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Purpose. To develop and validate a clinical-radiomics nomogram based on clinical risk factors and CT radiomics feature to predict
hypertensive intracerebral hemorrhage (HICH) prognosis. Methods. A total of 195 patients with HICH treated in our hospital
from January 2018 to January 2022 were retrospectively enrolled and randomly divided into two cohorts for training (n = 138) and
validation (n =57) according to the ratio of 7: 3. All CT radiomics features were extracted from intrahematomal, perihematomal,
and combined intra- and perihematomal regions by using free open-source software called 3D slicer. The least absolute shrinkage
and selection operator method was used to select the optimal radiomics features, and the radiomics score (Rad-score) was
calculated. The relationship between Rad-score, clinical risk factors, and the HICH prognosis was analyzed by univariate and
multivariate logistic regression analyses, and the clinical-radiomics nomogram was built. The area under the receiver operating
characteristic curve (AUC) and decision curve analysis (DCA) were used to evaluate the performance of the clinical-radiomics
nomogram in predicting the prognosis of HICH. Results. A total of 1702 radiomics features were extracted from the CT images of
each patient for analysis. By univariate and stepwise multivariate logistic regression analyses, age, sex, RBC, serum glucose,
D-dimer level, hematoma volume, and midline shift were clinical risk factors for the prognosis of HICH. Rad-score and clinical
risk factors developed the clinical-radiomics nomogram. The nomogram showed the highest predictive efficiency in the training
cohort (AUC =0.95, 95% confidence interval (CI), 0.92 to 0.98) and the validation cohort (AUC =0.90, 95% CI, 0.82 to 0.98). The
calibration curve indicated that the clinical-radiomics nomogram had good calibration. DCA showed that the nomogram had
high applicability in clinical practice. Conclusions. The clinical-radiomics nomogram incorporated with the radiomics features and
clinical risk factors has good potential in predicting the prognosis of HICH.

1. Introduction

Hypertensive intracerebral hemorrhage (HICH) is one of the
most common types of intracerebral hemorrhage (ICH) [1].
Brain CT scanning is the standard imaging for diagnosing
HICH, which is a practical method to determine the location
and volume of HICH [2]. On the unenhanced CT image, the
hemorrhage mainly showed a high-density mass shadow of
hematoma and a rim of hypodensity around the hematoma.

The perihematomal hypodensity region is related to various
pathophysiological processes, such as cytotoxic edema and
neuroinflammation [3]. Previous literature has shown that
the perihematomal microenvironment might have crucial
biological information and potentially predicting hematoma
expansion [4, 5].

Given the high clinical mortality and disability rate of
HICH [6], the identification of patients with poor prognoses
can help clinicians reach objective opinions on predictable
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functional outcomes and make better treatment decisions.
The so-called CT signs, such as “blend sign,” “island sign,”
“black hole sign,” and “swirl sign,” have been proved to help
predict hematoma expansion [7-10], whereas these signs
have limited in predicting the prognosis of HICH, and these
signs are vulnerable to inter- or intraobserver variations [11].
Radiomics is a new research method, which refers to the
high-throughput extraction and analysis of a large number
of high-dimensional quantitative image features from dif-
ferent modes of medical images [12]. Its advantage is to
convert visual image information into deep-seated features
for quantitative research [13]. Moreover, radiomics allows
multiple imaging features to be studied in parallel, which can
provide a combination of features, and the analysis of
combined features is more promising than that of single-
feature analysis [14]. Although some studies have reported
positive results in the analysis of radiomics features [15-17],
a new statistical model integrating the combined radiomics
features and clinical risk factors has not been developed to
predict the prognosis of HICH. Nomogram is a forecasting
tool, which can transform the complex regression equation
into a visual graph, so as to provide accurate and person-
alized medical services [18, 19]. In the past, most studies
mainly focused on the intrahematomal region, ignoring the
perihematomal region [15, 20]. The predictive value of
radiomics features in the perihematomal region is not clear.

In the present study, we hypothesized that combining
clinical risk factors and CT radiomics features (including
radiomics features of intra- and perihematomal regions)
could identify HICH patients with poor prognoses. To verify
the feasibility of our hypothesis, we extracted the radiomics
features based on brain CT and established a clinical-
radiomics nomogram integrating radiomics features and
clinical risk factors through multivariate logistic regression
analysis.

2. Materials and Methods

2.1. Patients. 'The local institutional review board approved
the retrospective study, and the requirement for informed
consent was waived. The CT images and clinical data of
HICH patients treated in our hospital from July 2018 to
January 2022 were collected. The inclusion criteria were as
follows: (1) age >18 years old; (2) a history of hypertension;
(3) the first baseline brain CT scanned within 6 hours after
the onset of symptoms; (4) brain parenchymal bleeding; (5)
complete clinical data. The exclusion criteria were as follows:
(1) secondary ICH, such as cerebral aneurysm, trauma,
arteriovenous malformation, tumor, or hemorrhagic in-
farction; (2) patients with anticoagulant-associated ICH; (3)
motion artifacts on CT images; (4) patients who refused
follow-up after discharge. The flow chart is shown in
Figure 1.

In addition, the following relevant clinical information
was obtained through the patient’s inpatient medical record
system and the emergency medical record system: (1) clinical
data included age, sex, systolic blood pressure, diastolic
blood pressure, smoking history, drinking history, and di-
abetes history; (2) admission laboratory parameters included
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platelet count, white blood cell count, red blood cell (RBC)
count, lymphocyte count, monocyte count, hemoglobin,
serum glucose, and D-dimer level.

2.2. Functional Outcome Assessment. 90 days after discharge,
the patients were followed up by standardized telephone
interviews, and the clinical functional outcome of HICH
patients was assessed by Glasgow Outcome Scale (GOS).
Referring to a previous study [21], we classified the prognosis
of patients into two categories: unfavorable outcome (GOS
1, death; GOS 2, persistent vegetative state; GOS 3, severe
disability) and favorable outcome (GOS 4, moderate dis-
ability; GOS 5, return to normal life).

2.3. CT Image Acquisition and Data Collection. All patients
underwent brain CT with GE Optima CT660 64 row spiral
scanner. Patients were placed in the supine position. The
head was placed in the head frame of the examination table,
and the two external ear holes were equidistant from the
table. At 120 kV tube voltage, 300 mA tube current, 512 x 512
matrix, and 5 mm slicer thickness, scanning was performed
in a continuous cross section from the skull base to the skull
top after taking a positioning image.

According to the CT images, the CT plain scan signs,
such as hematoma volume, hematoma location, the degree
of midline shift, whether it broke into the cerebral ventricle,
herniation, and ventricular entrapment were obtained. The
imaging data were independently evaluated by a senior
radiologist who was blinded to the clinical information. The
hematoma volume was calculated by using formula
AxBxC/2 [22]. A is the longest diameter on the largest
hematoma slice, B is the most significant diameter per-
pendicular to A, and C is the number of bleeding layers in
CT multiplied by the slice thickness. The degree of midline
shift was determined according to previous literature [23].

2.4. Image Segmentation and Feature Extraction. The brain
CT images of 30 patients were randomly selected to evaluate
the interobserver agreement of feature extraction. Two ex-
perienced radiologists (readers 1 and 2) independently and
manually completed the hematoma contour blinded to
clinical data. Reproducibility of interobserver for drawing
region of interest (ROI) was assessed by intraclass corre-
lation coefficient (ICC). ICC value above 0.75 was consid-
ered to have good consistency, and all the remaining images
were completed by Reader 1. In addition, we also captured
the information around the hematoma from the sur-
rounding area 6 mm away from the hematoma surface.
According to the contour of the intrahematomal ROI (intra-
ROI), we used the the “dilation” algorithm to automatically
reconstruct the perihematomal ROI (peri-ROI) and ob-
tained a ring of brain parenchyma around the hematoma.
Figure 2 shows an example of drawing intra-ROI and peri-
ROL

All radiomics features were extracted by using free open-
source software called 3D slicer (version 4.13, https://www.
slicer.org). A total of 851 features were extracted from each
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Eligible HICH patients between July 2018 and January 2022 in our hospital (n=375)

-no baseline NCCT scanned (n=17)

Excluded for the following reasons (n=86) :

-no follow-up NCCT within 24 hours (n=69)

v

Baseline and follow-up NCCT available (n=289)

-Secondary ICH (n=16)
-Inadequate data (n=11)
-Severe motion artifacts (n=13)

Excluded for the following reasons (n=94) :

-patients who refused follow-up after discharge (n=54)

v

Primary enrolled in this retrospective study (n=195)

v

Training set (n=138)

v
Testing set (n=57)

FIGURE 1: Flow chart for selection of patients with hypertensive intracerebral hemorrhage (HICH).

(a)

(b)

FIGURE 2: An example of segmentation of the region of interest (ROI) in hypertensive intracerebral hemorrhage. (a) The intrahematomal
ROI (intra-ROI) was manually segmented based on the contour of hematoma; (b) the perihematomal ROI (peri-ROI) was automatically
reconstructed based on the contour of the intra-ROI using the “dilation” algorithm.

ROI, which can be summarized into the following four
groups: 14 volume and shape features (2D and 3D), 18 first-
order features, 75 texture features, and 744 wavelet trans-
form features. Three groups of features were obtained from
the intra-ROI, peri-ROI, and their combined ROI (intra-
ROI + peri-ROI).

2.5. Radiomics Feature Screening and Rad-Score Building.
The minimum-redundancy maximum-relevance (mRMR)
and the least absolute shrinkage and selection operator
(LASSO) method were used for feature selection. Initially,

mRMR was applied to eliminate redundant and irrelevant
features. Then, the LASSO algorithm was conducted to select
the optimized feature subset using ten-fold cross-validation to
build the final model. The radiomics score (Rad-score) was
calculated for each patient by a linear combination of selected
features weighted by their respective coefficients. Based on the
selected features of intra-ROI, peri-ROI, and their combined
ROI, three radiomics models, which were intrahematomal-
based model (intra-model), perihematomal ring-based model
(peri-model), and combined model, were then established. The
workflow of radiomics analysis of hematoma is shown in
Supplementary Figure 1.



2.6. Development of Clinical and Clinical-Radiomics Model.
Univariate and multivariate logistic regression analyses were
used to analyze the relationship between the prognosis and
clinical characteristics of HICH and screen out the clinical
risk factors in developing a clinical model for the prognosis.
Moreover, clinical risk factors and radiomics features (in-
cluding radiomics features of intra- and perihematomal
areas) were merged by a multivariate logistic regression to
develop the clinical-radiomics model. For the visualization
and clinical application of the model, the model was dis-
played by nomogram.

2.7. Statistical Analysis. Statistical analysis and data pro-
cessing were performed using the R programming language
(version 4.1.0, https://www.programmingr.com). Compari-
sons between sets were performed by the independent
sample t-test or Mann-Whitney U test for continuous
variables and the Chi-square test or Fisher’s exact test for
categorical variables. The accuracy of each model in pre-
dicting the prognosis of HICH was evaluated by the area
under the receiver operating characteristic (ROC) curve
(AUC), and Delong test was utilized to compare the AUC
difference between nomogram and clinical model. The ap-
plication value of the nomogram in the training cohort and
validation cohort was assessed by decision curve analysis
(DCA). A two-tailed P-value <0.05 represented a statistical
significance.

3. Results

3.1. Clinical Characteristics. A total of 195 HICH patients
were enrolled consecutively, including 126 males and 69
females, with an average age of 59.32+ 13.11 years (range
19-90 years). Patients were divided into training cohort
(n=138) and validation cohort (n=57) according to the
ratio of 7:3. During the 90-day follow-up using the GOS
score, 69 patients (35.4%) had a good prognosis, and 126
patients (64.6%) had a poor prognosis. Table 1 summarizes
the clinical characteristics of patients in the training and
validation cohorts.

3.2. Radiomics Feature Selection and Rad-Score Construction.
First, 1702 radiomics features were extracted from the
depicted ROI, including manually segmented intra-ROI and
automatically segmented peri-ROI The interobserver ICC
ranged from 0.751 to 0.997, so these features had good
repeatability. Next, 11 optimal radiomics features were se-
lected from intra-ROI and peri-ROI by mRMR and LASSO,
respectively, and then, incorporating intra- and peri-ROI
features, ten radiomics features (seven from intra-ROI and
three from peri-ROI) were selected (Figure 3). Finally, the
Rad-score was calculated for each patient using the formula
provided in Supplementary Table 1 from the selected
features.

3.3. Establishment of Radiomics, Clinical, and Clinical-
Radiomics Model. Three radiomics models for predicting
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the prognosis of HICH were built based on radiomics
features of intra-ROI, peri-ROI, and their combined ROI,
respectively. We drew the ROC curves to compare the
predictive accuracy of three radiomics models. The specific
results are shown in Supplementary Figure 2. In the vali-
dation cohort, the AUC of the combined model was 0.90
(95% confidence interval (CI), 0.82 to 0.98), which was
superior to the intra-model (AUC=0.88, 95% CI, 0.79 to
0.97) and the peri-model (AUC =0.82, 95% CI, 0.71 to 0.93).

By univariate and stepwise multivariate logistic regres-
sion analyses, age, sex, RBC, serum glucose, D-dimer level,
hematoma volume, and midline shift were independent
predictors for the prognosis of HICH (Table 2). Then, seven
clinical risk factors were used to establish the clinical model.
In addition, because the combined radiomics model has the
best performance, the clinical-radiomics model was further
established by integrating the combined Rad-score and
clinical risk factors.

3.4. Performance Evaluation of Predictive Model and Devel-
opment of Nomogram. Figure 4 shows the performance of
the clinical model, combined radiomics model, and
clinical-radiomics model in predicting the prognosis of
HICH in the training and validation queues. The clinical-
radiomics model showed the highest discrimination in the
training cohort in identifying patients with excellent and
poor prognoses, with an AUC of 0.95 (95% CI, 0.92 to
0.98). The AUC of the clinical-radiomics model was
significantly higher than that of the clinical model
(AUC=0.87, 95% CI, 0.81 to 0.92) and the combined
radiomics model (AUC =0.90, 95% CI, 0.85 to 0.95). In
the validation cohort, the AUC of the clinical-radiomics
model 0of 0.90 (95% CI, 0.82 to 0.98) was superior to that of
the clinical model (AUC =0.84, 95% CI, 0.73 to 0.94). The
clinical-radiomics model showed the best performance in
predicting the prognosis of HICH, surpassing all the other
models, and had the highest prediction accuracy. More-
over, the ROC comparison verified by Delong test showed
statistical significance between nomogram model and
clinical model (Z=3.56, P<0.01), suggesting that the
clinical predicted net return of nomogram was higher
than that of clinical model. Based on this best model, we
generated a visualized clinical-radiomics nomogram
(Figure 5).

3.5. Clinical Application. The calibration curve showed that
the clinical-radiomics nomogram had a good consistency
and high calibration degree in predicting the prognosis of
HICH and the actual results (Figure 6). Moreover, the DCA
curves of clinical-radiomics nomogram, clinical model, and
combined radiomics model showed that clinical-radiomics
nomogram had more excellent clinical utility, which indi-
cated that the nomogram was a reliable clinical tool. In
addition, DCA showed that these models were better than
the “all treatment” and “no treatment” indexes in the
training cohort in predicting the prognosis of HICH
(Figure 7).
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TaBLE 1: The clinical characteristics of the training cohort and the validation cohort.
Training cohort (n=138) Validation cohort (n=57)
Characteristics Favorable outcome Unfavorable outcome p Favorable outcome Unfavorable outcome p
(n=49) (n=289) (n=20) (n=37)
Sex (n, %) 0.037* 0.604
Female 10 (20.4) 35 (39.3) 13 (65.0) 20 (54.1)
Male 39 (79.6) 54 (60.7) 7 (35.0) 17 (45.9)
Age (year) 51.6+11.6 63.7+12.0 <0.001* 539+11.0 62+13.3 0.020*
SBP (mmHg) 165.8 +27.3 163.6 +25.1 0.637 158.7 +25.0 167.6 +33.2 0.294
DBP (mmHg) 98.1+19.2 96.0 +16.5 0.493 93.5+13.4 93.4+16.5 0.998
Smoking (1, %) 1.000 0.623
No 31 (63.3) 56 (62.9) 12 (60.0) 26 (70.3)
Yes 18 (36.7) 33 (37.1) 8 (40.0) 11 (29.7)
Drinking (n, %) 0.223 0.544
No 22 (44.9) 51 (57.3) 10 (50.0) 23 (62.2)
Yes 27 (55.1) 38 (42.7) 10 (50.0) 14 (37.8)
Diabetes (1, %) 0.050* 0.482
No 46 (93.9) 71 (79.8) 17 (85.0) 27 (73.0)
Yes 3 (6.1) 18 (20.2) 5 (15.0) 10 (27.0)
Monocyte count (109/L) 0.4+0.2 0.5+0.3 0.084 0.6+0.2 0.5+0.3 0.446
WBC (IOQ/L) 10.3+4.0 11.9+4.9 0.048* 11.3+3.9 12.0+4.9 0.571
Lymphocyte count (IOQ/L) 1.3+0.9 1.3+0.9 0.760 1.3+£0.5 1.2+£0.8 0.493
RBC (lOlZ/L) 4.8+0.6 45+0.6 0.037* 4.6+0.6 4.7+0.7 0.648
Platelet count (IOQ/L) 224.6 +60.6 229.0+78.8 0.732 230.5+49.8 227.4+74.6 0.866
Hemoglobin (g/L) 143.1£22.2 137.9+18.8 0.150 142.5+17.0 142.4+17.9 0.986
Serum glucose (mmol/L) 7.5+29 9.1+3.6 0.007* 8.3+4.0 10.5+3.7 0.031*
D-dimer (mg/L) 0.5+0.5 1.9+43 0.022* 0.6+0.4 1.8+£2.0 0.006*
Zﬁi‘;me of hematoma 152+13.2 30.8+23.1 <0.001* 151 +8.8 30.5+22.7 0.003*
Location (1, %) 0.698 0.197
Basal ganglia 41 (83.7) 69 (77.5) 17 (85.0) 25 (67.6)
Lobe 6 (12.2) 12 (13.5) 2 (10.0) 2 (5.4)
Brainstem 0 (0.0) 1(1.1) 0 (0.0) 6 (16.2)
Cerebellum 2 (4.1) 7 (7.9) 1 (5.0) 4 (10.8)
Intraventricular
hemorrhage (n, %) 0.059 0.064
No 31 (63.3) 40 (44.9) 14 (70.0) 15 (40.5)
Yes 18 (36.7) 49 (55.1) 6 (30.0) 22 (59.5)
Midline shift (n, %) 0.006* 0.833
No 33 (67.3) 37 (41.6) 10 (50.0) 16 (43.2)
Yes 16 (32.7) 52 (58.4) 10 (50.0) 21 (56.8)
Herniation 0.552 0.191
No 46 (93.8) 81 (91.0) 20 (100.0) 34 (91.9)
Yes 3 (6.2) 8 (9.0) 0 (0.0) 3 (8.1)
Ventricular entrapment 0.061 0.105
No 43 (87.8) 66 (72.2) 19 (95.0) 31 (83.8)
Yes 6 (12.2) 23 (25.8) 1 (5.0) 6 (16.2)
Rad-score -0.6 (1.3, 0.3) 1.6 (0.6, 3.1) <0.001* -1.3 (-1.7,-0.2) 1.3 [0.2, 2.4] <0.001*

Notes. * P < 0.05, indicating that the difference was statistically significant. SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cell;

RBC, red blood cell; Rad-score, radiomics score.

4. Discussion

HICH is a common disease in neurosurgery, accounting for
70%-80% of all cases of ICH. The prognosis is poor, which
will endanger the lives of patients and seriously affect
people’s health and quality of life [24]. Early and accurate
prediction of the prognosis of HICH patients is the key to
personalized treatment of HICH. In this study, to identify
patients with poor prognoses, we developed and validated
the clinical-radiomics nomogram based on the radiomics

features and clinical risk factors. The nomogram showed
good performance in training and validation cohorts and
was an easy-to-use personalized decision-making tool.

In terms of clinical characteristics, through multivariate
logistic regression analysis, our study found that age, sex,
RBC, serum glucose, D-dimer level, hematoma volume, and
midline shift were the clinical risk factors for predicting the
prognosis of HICH. Previous studies have shown that age,
sex, hematoma volume, and midline shift can be used to
predict functional outcomes in ICH patients [23, 25, 26],



6 Computational Intelligence and Neuroscience

3029282724201614131313108 7 6 6 5 3 28 14 10 5
3 2.5 4 'o.....' 30 4
= ",
8 o, ]
[~ . S 20 +
2.0 4 \f

z ; 2
= .
N ", o |
g 15 . S
= . .
o) -.. ‘,o' iy .

T T T T 1 T

-8 -6 -4 2 -8 6 -4 2

Log (1) Log Lambda
0.019699640284723
(a) (b)

intra_original_firstorder_10Percentile -

intra_wavelet LHH_glszm_ZonePercentage -

intra_wavelet_ HLH_firstorder_Median - -

peri_wavelet_LLL_glszm_SmallAreaLowGrayLevelEmphasis 1 -

§ peri_original_glszm_LowGrayLevelZoneEmphasis 1 -

§ intra_wavelet_HHL_gldm_LargeDependenceHighGrayLevelEmphasis - -
peri_wavelet_LLH_glszm_LargeAreaHighGrayLevelEmphasis -
intra_wavelet HLL_glszm_LargeAreaHighGrayLevelEmphasis

intra_wavelet_HLL_ngtdm_Coarseness -

intra_original_shape_MajorAxisLength -

-0.5 0.0
Coefficients
(©
FIGURE 3: Texture feature selection using the least absolute shrinkage and selection operator (LASSO) method. (a) The optimal tuning

parameter (1) was selected using 10-fold cross-validation in the LASSO regression model; (b) LASSO regression coeflicient distribution; (c)
optimal radiomics feature combination and its correlation coeflicient.

TaBLE 2: Univariate and multivariate logistic analyses of prognostic risk factors for HICH.

Univariate logistic analysis Multivariate logistic analysis

Variable
OR (95% CI) P OR (95% CI) P

Age 1.09 (1.05, 1.14) <0.001 1.14 (1.06, 1.22) <0.001
WBC 1.08 (0.99, 1.18) 0.054 NA NA
RBC 0.53 (0.29, 0.98) 0.042 2.50 (0.87, 7.14) 0.087
Serum glucose 1.19 (1.03, 1.38) 0.012 0.98 (0.83, 1.17) 0.832
D-dimer 2.41 (1.31, 4.45) 0.004 1.36 (0.80, 2.32) 0.258
Volume of hematoma 1.05 (1.02, 1.08) <0.001 1.01 (0.97, 1.06) 0.570
Sex 2.52 (1.11, 5.70) 0.025 2.25 (0.57, 8.92) 0.248
Midline shift 2.89 (1.39, 6.02) 0.004 2.05 (0.58, 7.25) 0.263
Rad-score 4.40 (2.59, 7.47) <0.001 5.33 (2.88, 11.93) <0.001

Notes. WBC, white blood cell; RBC, red blood cell; Rad-score, radiomics score; OR, odds ratio; CI, confidence interval; NA, not available.

which is consistent with our results. In addition, we also
found that the risk of poor prognosis at 90 days was related
to RBC, serum glucose, and D-dimer level. Low RBC levels
are associated with poor ICH prognoses, which may be

partly due to impaired cerebral oxygenation [27]. Béjot et al.
[28] found that admission hyperglycemia was associated
with 1-month mortality and poor functional recovery at
discharge. Moreover, basic studies have also confirmed the



Computational Intelligence and Neuroscience

1.0 —
0.8
2 06|
E il
z
3 0.4
o AUC: 0.95 (0.92 - 0.98)
2 AUC: 0.90 (0.85 - 0.95)
AUC: 0.87 (0.81 - 0.92)
0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

1 - specificity

—— Nomogram
Radiomics
—— Clinics

()

7
1.0 4
0.8
= 0.6
=
z
3 0.4
02 AUC: 0.90 (0.82 - 0.98)
4] AUC: 0.90 (0.82 - 0.98)
AUC: 0.84 (0.73 - 0.94)
0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

1 - specificity
—— Nomogram

Radiomics
—— Clinics

(b)

FIGURE 4: Receiver operating characteristic curves of the nomogram, radiomics model, and clinical model to predict the prognosis of HICH

((a) is the training queue and (b) is the validation queue).

0 10 20 30

40 50 60 70 80 90 100

Points L L L L
Age r T T T T T T T |
RBC 10 20 30 40 50 60 70 80 90
25 4 5 6
Serum_glucose mm
22

D_Dimer r T T T T

Volume_of_hematoma 0 > 1015 20

25 30 35 40

Sex
o1
Midline_shift —
0
Radscore T T T T

—
o A
—
o
w
=~
v
o

Total Points LA S
Risk

T T
80 100 120

[ —

0.1 04 0.9

—
140 160 180

FiGure 5: Clinical-radiomics nomogram. The nomogram was composed of Rad-score, age, sex, RBC, serum glucose, D-dimer, volume of
hematoma, and midline shift. In sex, 0 indicated male and 1 indicated female; in midline shift, 0 showed no and 1 showed yes.

effect of hyperglycemia on early hematoma expansion,
mainly manifested in neuron death, angiogenic brain edema,
and aggravation of blood-brain barrier damage [29, 30].
Zhou et al. [31] indicated that elevated plasma D-dimer
levels after ICH were associated with mortality and poor
functional outcomes. The increase in D-dimer level is related
to progressive bleeding injury, which may reflect the dis-
turbance of cerebral microcirculation and systemic hyper-
coagulability [32]. Based on these clinical risk factors, we
developed a clinical model to predict the prognosis of HICH
patients. The diagnostic effect of this model was good, with
AUCs 0f 0.87 and 0.84 in the training and validation cohorts,
respectively.

Radiomics methods have great potential in promoting
clinical decision-making by improving the accuracy of
clinical diagnosis, prognosis prediction, and treatment

response [33]. In the present study, we attempted to apply a
novel combined intra- and perihematomal radiomics
method to predict the prognosis of HICH. Compared with
the research of Xu et al. [15], we not only analyzed the
radiomics features of the intra-ROI but also explored the
radiomics features of the peri-ROI. Previous study has
shown that the perihematomal microenvironment is related
to the pathophysiological process of hematoma expansion
and may provide some potential predictive information [34].
In our study, three of the ten best features in the combined
radiomics model were from peri-ROI, which indicated that
the perihematomal region might provide incremental in-
formation. In addition, our findings showed that in the
validation cohort, the AUC of the combined radiomics
model, incorporating intra- and peri-ROI features, was 0.90
(95% CI, 0.82-0.98), which was better than the single intra-



100 4

(%) 50

25

f T T T 1
0 25 50 75 100
Predicted event probability (%)

(a)

Computational Intelligence and Neuroscience

100

75

(%) 50

1

25 +

r T \ T 1
0 25 50 75 100
Predicted event probability (%)

()

FIGURE 6: Calibration curves for the clinical-radiomics nomogram in training cohort (a) and validation cohort (b).
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Figure 7: Clinical decision curve of the three models. The vertical axis is the net benefit rate, and the horizontal axis is the probability
threshold. DCA shows that the nomogram (blue line) adds more benefit than either all treatment schemes (red line) or no treatment
schemes (light blue line) in predicting the prognosis of HICH when the threshold probability ranges from 0.1 to 1.0. Moreover, compared
with the radiomics model (grey line) and clinical model (orange line), the nomogram model (blue line) achieved the highest net benefit.

and perimodel, and yielded the overall best prediction
performance. This finding indicated that the radiomics
features of the peri-ROI might have potential value and
deserved further exploration.

We used machine learning methods (radiomics features)
to evaluate the characteristics of the hematoma itself and
around the hematoma in order to better assess the het-
erogeneity of the hematoma. Rad-score can be used to
quantitatively reflect the characteristics of the hematoma
itself after radiomics analysis, and it can be concluded
through the logistic regression analysis that Rad-score is an
independent variable of HICH prognosis. By adding Rad-
score to the clinical model, a clinical-radiomics nomogram
was developed to promote further clinical application and
accurately predict the prognosis of HICH. Compared with
other models, this nomogram has further improved the
performance of predicting the prognosis of HICH and
achieved higher accuracy. The AUCs of the training and
validation cohorts were 0.95 and 0.90, respectively, which

outperformed the single clinical characteristics and the
radiomics features. The doctor can add the scores of each
prediction variable and get the total score according to the
individual differences of patients, so as to better help clinical
decision-making and enable clinicians to develop person-
alized treatment plans for HICH patients. In addition, the
calibration curve and DCA curve showed that the nomo-
gram had good consistency and potential clinical applica-
bility, and the maximum benefit was obtained under all
thresholds.

However, the present research still has some limitations.
Firstly, only the radiomics of the 6 mm perihematomal area
was analyzed. The predictive ability of other perihematomal
region radiomics models with different distances to the
prognosis of HICH patient needs to be further analyzed and
studied. Secondly, this study is a single-center retrospective
study, and the sample size is relatively small, which inevi-
tably has some deviations; hence, large sample prospective
and external validation studies are required.
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5. Conclusions

In conclusion, this study established a clinical-radiomics
nomogram, composed of radiomics features (including
radiomics features of intra-ROI and peri-ROI) and clinical
risk factors to identify HICH patients with poor prognoses.
It can assist doctors in making clinical treatment decisions
for patients with poor prognoses. Moreover, the clinical-
radiomics nomogram shows potential value in precision
medicine and designs personalized treatment strategies to
better achieve personalized precision treatment.
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