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Accurate retinal blood vessels segmentation is an important step in the clinical diagnosis of ophthalmic diseases. Many deep
learning frameworks have come up for retinal blood vessels segmentation tasks. However, the complex vascular structure and
uncertain pathological features make blood vessel segmentation still very challenging. Tis paper proposes a novel multimodule
concatenation via a U-shaped network for retinal vessels segmentation, which is based on atrous convolution and multikernel
pooling. Te proposed network structure retains three layers of the essential structure of U-Net, in which the atrous convolution
combining the multikernel pooling blocks are designed to obtain more contextual information. Te spatial attention module is
concatenated with the dense atrous convolution module and the multikernel pooling module to form a multimodule con-
catenation. And diferent dilation rates are selected by cascading to acquire a larger receptive feld in atrous convolution. Adequate
comparative experiments are conducted on these public retinal datasets: DRIVE, STARE, and CHASE_DB1.Te results show that
the proposed method is efective, especially for microvessels. Te code will be released at https://github.com/rocklijun/MC-UNet.

1. Introduction

Te retina is one of the most important parts of the eyes [1].
On the basis of the data published by the WHO, a growing
number of people around the world are sufering from eye
diseases [2]. Te morphological characteristics of retinal
blood vessels are very helpful for ophthalmologists who can
use morphological features of retinal blood vessels, such as
branching patterns, angles, curvatures, widths, and lengths,
to diagnose and assess eye diseases [3, 4]. Te ophthal-
mologist can efectively screen and diagnose fundus-related
diseases by examining and analyzing the shape structure of
retinal blood vessels. Terefore, fundus examination is an
important part of the ophthalmic examination. Extracting
the shape and structure of retinal blood vessels is the most
pivotal procedure in the ophthalmic examination for oph-
thalmologists to identify diseases. In traditional medical
procedures, the retinal vascular area needs to be manually

segmented by experienced specialists, which is time-con-
suming and labor-consuming. Furthermore, the blood
vessels in the retinal image are irregular and densely dis-
tributed, such as a lot of small blood vessels with low
contrast, which is easily confused with the background.
Although there are many retinal image segmentation
methods that have been presented, those issues make blood
vessel segmentation still very challenging.

Te unsupervised method and the supervised learning
method comprise the retinal vessel segmentation method.
Te diference between them is whether the input data have
manually segmented labels. Oliveira et al. [5] used two al-
gorithms for median ranking and weighted mean, which are
diferent to combine the Frangi flter, matched flter, and
Gabor wavelet flter for blood vessels segmentation.
Alhussein et al. [6] extracted the enhanced images of thin
and thick blood vessels, respectively, based on a hessian
matrix and intensity transformation method. Azzopardi
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et al. [7] presented a selective response vascular flter called
B-COSFIRE for vascular segmentation. Safarzadeh et al. [8]
used a multiscale line operator to detect blood vessels and
K-means to do blood vessels segmentation. Tese methods
are efcient and fast in retinal vessel segmentation, but the
segmentation performances are dependent on the selection
of feature extractors. While supervised learningmethods can
learn features from the original images and segmentation
labels that makes it more efective in segmentation tasks
owing to get the input-output relationship. And the su-
pervised learning methods can be subdivided into deep
learning methods and traditional machine learning
methods. Te SVM and random forest, which belong to
traditional machine learning models, need to manually
construct features and map them to the target space. Wang
[9] combined the characteristics of Gaussian scale space and
the divergence characteristics of a vector feld and used the
SVM classifer to segment blood vessels. Zhu et al. [10] used
Cart and AdaBoost classifers to classify pixels. Although the
traditional machine learning method is easy to understand
and can be explained, it requests to ft the feature types and
feature selection methods that make the feature represen-
tation ability limited.

During the past few years, convolutional neural network
(CNN) has made outstanding achievements in the automatic
segmentation of retinal vessels. Compared with traditional
machine learning, there are many layers of neural networks
in deep learning, which has strong nonlinear modelling
ability and feature representation ability. In particular, since
the U-Net [11] was proposed, various U-shaped networks
based on encoding and decoding structures make bio-
medical images have more accurate segmentation perfor-
mance. And several excellent retinal vessel segmentation
methods that are U-NET based are proposed. Li et al. [12]
proposed a method using structural redundancy in the
vascular network to fnd fuzzy vascular details from the
segmented vascular images and expand the depth of the
model through multiple iterations. Two U-NET-based
models, one of which is recurrent and the other is recurrent
residual, have been proposed by Alom et al. [13], using the
functions of residual network and RCNN. Zhuang [14]
proposes a multi-U-Net chain containing multiple encoder-
decoder branches. Yuan et al. [15] fused the multilevel at-
tention module with U-NET to obtain the fusion infor-
mation of low and high levels for alleviating the problem of
the network overftting and obtaining generalization ability.
Wang et al. [16] designed a dual-coding U-NET, which has
outstanding performance in improving the segmentation
capability of vessels in the retina. A spatial attention module
is added to the SA-UNet (Spatial AttentionU-Net for Retinal
Vessel Segmentation) to obtain more features of spatial di-
mensions by Guo et al. [17]. Te IterMiUnet [18] is designed
to alleviate the heavy parameterization of U-Net, inspired by
Internet [12] and MiUnet [19]. Zhang et al. [20] designed the
Bridge-net to learn context-involved and noncontextual
features to obtain superior segmentation results.

Although these U-Nets and their improved networks
have been used in retinal vessels segmentation so widely,
those sufer from many limitations and defciencies. Te

encoder-decoder structures receive the information feature
and its transmission in the same layer by jump connections,
whichmay cause the loss of small and fragile vessels owing to
the limited comprehensive features. In order to alleviate the
problems, we propose a multimodule concatenation net-
work based on a U-shape network called MC-UNet for
retinal vessel segmentation, which retains local and global
information about the retinal main blood vessels and
capillaries. Furthermore, the contributions that this paper
can make are summarized as follows:

(1) We proposed a multikernel pooling based on the
U-shape network that retains three layers, the es-
sential structure of U-Net, but the atrous convolu-
tion combining the multikernel pooling blocks are
designed to obtain more contextual information.

(2) We design a multimodule concatenation network to
contain local and global information for retaining
small vascular and advanced features.

(3) Te spatial attention module in the network is
concatenated with the dense atrous convolution
module and multikernel pooling module, which can
further enhance the signifcance of the target.

(4) We evaluate and analyze the proposed MC-UNet on
the challenging task of retinal blood vessels seg-
mentation. According to the results of experiments,
our method reaches the state-of-the-art level on the
public datasets.

2. Methods

In this section, we will introduce our proposed MC-UNet
shown in Figure 1. Our network retains three layers, the
essential structure of U-Net with a spatial attention module
the same as SA-UNet [17]. Tere are three skip connections
and a four layers network structure in our proposed method
and is diferent from the fve layers network structure of the
original U-NET.TeDropblock and BNmodules are used to
take the place of the convolution block in the original
U-NET, which can efectively prevent overftting of the
network and improve network training speed. Conse-
quently, it is more suitable for small sample data sets. Te
main improvement for our proposed is to bind the dense
atrous convolution module (DAC) and multikernel pooling
module (MKP), which joint local and global information for
a certain extent. Ten, the spatial attention module in the
network is concatenated with DAC andMKP. For each layer,
it is including a Conv3∗ 3, Dropblock, BN modules, ReLu
and a 2∗ 2 max-pooling. We will elaborate on the MC-UNet
in detail in the following subsections.

2.1. Spatial Attention Module. Te spatial attention module
[21] generates a spatial attention map using the maximum
pool and average pool operations, selectively paying at-
tention to the feature information in the image and ignoring
other background information. Te output feature SA is
obtained by multiplying the input feature F and attention
map σ(·), which is shown in the following formula:
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SA � F ∙ σ f
7
([maxpool(F); avgpool(F)])􏼐 􏼑, (1)

where f7 and σ represent 7∗ 7 convolution operation and
the sigmoid function, respectively. Te illustration of spatial
attention module is shown in Figure 2.

2.2. Dense Atrous Convolution Module. Atrous convolution
has a widespread application in semantic segmentation, target
detection and other tasks by many classical networks, such as
DeepLab [22, 23]. In deep learning algorithms, proft from
pooling layer and convolution layer, the receptive feld of
feature image is increased and the size of feature image is
reduced. What’s more, upsampling is used to make the image
size restored. But now, due to the process of feature image
shrinkage and magnifcation, the accuracy will be lost. Atrous
convolution can increase the receptive feld and maintain the
size of the feature map to reduce the computation of the
network, which is utilized to replace downsampling and
upsampling.Te dilation rate of the atrous convolution can be
set with diferent values, by which diferent receptive felds
can be achieved for multiscale information.

y(i) � 􏽘
k

x[i + r × k]w[k], k � 1, 2, · · · , k, (2)

where r represents the dilation rate and k is the length of the
flter w. In particular, when r � 1, formula (2) is the standard
convolution. Te input feature maps x are convolved with a

flter w to obtain the output y. And Figure 3 shows the
schematic diagram of the atrous convolution, the dilation
rates are 1, 3, and 5, respectively. And the small dilation rates
can obtain the local information and the big ones can get the
global information that makes the network extract local and
global information for retaining small vascular and advanced
features.

Compared with downsampling, atrous convolution can
both enlarge the receptive feld nicely and accurately locate
the target and reduce the loss of spatial resolution.Te dense
atrous convolution [24] module shown in Figure 4 is gen-
erated by integrating the atrous convolution using diferent
dilation rates, which can capture the context information of
diferent scales and achieve local or global information. By
using diferent dilation rates rk to combine the atrous
convolution, the output D of atrous convolution modules
can be obtained.

D � 􏽘
k

yrk
(x). (3)

2.3. Multikernel Pooling Module. Te multikernel pooling
[24] module is changed based on the spatial pyramid [25],
which can make the redundant information of the feature
map be reduced and the amount of calculation. According to
the diferent sizes of the kernel, the feature information of
receptive felds with diferent sizes is extracted to increase the
segmentation performance of the model. Te multikernel

Spatial attention module

DAC MKP

Dense atrous convolution
and Multi-kernel pooling module Matrix multiplication

Element-wise sum

Sofmax

MAX poolingAVG poolingConv1✳1+SigmoidDeConv 2✳2Conv 7✳7Maxpool 2✳2Conv3✳3, DropBlock, BN, ReLu

Figure 1: Diagram of the proposed MC-UNet.
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Figure 2: Te illustrations of spatial attention module (SA).
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pooling module is introduced into the SA-UNet, which relies
on multiple diferent kernels to detect diferent sizes targets.
Multikernel pooling can use more context information by
combining general max-pooling operations of diferent kernel
sizes, as shown in Figure 5. And encoding the global context
information into four receiving domains of diferent sizes: 2 ×

2, 3 × 3, 5 × 5, and 6 × 6. Ten, a 1 × 1 convolution is carried
out to reduce the dimension of feature mapping, and
upsampling is carried out to get features of the same size as the
original feature mapping. Lastly, we concatenate the original
features and the upsampled feature mapping and obtain the
output feature MKP of multikernel pooling module.

MKP � 􏽘
i

f
1 Maxpoolki

(D)􏼐 􏼑, (4)

where f1 and ki denote the 1 × 1 convolution and ith kernel
of diferent sizes, and the D is the output feature map
representing the dense atrous convolution module.

Te encoder-decoder structures receive the information
feature and its transmission in the same layer by jump con-
nections, which may cause the loss of small and fragile vessels
owing to the limited comprehensive features. Te spatial at-
tention module, multikernel pooling module and dense atrous
convolution module are complementary in the ability and
scope of feature acquisition. Inspired by them, we propose a
multimodule concatenation network for accurate retinal vessel
segmentation. Te output feature map F is obtained by con-
catenating the output features of the spatial attention module
SA and the multikernel pooling module MKP.

F � SA + MKP. (5)

3. Experiments

3.1. Datasets. We use the fundus datasets which are publicly
available to verify our method: DRIVE [26] (digital retinal
images for vessel extraction), CHASE_DB1 [27] (child heart and
health study inEngland), and STARE [28] (structured analysis of
the retina) to evaluate the segmentation performance of our
approach MC-UNet. Te STARE dataset includes pathological

dilation rate = 1 dilation rate = 3 dilation rate = 5

Figure 3: Tree atrous convolution of diferent dilation rate, the dilation rates are 1, 3, and 5, respectively.

3X3 Conv, rate = 1

3X3 Conv, rate = 3

3X3 Conv, rate = 1

3X3 Conv, rate = 1

1X1 Conv, rate = 1

3X3 Conv, rate = 3 1X1 Conv, rate = 1

3X3 Conv, rate = 3 3X3 Conv, rate = 5 1X1 Conv, rate = 1

Figure 4: Te illustrations of dense atrous convolution (DAC).
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3x3 pooling

5x5 pooling
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Figure 5: Te illustrations of residual multikernel pooling.
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abnormal and healthy retinal images, which can be used to
evaluate the impact of the model on abnormal fundus images.
Te specifc information of the three datasets is shown inTable 1.

3.2. Evaluation Criteria. Te aim of retinal vascular binary
classifcation work is to divide each pixel in the input images
into two categories: vascular (positive) and background
(negative). By comparing the segmentationmaps with the true
value of the label, four indexes can be obtained: TP, TN, FP,
and FN. P represent the number of white pixels in true images;
N represents the number of black pixels in the true image; Tfor
true; and F for false. TP represents the number of white pixels
correctly predicted by optic disc, while TN represents the
number of black pixels correctly predicted by the optic disc.
Te values of TP, TN, FP, and FN are calculated according to
the total number of pixels in the ground-truth images.

On the basis of these four basic indexes, accuracy (ACC),
sensitivity (SEN), specifcity (SP), area enclosed by the co-
ordinate axis under the ROC curve (AUC), and F1-score can
be calculated [17]. In our experiment, almost all the above
indicators are used. Te calculation formulas are as describe
as follows:

ACC �
TP + TN

TN + FP + TP + FN
,

SE �
TP

TP + FN
,

SP �
TN

TN + FP
.

(6)

4. Results

On the three datasets, we train and evaluate our method by
using the manual annotation marked by the frst expert. Te
segmentation result examples from the DRIVE, STARE, and
CHASE_DB1 datasets are shown in Figure 6, which perceive
the comparisons of the segmentation results on the three
datasets with other methods are listed, including some
methods based on U-Net. From Figures 6(a)–6(g), there are
the original color retinal image, the ground truth, the seg-
mentation map by U-Net [11], CE-Net [24], LadderNet [14],
SA-UNet [17] and proposed method, respectively. Fur-
thermore, all the experiments were carried out on NVIDIA
Quadro M5000 and 3.00GHz PCs. It can be observed in
Figure 6 that the proposed MC-UNet achieves better per-
formance than others, obtaining more vessels in a repre-
sentative patch (green disc) in the vascular tree terminal
region regions.

We also compare the segmentation results on the three
datasets with other methods by the fve evaluation criteria
shown in Table 2. Notably, MC-UNet achieves the best
performance on DRIVE and CHASE_DB1. And by com-
paring with the backbone, our method has better perfor-
mance, which illustrates that the proposed framework is
efective for vascular segmentation. Specifcally, the SE and
AUC of our framework on three datasets are higher than
backbone SA-UNet. Our method has the highest ACC, SP,
and AUC on DRIVE, the highest ACC, SE, and AUC on
CHASE_DB1. Due to many lesion images in the STARE
dataset, the sensitivity index is not satisfactory by MC-UNet.
However, compared with the backbone network, the

Table 1: Te details of the three datasets of DRIVE, CHASE_DB1, and STARE.

Dataset Resolution Numbers of images Train/test split
DRIVE 565× 584 40 1 :1
CHASE_DB1 999× 960 28 1 :1
STARE 700× 605 20 1 :1

(c) UNet(a) Original image (b) GT (d) CE-Net (e) Laddernet (f) SA-UNet (g) MC-UNet

Figure 6: Te segmentation example of the three datasets. Among them, (a) is the original retinal image, and (b) is the ground truth. From
(c) to (g) are segmentation maps by U-Net, CE-Net, LadderNet, SA-UNet, and our method, respectively.Te DRIVE dataset is shown in the
frst row, the CHASE_DB1 dataset is shown in the second row, and the STARE dataset is shown in the last row.
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proposed MC-UNet obtains better performances which also
verify our method is efective.

Table 3 shows the ablation experiments of the proposed
model, where the proposed MC-UNet is compared with the
backbone network (SA-UNet), SA-UNet +DAC, and SA-
UNet +MKP. It is observed that the DAC module is able to
enhance the specifcity of the image efectively, reduce the
blood vessels rate of false positive in the fundus image, and
reduce the misdiagnosis cost of fundus image samples. Te
MKP module improves the AUC of the segmentation al-
gorithm, making the algorithm more robust. Integrating the
DAC and MKP modules into SA-UNet improves the seg-
mentation efect as a whole, reduces the misdiagnosis rate of
the image, and improves the ability to predict blood vessels
by the algorithm. Figure 7 more intuitively shows the change
of ACC in the ablation experiment. Figure 8 compares the
ROC curves of fve diferent methods on three datasets. It

can be seen from the results that our method achieves the
best efect.

And Table 4 shows the comparison on parameters for
justifcation of the MKP module and DAC module, which
shows that our method has much fewer parameters than the
7.76M parameters of original U-Net.

5. Discussions

Tere are three skip connections and four layers in our
proposed method, compared with four skip connections and
fve layers in the original U-Net. Although our network has
added multiple integrated modules, it has a much smaller
number of parameters compared with the original U-Net
with 23 convolutional layers and is a lightweight network.
Te proposed network can enhance the specifcity of the
image efectively and reduce the blood vessels rate of false

Table 2: Te comparison of our model and other methods in DRIVE, STARE, and CHASE_DB1.

Dataset Method Year ACC SEN SP AUC F1

DRIVE

U-Net [11] 2015 96.60 76.82 98.53 97.07 —
R2U-Net [13] 2018 95.56 77.92 98.13 97.84 —
LadderNet [14] 2018 95.61 78.56 98.10 97.93 82.02
IterNet [12] 2019 95.74 77.91 98.17 98.16 82.18
CE-Net [24] 2019 95.50 79.03 97.69 97.80 —
SA-UNet [17] 2020 96.41 81.1 97.67 97.38 80.27

AACA-MLA-D-UNet [15] 2021 95.81 80.46 98.05 98.27 83.03
IterMiUnet [18] 2022 95.68 80.53 97.89 98.10 —
Bridge-net [20] 2022 95.65 78.53 98.18 98.34 82.03

MC-UNet 2022 96.78 81.00 98.79 98.28 81.49

STARE

U-Net [11] 2015 96.43 77.64 98.65 90.63 —
R2U-Net [13] 2018 97.12 8 .98 98.62 99.14 —
LadderNet [14] 2018 96.13 78.22 98.04 96.44 79.94
IterNet [12] 2019 97.60 79.69 98.23 98.37 80.73
CE-Net [24] 2019 97.32 79.09 97.21 95.97 —
SA-UNet [17] 2020 95.21 71.20 99.30 96.26 77.36

AACA-MLA-D-UNet [15] 2021 96.65 79.14 98.70 98.64 82.76
IterMiUnet [18] 2022 96.49 80.69 98.31 98.52 —
Bridge-net [20] 2022 96.68 80.02 98.64 99.01 8 .89

MC-UNet 2022 95.72 73.60 99.47 96.86 78.65

CHASE_DB1

U-Net [11] 2015 96.43 77.64 98.65 93.26 —
R2U-Net [13] 2018 96.34 77.56 98.20 98.15 —
LadderNet [14] 2018 96.56 79.78 98.18 96.94 80.31
IterNet [12] 2019 97.02 79.69 98.23 98.13 80.73
CE-Net [24] 2019 96.33 80.08 97.23 97.97 —
SA-UNet [17] 2020 97.08 81.51 98.09 97.78 77.36

AACA-MLA-D-UNet [15] 2021 96.73 84.02 98.01 98.74 82.48
IterMiUnet [18] 2022 95.91 84.43 97.04 98.12 —
Bridge-net [20] 2022 96.67 81.32 98.40 98.93 8 .93

MC-UNet 2022 97.14 83.66 98.29 98.18 77.41

Table 3: Te ablation experiment results (%) of vessel segmentation on DRIVE, CHASE_DB1, and STARE dataset for justifcation of the
MKP module and DAC module.

DRIVE CHASE_DB1 STARE
DAC MKP ACC SP AUC ACC SP AUC ACC SP AUC

96.41 97.67 97.38 97.08 98.09 97.78 95.21 99.30 96.26
√ 96.67 98.90 97.96 97.17 98.22 98.17 95.28 98.93 95.83

√ 96.72 98.29 98.42 97.22 98.10 98.29 95.58 99.23 96.50
√ √ 96.78 98.79 98.28 97.14 98.29 98.18 95.72 99.47 96.86
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segmented by SA-UNet, the orange bar represents the ACC results by our proposed framework without MKP module, the blue bar
represents the ACC results by our proposed framework without DACmodule and the pink bar represents the ACC results segmented by our
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Figure 8: Continued.
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positives in the fundus image by integrating the DAC and
MKP modules into SA-UNet. However, the limited images
available in the dataset restrict the performance of the al-
gorithm. In the experiment, we set a certain number of
iterations to avoid overftting. And we only consider the
solution of the same data domain. Te domain adaptation
method can be introduced to solve domain shift for cross-
training and verifcation for the robustness of the algorithm.

6. Conclusions

In order to solve the limited comprehensive features
extracted by the encoder-decoder structure in the U-shaped
network, which may lead to the segmentation loss of small
fragile capillaries, a novel U-shape network is proposed
named multimodule concatenation U-Net (MC-UNet)
based on atrous convolution and multikernel pooling for
retinal vessels segmentation. Te network retains local and
global information about the main retinal vessels and
capillaries. Te DAC and MKP modules are introduced to
increase the receptive feld for improving the sensitivity of
the algorithm and retain more detailed feature information
for improving the accuracy of retinal vascular segmentation.
Experimental results prove the efectiveness of the method,
especially for microvessels. However, for more severe lesions
in image data, a robust framework is still needed to be
studied and discussed.
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Figure 8: Te ROC curves of diferent method on DRIVE (a), STARE (b) and CHASE_DB1 (c) datasets.

Table 4: Te comparison on parameters for justifcation of the
MKP module and DAC module.

DAC MKP Parameters (M)
0.54

√ 2.36
√ 0.69

√ √ 2.37
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