,
RPD, and RPIQ for regression model comparison.

3. Results and Discussion

3.1. Soil Sample Statistics. By means of the Kennard-Stone
method, these 188 soil samples were split into a training
set and a testing set with a ratio of 7 : 3, namely a training set
of 131 samples and a testing set of 57 samples. As the
statistical metrics demonstrated in Table 4, both sets
exhibited di«erent distribution patterns in soil available
boron content.

Pretreatment is an essential step in accurate VIS-NIR
spectrum analysis. Various pretreatment methods were
employed to �lter noise and reduce complexity. Re¦ection
spectra with diverse pretreatments are revealed in Figure 4.
SG method can reduce spectrum noise and smooth the
curve, and therefore, it is always used in combination with
other pretreatment methods (Figure 4(b)). Except for the
scattering correction methods, SNV andMSC, the rest of the
methods all signi�cantly modi�ed the pattern of the spectral
curve. FD, SD, and LG almost reshaped the curve
thoroughly.

3.2. Performance Evaluation for Di�erent Regression Models.
�e combination of pretreatment transformation and re-
gression algorithms generated a total of 300 models for the

Table 1: Pretreatment methods utilized for the visible-near-infrared ray spectroscopy of collected soil samples.

Pretreatment methods Abbreviations
Re¦ection spectrum without pretreatment method RS
Dislodge tendency DT
First derivative FD
Second derivative SD
Mean center MC
Logarithmic transformation LG
First derivative with logarithmic transformation LG+FD
Second derivative with logarithmic transformation LG+ SD
Multiplicative scatter correction MSC
First derivative with multiplicative scatter correction MSC+FD
Second derivative with multiplicative scatter correction MSC+ SD
Standard normal variate SNV
Dislodge tendency with standard normal variate SNV+DT
First derivative with standard normal variate SNV+FD
Second derivative with standard normal variate SNV+ SD
Savitzky–Golay SG
Dislodge tendency with Savitzky–Golay SG+DT
First derivative with Savitzky–Golay SG+ FD
Second derivative with Savitzky–Golay SG+ SD
Mean center with Savitzky–Golay SG+MC
Logarithmic transformation with Savitzky–Golay SG+LG
First derivative with logarithmic transformation and Savitzky–Golay SG+LG+FD
Second derivative with logarithmic transformation and Savitzky–Golay SG+LG+ SD
Multiplicative scatter correction with Savitzky–Golay SG+MSC
First derivative with multiplicative scatter correction and Savitzky–Golay SG+MSC+FD
Second derivative with multiplicative scatter correction and Savitzky–Golay SG+MSC+ SD
Standard normal variate with Savitzky–Golay SG+ SNV
Dislodge tendency with standard normal variate and Savitzky–Golay SG+ SNV+DT
First derivative with standard normal variate and Savitzky–Golay SG+ SNV+FD
Second derivative with standard normal variate and Savitzky–Golay SG+ SNV+ SD
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Figure 3: BPNN model architecture.
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VIS-NIR spectrum. Figure 5 exhibits the R2 values of each
model for the test sets. )e SVM method utilizing the RBF
kernel and the PLS model with the RBF kernel demonstrated
the highest R2 values in the prediction of test data no matter
which pretreatment transformation was applied. Whatever
regression model was employed, the pretreatments by SD,
MSC+SD, or SNV+SD always generated the worst R2, es-
pecially for SNV+SD. )e RPD levels and RPIQ of models
are exhibited in Table 5 and Figure 6. Consistent with the R2

result, SVMwith RBF kernel and PLS with RBF generated the
most A-level results. )e elastic net and lasso models did not
compare favorably with other models in performance. Since
the soil available boron content showed a biased normal
distribution, the RPIQ is employed for evaluations in Fig-
ure 6. )e SVM with RBF kernel dominated the best per-
formance in almost every pretreatment group. )e highest
RPIQ value (2.16) appeared in the DTgroup with SVM_RBF
model.

Table 5 demonstrates the Level A RPD level of each
model to determine the influence of pretreatments. Level A
indicated the highest stability for a model while Level C
suggested the lowest stability. Without any pretreatment,
some RS data sets can also reach A level (Supplementary
Table). )e elastic net, lasso, and SVM_Sigmoid models for
RS data rendered Level C while ridge, SVM_Linear, and
SVM_RBF models increased its level to B. After being
pretreated by DT, LG, SNV, MSC, SNV+DT, SG+DT, or
SG+ SNV+DT, and further regressed by SVM_RBF, the
VIS-NIR data could generate Level A model (Supplementary
Table). )is indicated that DT or SNV was more preferable
to other pretreatment transformations.

Figure 7(a) demonstrates the statistics of RPD levels
based on the pretreatment types. Even though pretreatment
transformations were expected to reduce the noise and
increase the accuracy, several transformations generated
worse results than the original RS spectrum, especially for
FD and SD. Most transformations containing FD and SD
led to all Cs, which strongly indicated that these two
transformations cannot be used to predict boron based on
VIS-NIR data. DT and LG methods improved the overall
performance to better levels compared to the original RS
data. )e performance of MSC and SNV improved in some

models but declined in others. No observable improvement
was detected for the SG treatment, even though it was the
typical pretreatment utilized in NIR data analysis.

Figure 7(b) shows the statistical result of RPD levels for
different based on regression methods. PLS models gener-
ated the most A-level results, which suggested its stability in
prediction.

3.3. -e Favorable Models for VIS-NIR Prediction of Boron.
Different regression algorithms were combined with dif-
ferent pretreatments to generate the best model for each
regression algorithm. Elastic net and SVM_RBF were re-
quired to combine with DT pretreatment to render the best
model while ridge, SVM_Linear, and SVM_Sigmoid were
the best partners for LG. SG-transformed methods were
preferential for PLS. SG was the best choice for lasso re-
gression (Table 6). All of these combinations resulted in a
R2 ≥ 0.72, and SVM_RBF generated both the highest R2

(0.82) and the best RPD level (Level A).)erefore, dissimilar
regression algorithms corresponded to diverse pretreat-
ments to achieve the optimal performance, and DT+
SVM_RBF rendered the best performance among all the
tested models in this study (Table 6). Consistent with the R2

and RPD-level result, the RPIQ values of SVM_RBF were the
highest among these models (Table 6). In summary, the
SVM_RBF algorithm was determined to exhibit the best
performance in predicting the soil available boron content
by VIS-NIR.

3.4. Spectral Feature Extraction of Soil Available Boron.
RFA is an ensemble machine learning approach, which uses
its variable importance measure as a feature selection tool for
high-dimensional data sets to sort the feature data, search
one by one in a sequential backward way, and eliminate the
least influential features from the feature set in turn by
recursive iteration. As the number of variables in the
characteristic wavelength data set increases, the classification
accuracy keeps growing accordingly until the optimal
characteristic variables are selected. RFA has a very flexible,
powerful, efficient, and practical classification feature ability,
and it is also robust to identify some data with missing
outliers and noise data, and its learning and iterative op-
timization speed is fast. In recent years, RFA has beenmainly
used to solve various problems such as classification, pre-
diction, feature selection, outlier detection, and recognition
[19, 31].

As a forward selection variable method that minimizes
vector space collinearity, SPA selects wavelengths to reduce
information redundancy and solve the linear problem.
According to the method, variable groups with redundant
information can be sufficiently and thoroughly eliminated
from a large amount of spectral information, and original
spectral data are replaced by residual spectral information so
as to reduce data dimensionality and the number of data
variables.)e above method has been widely used in spectral
analysis. Using the Monte Carlo sampling method, a certain
proportion of the wavelength data was extracted for PLS
modeling, and the absolute values of the regression

Table 2: BPNN modeling parameters.

Network layer Number of nodes Number of parameters
0 16 20912
1 8 136
2 4 36
3 1 5

Table 3: )e categories of different models based on RPD values.

RPD Level
RPD≤ 1.4 C
1.4<RPD≤ 2.0 B
RPD> 2.0 A

6 Computational Intelligence and Neuroscience



Table 4: Soil available boron sample statistics.

Type Number Max (mg·kg−1) Min (mg·kg−1) Average (mg·kg−1) Standard deviation
Total 188 3.91 0.24 0.87 0.86
Train 131 3.91 0.24 0.96 0.93
Test 57 3.65 0.28 0.68 0.66

Si
gn

al
 in

te
ns

ity
 (a

rb
.u

ni
ts)

FD

1600140012001000800600400

–0.015
–0.010
–0.005

0.005
0.000

0.010
0.015
0.020
0.025

SD

1600140012001000800600400

–0.03

–0.02

–0.01

0.00

0.01

0.02

0.03
RS

1600140012001000800600400

0.55

0.60

0.65

0.70

0.75

0.80

0.85

MSC

1600140012001000800600400

0.55

0.60

0.65

0.70

0.75

0.80

0.85 LG

1600140012001000800600400

0.075

0.100

0.125

0.150

0.175

0.200

0.250

0.225
SNV

1600140012001000800600400
–3

–1

–2

0

1

DT

1600140012001000800600400
–0.08

–0.06

–0.04

–0.02

0.00

0.02

0.04
SNV+DT

1600140012001000800600400
–1.0

–0.6

–0.8

–0.4

–0.2

0.0

0.2

0.4

0.6
MC

1600140012001000800600400

–1.0

–0.5

0.0

0.5

1.0
1e–15

SNV+SD

1600140012001000800600400

–0.4

–0.2

0.0

0.2

0.4 MSC+FD

1600140012001000800600400

–0.02

–0.01

0.00

0.01

0.02

0.03

0.04

SNV+FD

1600140012001000800600400

–0.2

–0.1

0.0

0.1

0.2

0.3

0.4

LG+FD

Wavelength (nm)
1600140012001000800600400

–0.010

–0.005

0.000

0.005 LG+SD

1600140012001000800600400
–0.020

–0.015

–0.010

–0.005

0.000

0.005

0.010

0.015

MSC+SD

1600140012001000800600400

–0.04

–0.02

0.00

0.02

0.04

(a)

Figure 4: Continued.
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coe�cients were compared. �e spectral wavelength vari-
ables with small absolute values were eliminated for their
small weights, while the spectral wavelength variables with
large absolute values were retained because of their large

weights. After the ith Monte Carlo sampling, the minimum
was cross-validated with the root mean square error to
determine the optimal modeling wavelength [32]. In this
study, the Monte Carlo sampling was run 100 times, and the
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Figure 4: Average spectroscopy after various pretreatment transformations. (a) Average spectrum without Savitzky–Golay(SG) treatment;
(b) average spectrum with SG method.
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Figure 5: )e accuracy of regression models with test data set by all pretreatment transformations.

Table 5: Level A RPD levels of regression models with various pretreatment transformations.

Pretreatment methods Regression algorithms
DT Elastic net, BPNN, SVM_Linear, SVM_RBF, SVM_Sigmoid, PLS_Linear, PLS_RBF, and PLS_Sigmoid
LG+ SD PLS_Linear
LG Ridge, BPNN, SVM_Linear, SVM_RBF, SVM_Sigmoid, PLS_Linear, PLS_RBF, and PLS_Sigmoid
MC Ridge, BPNN, SVM_Linear, SVM_RBF, SVM_Sigmoid, PLS_Linear, PLS_RBF, and PLS_Sigmoid
MSC BPNN, SVM_RBF, PLS_RBF, PLS_Sigmoid
RS Ridge, SVM_Linear, SVM_RBF, PLS_Linear, PLS_RBF, and PLS_Sigmoid
SNV SVM_RBF, PLS_Linear, PLS_RBF, and PLS_Sigmoid
SNV_DT SVM_RBF, PLS_Linear, PLS_RBF, and PLS_Sigmoid
SG+LG+FD Ridge, SVM_RBF, SVM_Sigmoid, PLS_Linear, PLS_RBF, and PLS_Sigmoid
SG+LG Elastic net, ridge, SVM_Linear, SVM_RBF, SVM_Sigmoid, PLS_Linear, PLS_RBF, and PLS_Sigmoid
SG Lasso, ridge, BPNN, SVM_Linear, SVM_RBF, PLS_Linear, PLS_RBF, and PLS_Sigmoid
SG_DT Ridge, BPNN, SVM_RBF, PLS_Linear, PLS_RBF, and PLS_Sigmoid
SG_FD PLS_RBF and PLS_Sigmoid
SG_MC Lasso, ridge, SVM_Linear, SVM_RBF, PLS_Linear, PLS_RBF, and PLS_Sigmoid
SG_MSC BPNN, SVM_RBF, PLS_RBF, and PLS_Sigmoid
SG_MSC_FD PLS_Linear
SG_SNV Elastic net, lasso, SVM_RBF, PLS_Linear, PLS_RBF, and PLS_Sigmoid
SG_SNV_DT SVM_RBF, PLS_Linear, PLS_RBF, and PLS_Sigmoid
SG_SNV_FD PLS_RBF

Computational Intelligence and Neuroscience 9



number of characteristic wavelengths was determined by
10-fold cross-validation.

VIP technology [21] is a variable screeningmethod based
on partial least squares regression, and its value can be used
to identify some important wavelengths in the model. Its
speci�c calculation and formula are as follows:

Vk(a) � p∑
a

w2
ak

SSYa
SSYt
( ), (3)

where Vk(a) is the score of the projection importance of
the k-th independent variable under the condition of using
a latent variables for modeling, p is the
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Figure 6: Ratio of performance to interquartile distance (RPIQ) values of regression models with di«erent pretreatment transformations.
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number of independent variables, wak is the corresponding
weight coefficient, SSYa is the explanatory power of
using a latent variables to the dependent variable y,
and SSYt is the explanatory power of using all latent
variables to y.

)e VIP value represents the importance of the inde-
pendent variable to the model fitting. It is generally believed
that when all VIP values are equal to 1, the prediction effect
of each variable on y is the same. When the VIP value is
greater than 1, the independent variable has a very im-
portant indication effect on the prediction of y, that is, the
characteristic wavelength; when the VIP value is less than 1,
it means that the contribution of the independent variable
to the prediction of y is small. )e researcher Word [33]
believes that the contribution of the independent variable to
y can be ignored when the VIP value is less than 0.8. VIP
analysis is widely used in independent variable screening in
various fields, and scholars such as Paz-Kagan et al. [34] and
Rossel et al. [35] also use VIP values to analyze the cor-
responding relationship between different spectral bands
and the detected objects. )e larger the VIP value is, the
stronger the importance of the wavelength in the prediction
model is, and the smaller the number of characteristic
wavelengths is.

In order to compare with the three better methods in
the results in Section 3.3, on the basis of DT, MSC, and
SG+ SNV+DT preprocessing of the original spectrum,
three different variable selection algorithms (RFA, SPA,
VIP) were selected to screen out a small number of
characteristic wavelengths. )e prediction results are
shown in Tables 7–9 by combining the nine models
established by the three algorithms of SVM_RBF, BPNN,
and PLS_RBF.

In MSC/BPNNmodeling, the characteristic wavelengths
selected by the VIP threshold between 1.0 and 1.6 have
strong collinearity; when the threshold exceeds 1.6 (corre-
sponding to 108 wavelengths), the learning ability of the
model begins to deteriorate significantly. )erefore, the
threshold value of 1.6 was selected as the VIP value, and 108
characteristic wavelengths were used as the input data of
BPNN to establish the regression model of soil AB. Figure 8
shows the results of the impact of different variable pro-
jection importance score thresholds on the accuracy of the
VIP-MSC/BPNN model.

Based on the RFA-MSC/BPNN model, the predicted
soil AB content in the test set was compared with the actual
detection value, and the results are shown in Figure 9(a).
Figure 9(b) shows the results of the comparison
between the predicted value of the VIP-MSC/BPNN
model and the actual detection value. It can be seen that
there is a good correlation between them. )e AB content
was mostly concentrated in the lower value area, which is
consistent with the distribution patterns of micronutrient
content.

4. Discussion

Based on the VIS-NIR spectroscopy of soil samples collected
from China’s Anhui province, this study combined 29
pretreatment transformations, the original RS data, with 10
regression algorithms to generate 300 models for the pre-
diction of soil available boron contents. Among all the
generated models, the SVM_RBF model with DT pretreat-
ment, PLS_RBF model with SG_SNV_DT transformation,
and the BPNN model with MSC pretreatment significantly
outperformed other models and gave R2 value of 0.80 to 0.82
and RPD Level A (Table 6). SVM is widely used for the
calibration of VIS-NIR spectra [24, 36], and the nonlinear
RBF kernel is a Gaussian kernel. Since the number of
samples in our study is much smaller than that of features,
the number of frequencies, the Gaussian kernel here played
the role of dimensionality reduction.)e performance of the
PLS_RBF model is literally similar to that of SVM_RBF
when R2, RMSE, RPD, and RPIQ metrics are utilized for
performance evaluation (Table 6). )e two best models
utilize the RBF model, which suggests that the Gaussian
kernel is effective in predicting soil available mineral and
also solidifies the necessity of dimensionality reduction for
soil content prediction. )e DTpretreatment method filters
the tendency and reflects the true fluctuation and thus can
eliminate the deceptive correlation. In addition, DT trans-
formation usually follows SNV, and our results also dem-
onstrate that SNV alone and SNV+DTpretreatments in the
SVM_RBF models show Level A results (Table 5). Generally,
the DTpretreatment seems to be able to improve the model
performance when superimposed with other transforma-
tions, whatever the regression algorithm is employed. )is
result also suggests that SNV, when well-tuned with the

Table 6: )e performance and parameters of the best models.

Regression model Pretreatment method Test R2 Test RMSE RPD level RPIQ Parameters
Elastic net DT 0.75 0.09 A 1.45 Alpha� 2 ∗ 10−5, L1� 0.01
Lasso SG 0.72 0.12 A 1.30 Alpha� 0.0001
Ridge LG 0.77 0.08 A 1.56 Alpha� 0.0005
BPNN MSC 0.81 0.37 A 1.55 [16, 8, 4, 1]
SVM_Linear LG 0.76 0.08 A 1.50 n_components� 3500
SVM_RBF DT 0.82 0.04 A 2.15 C� 200000, gamma� 1
SVM_Sigmoid LG 0.76 0.10 A 1.37 Gammas� 5 ∗ 10−5, C� 6200000, coef� 0
PLS_Linear SG+LG 0.78 0.07 A 1.66 n_components� 14
PLS_RBF SG+ SNV+DT 0.80 0.04 A 2.12 n_components� 14, gamma� 0.05
PLS_Sigmoid SG_MC 0.77 0.07 A 1.58 n_components� 15, gamma� 0.002, coef� 0
Note. Bold indicates that the prediction accuracy of the model is good.
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regression algorithms, may generate an acceptable model for
soil boron prediction.

Meanwhile, the PLS_Linear model generated the fewest
Level C results (Figure7(b)), which was consistent with our
previous results for soil K prediction [13]. Even though the
RBF kernel (SVM or PLS) generated the most Level A

models, they also generated a comparable number of Level C
counterparts (Figure 7(b)). �is indicated that the RBF
kernel may be especially suitable for some, but not all,
pretreatments. In contrast, the PLS_Linear model may be
more applicable for all pretreatment transformations.
PLS_Linear model, therefore, has stronger robustness.

Even though the pretreatment transformations were
expected to smooth the curve, reduce noise, and improve
model performance, not all pretreatments were e«ective in
our study of soil available boron prediction. As a standard
preparation of the soil spectral curves, SG is utilized in
almost every NIR analysis. However, our results demon-
strated that SG contributed little to model performance
improvement. In some models, it even resulted in worse
performance, such as DT+ SG vs. DTalone in the elastic net
models (Table 5). Additionally, the SD transformation
caused severe performance reduction in almost every model,
which strongly indicated that this method was inappropriate
for the analysis of soil available chemical content prediction
based on VIS-NIR.

Based on the above results, it was found that 328
characteristic wavelengths extracted by the RFA algorithm
can be used as the best characteristic wavelengths of soil AB
content. �e speci�c characteristic wavelengths and distri-
bution points selected by RFA and VIP during MSC/BPNN
modeling are arranged in order of importance of VIP values
from large to small as shown in Table 10 and Figure 10. It is
found that the AB characteristic wavelengths of soil are

Table 7: Result of DT/SVR_RBF models.

Variable selection method No. of variables
Calibration sets Test sets

R2 RMSE RPD RPIQ R2 RMSE RPD RPIQ
Full wavelengths 1306 0.989 0.008 9.490 5.138 0.821 0.042 3.287 2.155
RFA 18 0.988 0.095 9.034 4.937 0.594 0.563 1.582 0.710
SPA 2 0.749 0.428 2.003 1.094 0.735 0.534 1.861 0.786
VIP 32 0.988 0.095 9.017 4.928 0.666 0.510 1.745 0.783

Table 8: Result of SG+ SNV+DT/PLS_RBF models.

Variable selection method No. of variables
Calibration sets Test sets

R2 RMSE RPD RPIQ R2 RMSE RPD RPIQ
Full wavelengths 1306 0.988 0.009 8.963 4.800 0.810 0.043 3.217 2.126
RFA 367 0.690 0.476 1.803 0.985 0.819 0.376 2.370 1.064
SPA 3 0.542 0.578 1.483 0.810 0.782 0.412 2.159 0.969
VIP 367 0.690 0.476 1.803 0.985 0.819 0.376 2.370 1.064

Table 9: Result of MSC/BPNN models.

Variable selection method No. of variables
Calibration sets Test sets

R2 RMSE RPD RPIQ R2 RMSE RPD RPIQ
Full wavelengths 1306 0.764 0.415 2.066 1.129 0.816 0.379 2.349 1.054
RFA 328 0.788 0.394 2.179 1.191 0.841 0.352 2.530 1.136
SPA 24 0.733 0.441 1.944 1.063 0.736 0.453 1.964 0.882
VIP 108 0.740 0.436 1.967 1.075 0.832 0.361 2.463 1.106
Note. Bold indicates that the prediction accuracy of the model is good.
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mainly distributed in 400–600 nm, 700–1000 nm,
1300–1400 nm, and 1500–1700 nm, including 455 nm,
538 nm, 858 nm, 905 nm, 1645 nm, and other important
wavelengths. �e distribution of characteristic wavelengths
selected by VIP is relatively more concentrated and obvious,
and the main characteristic wavelengths are distributed
around 450 nm, 850 nm, 1300 nm, 1400 nm, 1600 nm, and
1650 nm. Some literature shows that the dissociation of boric
acid at low concentration will be adsorbed by clay minerals,
iron and aluminum oxides, and organic matters in com-
bination with the OH group [37, 38]. However, the AB
characteristic wavelength of the soil in this study is highly
consistent with the absorption band of iron oxide and

hydroxyl OH, with similar spectral peaks, which is consistent
with the research results of Beyrouty et al. [39], indicating
that the AB spectral characteristic response may be related to
boron adsorption. In addition, Tahmasbian et al. [9, 40] have
shown that the spectral regions of 400–410 nm, 515–575 nm,
660–665 nm, 875 nm, and 910–1000 nm are important
wavelengths for predicting soil TN.�e 940–1000 nm region
is one of the most important regions for soil TC prediction.
Shi et al. [41] found that the TN content showed a high
correlation with the derivative spectra and that the im-
portant absorption wavelengths were near the visible 540 nm
and near-infrared 1400, 1900, 2200, and 2300 nm regions.
Yang and Li and Cozzolino and Morón [42, 43] found that
700–1000 nm is also an important band range for TC pre-
diction. �ere is also an overlap between the important
wavelengths of soil AB in the current study and those of TC
and TN in previous studies, indicating that there is a high
correlation between soil AB spectral analysis and soil TC and
TN.�e overlap of important spectral regions and the strong
correlation between the successfully predicted elements
indicate that the successful prediction of AB may also result
from its high degree of correlation with the spectrally active
compounds C and N in soil.

Currently, there is limited research on NIR-based boron
content detection in soil. Relevant research is found in only a
few groups’ work. However, the accuracy was not high
enough [15].With C� 200000 and gamma� 1 as parameters,
we improved the R2 value in our model to 0.82. By modeling
with the selected characteristic wavelength, we further im-
proved the R2 value to 0.84 in the model, which is much
higher than that was used in the Malmir model. Since boron
is one of the fewest elements in soil, predicting its available
content and total content is quite a challenging task. Our
research generates two models with high R2 and low RMSE,
which lay the groundwork for rapid detection of soil boron.

y = 0.819x + 0.178
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Figure 9: Comparison of predicted values and actual values of VIP-MSC/BPNN and RFA-MSC/BPNN models.
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5. Conclusions

Based on the VIS-NIR data of 188 soil samples collected
from southern Anhui, China, 300 regression models were
generated for soil available boron prediction by the assembly
of 29 pretreatment methods, plus the original spectrum
reflectance data set, and 10 regression algorithms. )e most
favorable models for soil boron content prediction were
generated from the DT-pretreated spectrum data followed
by the SVM algorithm with RBF kernel function, the MSC
transformations followed by the BPNN, or the SG_SNV_DT
transformations followed by PLS with RBF kernel. With the
parameters of C 200000 and gamma 1 for the SVM_RBF
model, [1, 4, 8, 16] for BPNN and n_component 14, gamma
0.05 for PLS_RBF, a high R2 value of 0.80–0.82, and RPD
Level A were reached. SVM_RBF, BPNN, and PLS_RBF
algorithms were considerably superior to other algorithms in
our study, and SD pretreatment caused inferior performance
in most cases. Even though SG transformation is generally
employed in the NIR data analysis, no recognizable im-
provement was observed in the soil boron prediction
models. Lasso and elastic net models are not suitable for the
spectral prediction of soil AB.

In the study of hyperspectral prediction of soil available
boron based on characteristic wavelength modeling, the
original spectra were preprocessed by DT, MSC, and
SG+ SNV+DT. )ree different variable selection algo-
rithms (RFA, SPA, and VIP) were used to select a small
number of characteristic wavelengths, and then, nine models
were established by SVM_RBF, BPNN, and PLS_RBF. Re-
sults show that, RFA-MSC/BPNN (N� 328, R2 � 0.841,
RMSE� 0.352, RPD� 2.530, and RPIQ� 1.136) and VIP-

MSC/BPNN (N� 108, R2 � 0.832, RMSE� 0.361,
RPD� 2.463, and RPIQ� 1.106), the prediction accuracy of
the two models was further improved on the basis of the
model accuracy constructed by the whole band, and the
prediction accuracy grade reached A level, which could be
used to predict the AB content of the soil. RFA-MSC/BPNN
model generates the best effect, and compared with other
modeling algorithms, the BPNN algorithm is better in the
use of soil AB spectral feature extraction modeling method.

)e study also shows that the successful prediction of AB
may also be related to boron adsorption such as iron oxide
and hydroxyl and has a high correlation with the spectral
active compounds C and N in soil.
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Table 10: Characteristic wavelengths selected by RFA and VIP in MSC/BPNN modeling.

Variable selection
method

No. of
variables Characteristic wavelengths (nm)

RFA 328

538, 456, 466, 510, 464, 548, 535, 525, 513, 458, 460, 529, 465, 905, 463, 519, 518, 527, 520, 526, 498,
522, 530, 515, 528, 1654, 1653, 461, 521, 1248, 524, 523, 508, 769, 455, 1367, 1655, 545, 517, 871, 1429,
509, 758, 825, 1428, 879, 547, 1432, 1215, 734, 475, 900, 495, 555, 536, 532, 1369, 895, 539, 747, 549,
1298, 552, 546, 540, 1376, 551, 1430, 593, 457, 859, 858, 1371, 1433, 813, 828, 925, 554, 1295, 756,
1427, 507, 733, 760, 862, 1294, 736, 543, 752, 909, 1375, 1368, 502, 762, 560, 1292, 904, 906, 558, 917,
499, 732, 1434, 1651, 1361, 902, 586, 869, 494, 1553, 504, 449, 972, 516, 888, 1378, 583, 469, 759, 503,
588, 533, 450, 896, 876, 563, 512, 908, 1297, 749, 459, 916, 541, 497, 913, 1550, 1296, 1370, 605, 584,
891, 531, 912, 1394, 1282, 462, 610, 1249, 570, 550, 907, 1406, 1396, 779, 578, 514, 557, 1379, 882, 511,
746, 860, 1372, 924, 569, 1374, 814, 829, 1307, 923, 1431, 1250, 500, 1548, 1397, 454, 534, 777, 1395,
1513, 1435, 1156, 1547, 1363, 1365, 1549, 362, 1321, 830, 1437, 897, 448, 585, 901, 764, 992, 792, 875,
809, 914, 915, 490, 1648, 435, 893, 964, 1647, 492, 377, 1384, 1343, 726, 1596, 741, 1318, 1649, 968,
1381, 1151, 1499, 967, 710, 1642, 892, 870, 778, 865, 739, 486, 955, 1645, 1597, 1290, 1602, 872, 971,
864, 445, 982, 1650, 472, 745, 1225, 911, 1546, 1511, 833, 899, 594, 470, 1205, 885, 974, 1239, 1323,
921, 918, 1617, 350, 919, 1505, 844, 1284, 1345, 1561, 748, 1300, 1209, 1552, 1545, 744, 849, 1612,
1634, 1226, 981, 1149, 654, 1256, 1551, 1402, 1508, 883, 451, 672, 1506, 1652, 774, 1637, 670, 831, 474,
1605, 763, 440, 878, 1353, 1216, 1644, 958, 773, 880, 447, 1299, 384, 1041, 650, 1537, 381, 1393, 1482,
1266, 704, 866, 423, 367, 1313, 785, 988, 1415, 653, 963, 1144, 943, 481, 1019, 1598, and 783.

VIP 108

872, 1297, 1248, 1296, 860, 1298, 891, 875, 1295, 1403, 905, 859, 1404, 839, 861, 1402, 862, 1294, 883,
864, 847, 458, 1293, 1401, 871, 895, 741, 1644, 1645, 888, 1405, 853, 863, 1594, 825, 457, 1292, 1593,
1299, 460, 893, 1646, 461, 462, 1400, 1643, 455, 858, 1595, 769, 451, 464, 892, 909, 459, 1592, 1291,
456, 848, 813, 1647, 450, 449, 749, 908, 1290, 1399, 866, 844, 1591, 752, 833, 784, 1596, 851, 1289, 454,
822, 857, 964, 1648, 1551, 963, 947, 1642, 1552, 738, 1550, 1288, 840, 965, 771, 463, 1398, 465, 946,

760, 962, 1553, 1406, 843, 1287, 1590, 736, 466, 1649, 453, and 1549.
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001 and APKLSATE2019 × 005), and the research project of
Anhui Education Department (KJ2019A0212).

Supplementary Materials

Supplementary Table 1: RPD levels of regression models
with various pretreatment transformations. (Supplementary
Materials)
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