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Landslides are one of the most widespread natural hazards that cause damage to both property and life every year. Therefore, the
landslide susceptibility evaluation is necessary for land hazard assessment and mitigation of landslide-related losses. Selecting an
appropriate mapping unit is an essential step for landslide susceptibility evaluation. This study tested the back propagation (BP)
neural network technique to develop a landslide susceptibility map in Qingchuan County, Sichuan Province, China. It compared
the results of applying six different slope unit scales for landslide susceptibility maps obtained using hydrological analysis. We
prepared a dataset comprising 973 historical landslide locations and six conditioning factors (elevation, slope degree, aspect,
lithology, distance to fault lines, and distance to drainage network) to construct a geospatial database and divided the data into the
training and testing datasets. We based on the BP learning algorithm to generate landslide susceptibility maps using the training
dataset. We divided Qingchuan County into six different scales of slope unit: 4,401, 13,146, 39,251, 46,504, 56,570, and 69,013, then
calculated the receiver operating characteristic (ROC) curve, and used the area under the curve (AUC) for the quantitative
evaluation of 6 different slope unit scales of landslide susceptibility maps using the testing dataset. The verification results
indicated that the evaluation generated by 56,570 slope units had the highest accuracy with a ROC curve of 0.9424. Overelaborate
and rough division of slope units may not get the best evaluation results, and it is necessary to obtain the slope units most
consistent with the actual situation through debugging. The results of this study will be useful for the development of landslide
hazard mitigation strategies.

1. Introduction

Landslides are among the most important natural disasters
that cause extensive losses worldwide in human life and
property [1, 2]. In China, it is reported that 6,181 geo-
hazards occurred in 2019 (of which 68.2% were landslides),
resulting in 299 people injured or dead and a direct eco-
nomic loss of 2.77 billion CNY (https://www.stats.gov.cn/
tjsj/ndsj/2020/indexch.htm). How to prevent landslide-re-
lated disasters actively and effectively and develop regional
disaster prevention and early warning measures is one of the
main issues around the world [3]. It is necessary to identify
the landslide areas to prevent landslide-related disasters, and
landslide susceptibility assessment is a primary tool for
solving the problem [4]. Therefore, assessing models related

to landslide susceptibility has become a principal research
topic worldwide in recent years [5].

Landslide susceptibility reflects the variation of landslide
occurrences in a given area based on local geo-environ-
mental factors and thus represents where landslides are
likely to occur [6, 7]. Landslide susceptibility mapping
(LSM) is the first and most important step in landslide
susceptibility assessment [1]. The construction of landslide
susceptibility maps is essential to understand and predict
future landslides and mitigate the consequences of landslides
in the study area [8]. The extraction and delineation of map
units are a key element affecting the accuracy of the zoning
and the reliability of the results, which is also the basis for
landslide hazard analysis [9]. In earlier studies, scholars have
proposed various methods to delineate land landscapes for
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landslide susceptibility assessment [10]. In general, the map
units commonly used for landslide susceptibility analysis are
grid units and slope units [11]. A grid unit is a mapping unit
in which the area is divided into regular squares of pre-
determined dimensions [12]. Many scholars have carried out
a major number of landslide susceptibility researchers based
on this unit type [13, 14]. However, although the units are
simple to segment, the topographic boundaries are not
regular quadrilaterals in nature. Thus, the method does not
reflect the characteristics of the actual topography. It is based
solely on size, without considering the constraints of the
topographic boundaries, making it easy for the units to cross
the topographic line [15]. Therefore, the slope unit was
proposed. It approximates the entire study area consisting of
several slopes of different sizes and is an approximate de-
scription of the actual slope boundary [16]. The results of a
large number of researches have shown that slope units,
compared with grid units, can preserve the integrity of
slopes; improve the degree of conformity with the actual
topography; represent the actual development of landslide
hazards in the region better; and thus enhance the accuracy
and efficiency of spatial prediction of landslides [17, 18]. The
most commonly used method of slope unit delineation is the
hydrological analysis model [19, 20]. It is now widely ac-
cepted and has been integrated into the toolbox of Spatial
Analyst Tools—Hydrology in ArcGIS. However, the clas-
sification of slope units by hydrological analysis lacks unified
standards. Few studies have focused on the influence of slope
units of different classification scales on the evaluation re-
sults of landslide susceptibility.

Over the past three decades, advancements in geographic
information systems (GIS) and remote sensing (RS) tech-
nologies, as well as the development and application of
methods and techniques to assess landslide susceptibility,
hazards, and risks, have proven to be feasible and effective
[21-24]. The methods using GIS and SR allow a more ac-
curate landslide susceptibility assessment than previous
approaches [25, 26]. RS-derived data and GIS spatial analysis
tools form the basis of LSM [27]. In general, the applied
methods could be classified into four types: a probabilistic
analysis based on landslide cataloging, qualitative analysis
based on empirical reasoning, deterministic modeling
methods, and semi-quantitative methods for applying
mathematical and statistical models. As a major basic
technical tool, the landslide cataloging method has been used
by various scholars in landslide analysis and assessment in
the early stage [28-30]. A qualitative analysis method is a
risk assessment of the study area based on expert experience
or relevant knowledge to classify the risk level. This method
is mainly used for early landslide susceptibility evaluation
and is more subjective [31]. The deterministic modeling
method is based on mechanisms and processes that control
the deformation and failure of landslides, which requires
extremely detailed parameters of spatial variables, and it is
applicable only at large scales over small areas [32-34]. A
semi-quantitative method is a mathematical model repre-
sented by regression analysis, discriminant analysis, and
other methods. It is based on mathematical statistics and
explores the objective law of developing things from a
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nonlinear perspective, with solid persuasive power and
practical value [35, 36]. In recent years, various machine
learning algorithms such as artificial neural networks
[37, 38], random forest [39, 40], maximum entropy [41], and
naive Bayes [42, 43] have been successfully used in a wide
range of applications and be optimal for data handling.

Currently, landslide susceptibility evaluation based on
slope units has been widely used. In contrast, few studies
have focused on the influence of slope units of different
division scales on the results of landslide susceptibility
evaluation. Therefore, it is important to explore and study
the influence of slope units with different division scales on
landslide susceptibility evaluation results to find out the
accurate division method, which is of theoretical significance
to improve the accuracy of landslide susceptibility evalua-
tion. We address the shortage in the literature by investi-
gating a hybrid integration approach of GIS and back
propagation neural network for landslide susceptibility
evaluation, which is based on different scale slope units with
a case study at the Qingchuan County in China. By com-
paring and analyzing the results of landslide susceptibility
mapping in Qingchuan County based on different division
scale slope units, additionally, the results have been evalu-
ated using the receiver operating characteristic curve (ROC)
and the area under the curve (AUC). This study makes up for
the deficiency of single scale in the study of susceptibility
mapping, provides technical support and reference for di-
saster prevention and mitigation in Qingchuan County, and
also provides a useful reference for future landslide disaster
prevention and control.

2. General Situation of the Study Area

The study area of Qingchuan County occupies an area of
3,216km? in the Sichuan Province of China (Figure 1).
Qingchuan County is located on the northern edge of
Sichuan Basin, which suffered a great deal of damage fol-
lowing landslide since the Wenchuan earthquake, and was
selected as a suitable site for the evaluation of landslide
susceptibility model. It extends from 104°36'E and 105°38'E
and from 32°12'N and 32°56'N. Elevations range from 491 m
to 3837 m. It is surrounded by steep mountains with a cut
area of 500-1,500 m, and the slope >25 accounts for 76.8%.
All strata are found in this area except for the Cretaceous,
Jurassic, and Ordovician, which are missing. Magmatic,
metamorphic, and clastic rocks are the most widely dis-
tributed. The soft and hard lithologies alternate due to the
old and new tectonic movements. There are two major fault
zones in this area: one is the Qiaozhuang fault in the north
and the other is the Chaba fault in the south. Both of them
have a NE trend and run through the whole area. The study
area is located within a subtropical monsoon climate regime,
the annual average temperature is 13.7°C, and the average
annual rainfall is 932.9 mm. The average amount of annual
sunshine is 1,238 h, with a relative sunshine duration of 30%.

Due to the difference in seismicity meteorological
conditions (such as rainfall) and human engineering in the
topographic and geotechnical structural fault zone, landslide
disasters in the study area are different. According to the
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FIGURE 1: Location map of the study area.

analysis of landslide disaster data in this area, the causes of
regional landslides can be summarized as the follows: (a)
old-style resurrection-type landslide (Figure 2(a)): in natural
conditions, the old landslide is in a stable or basically stable
state with fertile soil and stable water in the mountainous
area, an important habitat for humanity suitable for resi-
dents to live and carry out agricultural activities. Human
activities have a great influence on the stability of the old
landslide. Meanwhile, there are two fault zones in Qing-
chuan County, seismicity is high frequency, and fracture
structure is abundant. Influenced by the earthquake, rainfall,
and human engineering activities, it is easy to cause the
whole or partial landslide to resurrect, resulting in the
movement or destruction of the slope, thus developing into a
landslide disaster. (b) Shallow loose accumulation landslide
(Figures 2(b) and 2(c)): due to the influence of rainfall,
weathering, and surface inclination, the surface layer is
vulnerable to damage and deformation, which slides along
the bedrock cover discontinuity, thus forming a landslide
disaster. (c) Consequent bedding rockslide (Figure 2(d)): the
main types of rocks in the area are metamorphic rocks,
mainly phyllite and shale—the bedrock is controlled by soft
structural planes such as gentle dip cleavage and bedding,
and dip slope. Due to earthquakes and weathering, joints
and cracks are formed in the upper part, and the rock mass
structure is broken. With the influence of human engi-
neering activities and rainfall, rock bottoms slide along weak
structural surfaces such as cleavage and bedding, resulting in
landslides. (d) Earthquake caused landslide (Figure 2(e)):
Qingchuan County is an important disaster area affected by
the Wenchuan earthquake. Under the influence of seismic
load, the stability was greatly reduced, and the deformation
and damage were intense. Tens of thousands of tensile cracks
were generated on the top of the slope, thus forming the
potentially unstable landslide. (e) Man-made slope cutting
caused landslide (Figure 2(f)): after the Wenchuan earth-
quake, Qingchuan County carried out post-disaster recon-
struction, large-scale housing construction, and repair or
expansion of the existing road leading to the serious slope

cutting phenomenon. Some slopes have a thin overburden,
which causes the upper part of the slope to be hollow after
slope cutting, thus reducing the slip resistance force of the
soil. The landslide was caused by tilting and deformation of
slopes and the soil-rock interface under gravity and rainfall.

To compare the number and area of landslide, the
percentage of landslide point (LPP) and the frequency of
landslide (LF) are used to represent the activity degree of
landslide in different factors. LPP is expressed as the ratio in
percentage between the number of landslides and the total
landslides in each predisposing factor class. LF is described
as the ratio in percentage between LPP and the rate of slope
units (SUP). LPP, LF, and SUP are calculated using the
following formulas:

LPP :E,
M

SUP = —, (1)

where H indicates the number of landslides in each interval,
M, indicates the total landslides, V' stands for the number of
slope units in each interval, and M, represents the total slope
units. The statistical results are shown in Figure 3. At the
same time, the LF of different factors in different intervals
will also be used as the quantized values to eliminate the
differences between dimensions in the later model
evaluation.

The elevation is a parameter frequently used in landslide
susceptibility analysis and is regarded as a vital factor for
susceptibility mapping [44-46]. Taking the equal interval of
500 m, the elevation values of the study area were classified
into five categories: <500, 500-1,000, 1000-1,500,
1,500-2,000, and >2,000 (Figure 4(a)). It can be seen in
combination with Figure 3, almost all landslides are in the
range of 500-1,500, and the LF values in this range are
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FIGURE 2: (a) Full view of an old-style resurrection-type landslide in Qingchuan County. (b) Shallow loose accumulation landslide in the side
of ariver. (c) Shallow loose accumulation landslide occurred behind the house of residents. (d) Consequent bedding rockslide near a village.
(e) Landslide caused by the Wenchuan earthquake. (f) Landslide caused by artificial slope cutting of a new road.

greater than or extremely close to 1. It shows that the ele-
vation interval has an essential influence on the occurrence
of landslides. Starting from 1,500 m, LPP and LF of landslide
values decrease with the increase in elevation. Severe
weathering causes the slope to slow down at the high ele-
vations, and the slope body tends to stabilize. At low ele-
vations, the slope is steep, combined with river erosion and
human activity, causing landslides frequently.

The slope was considered the main parameter influ-
encing slope stability [47] and is widely used in landslide
susceptibility analyses [38, 48]. The entire slope in this study
was divided into five categories: <15°, 15-25°, 25-35°, 35-45°,
and >45° (Figure 4(b)). It can be seen that the maximum
distribution of landslides was observed in the classes 15-25°
(38.78%) and 25-35° (34.44%). The LF values greater than 1
or extremely close to 1 were in the range of <15°, 15-25°, and
25-35°, which indicated that the three ranges were most
conducive to the development of landslide collapse.

The aspect was considered an important factor in
landslide susceptibility [14, 18]. Aspect areas were classified
into eight classes (Figure 4(c)). The spatial relationship

between aspect and landslide is presented in Figure 3. It
shows that the maximum distribution of landslides was
observed in the area with the east (13.97%) and southeast
(15.54%). That is, landslides occurred in sunny slops more
than in shady slopes. Under the same conditions, sunny slop
is full of sunlight, rainfall, and soil moisture, all of which lead
to the critical state of landslide initiation that is lower than
on shady slope [49-51].

Lithology was also considered the main factor influ-
encing slope stability [51]. The variability of lithologies
cropping out in this study area allows grouping into seven
lithologic classes (Figure 4(d)). The relationship between the
lithology and landslide was analyzed (Figure 3), the result
shows that landslides occurred predominately on phyllite,
sericite silt slate, and magmatite, respectively, of 25.63%,
21.1%, and 18.59%. In addition, the values of LP for most
lithologies were over 1 or close to 1. The maximum value was
obtained for the sericite silt slate.

There are two main fault lines throughout the study area.
One of them is divided into two branches within the area
(Figure 4(e)). To assess cause-effect relationships between
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FIGURE 4: Landslide predisposing factor maps used for the landslide susceptibility analysis: (a) elevation; (b) slope; (c) aspect; (d) lithology;

(e) distance to faults lines; and (f) distance to drainage network.

fault lines and landslide, distances to faults were calculated
using five intervals: 0-500 m, 500-1,000 m, 1,000-1,500 m,
1,500-2,000 m, and >2,000 m (Figure 3). The statistical result
shows that the maximum distribution of landslides was
observed in the classes >2,000 m (60.86%).

The drainage system plays a vital role in the development
of landslides [48, 50]. To evaluate the degree to which the
drainage network influence the occurrence of landslide, the
distance to drainage network was calculated using buffers
with the following seven intervals: 0-50m, 50-100m,
100-150 m, 150-200 m, 200-250 m, 250-300 m, and >300 m.
The LPP of each buffer is shown in Figure 3, and the
landslide points were distributed uniformly, but in terms of
the values of LP, landslides were more likely to occur within
300 m from drainage.

3. Methodology

3.1. Division of Slope Units. An optimal slope unit subdi-
vision for landslide susceptibility evaluation cannot be de-
termined unequivocally, and the quality and precision of
landslide susceptibility modeling rely on the subdivision of
slope units [7, 9, 52]. Partitioning slope units reasonably
could improve the precision of landslide susceptibility zo-
nation [53]. The commonly used hydrological analysis
model, based on ridgelines and valley lines, divides water-
sheds into separate slopes [9, 54]. The framework to generate
slope units is illustrated in Figure 5.

3.2. BP Neural Network Model. Many methods are available
for landslide susceptibility evaluation, and in summary, two
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FIGURE 5: Flow chart of slop unit division method based on hy-
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major types of methods are available, that is, deterministic
models and nondeterministic models. Deterministic models
mainly use the traditional calculation model of landslide
damage mechanics and basic spatial data to predict landslide
hazard susceptibility, since the deterministic model must
collect a large amount of data about the specific topography,
hydrogeology, and other aspects of the slope. Even though it
can explain the mechanics of slope damage, however, it is
only suitable for assessing the landslide susceptibility of a
single entity, but not for studying regional landslides. A
nondeterministic model based on statistical analysis theory
is established to evaluate the landslide susceptibility of the
study area by superimposing factors affecting slope stability
according to the weights. Unlike the deterministic model,
the nondeterministic model does not require data related to
the physical characteristics of landslides, but analyses the
relationship between historical landslides and landslide
influencing factors and uses statistical methods to predict the
likelihood of future landslides. In contrast, it is better to use
nondeterministic models for the evaluation and prediction
of landslide susceptibility on a large scale.

A BP neural network is a multistage training feedforward
network based on an error back propagation algorithm, which
is also one of the most widely used neural network models.
The BP neural network is a parallel distributed processing
method that does not need to determine the input-output
pattern mapping relationship beforehand, but stores and
adaptively learns the output value similar to the desired result.
Owing to its strong modeling ability and fault tolerance, a BP
neural network has a great research value in the field of
landslide geological hazard susceptibility evaluation.

3.2.1. Data Processing. To reduce the error of the BP neural
network, it is necessary to normalize the input data before
using the landslide susceptibility evaluation model. Assume

that the input and output data contain qualitative data. In
that case, the qualitative data must be converted to quan-
titative data before normalization to avoid the situation
where the network is unable to be identified. Among the 6
evaluation indicators selected in this study, there are
qualitative and quantitative factors. The qualitative or
quantitative classification of the factors is shown in Table 1.
As far as quantitative factors are concerned, each has a
different dimension. When dividing landslide susceptibility
areas, superimposing two or more attributes that have no
connection in meaning or concept, such as slope and li-
thology, will only produce meaningless results. Only by
transforming the meaning of the attributes of the data layers
and placing qualitative and quantitative factors of different
scales on a platform of the same scale they can be substituted
into the relevant models for landslide hazard susceptibility
assessment. In this study, the landslide frequency of each
indicator is used as the quantitative value of the indicator to
achieve the quantification of the indicator and the unifor-
mity of the scale.

The “frequency of slippage” data for each evaluation
indicator were quantified between [0, 1] using the Z score
standardization method.

s=2"#
o

) (2)

where S means quantized value, x means the value of
landslide frequency, y stands for the mean value of the
landslide frequency of the indicator, and o represents the
standard deviation of the landslide frequency of the indi-
cator. The quantified data are shown in Table 2.

3.2.2. Modeling. The BP neural network is very computa-
tionally intensive if calculated manually, and this study is
operated with the help of SPSS Clementine software. 39251
slope units are randomly arranged and divided into two
categories: training samples and test samples, of which 80%
of the training samples are 31,400 and 20% of the test
samples are 7,851.

First of all, the input, output, and hidden layers of the BP
neural network should be determined. The input layer is the
quantified value of LF for the six predisposing factors
mentioned above in 31,400 slope units. The output layer is 0
or 1. 0 means no landslide has occurred, and 1 means
landslide has occurred. The hidden layer has been repeatedly
tested, adjusted, and compared. Finally, the number of nodes
in the implicit layer of the network is determined to be 3. The
following 10 data from the training sample are selected for
illustration, as shown in Table 3.

After setting up the input and output layer data and the
hidden layer, the expected error and learning rate must be
determined to stop network training when the target is
reached. Due to the inconsistency between the network
generalization ability and the network expectation error,
more minor network errors require more hidden nodes and
more training time. All other things being equal, the network
target error was set to five different levels of 0.1, 0.01, 0.005,
0.001, and 0.0001. The training data with target errors of
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TaBLE 1: Qualitative or quantitative classification of influencing factors.

Qualitative factors Quantitative factors
Lithology Elevation, slope, slope direction, distance to fault lines, distance to drainage network

TaBLE 2: Landslide predisposing factors and their quantitative values.

o Landslides Slope units o
Evaluation index Class LF (%) Quantitative value
Count % Count %

<500 0 0 1 0 0 0
500-1,000 564 57.98 14,279 36.38 1.59 0.59
Elevation (m) 1,000-1,500 395 40.65 16,124 41.08 0.99 0.37
1,500-2,000 1 1.37 5,352 13.64 0.1 0.04

>2,000 0 0 3,495 8.9 0 0
0-15 182 18.76 6,209 15.82 1.18 0.27
15-25 377 38.78 13,552 34.53 1.12 0.25
Slope (o) 25-35 335 34.44 14,672 37.38 0.92 0.21
35-45 76 7.87 4,462 11.37 0.69 0.16

>45 3 0.45 356 0.91 0.49 0.11
Plane 1 0.06 60 0.15 0.4 0.05
North 119 12.33 3,916 9.98 1.24 0.14

Northeast 105 10.82 4,906 12.5 0.87 0.1
East 135 13.97 4,552 11.6 1.2 0.14

Slope direction Southeast 151 15.54 6,615 16.85 0.92 0.11
South 106 10.95 4,313 10.99 1 0.12

Southwest 104 10.76 4,661 11.87 0.91 0.11
West 124 12.78 4,384 11.17 1.14 0.13

Northwest 124 12.78 5,844 14.89 0.86 0.1
Mudstone 41 4.43 1,845 4.7 0.94 0.12
Millstone 249 25.63 8,003 20.39 1.27 0.17
Sand slate 205 21.1 6,810 17.35 1.22 0.16
Lithology Sand conglomerate 16 1.73 580 1.48 1.17 0.16
Sandstone 126 13.01 3,688 9.4 1.38 0.18
Carbonatite 150 15.51 6,562 16.72 0.93 0.12
Magma 180 18.59 11,763 29.97 0.62 0.09

0-500 93 958 2,268 5.78 1.66 0.21
500-1,000 93 9.58 2,120 5.4 1.77 0.22
Distance to fault lines (m) 1,000-1,500 99 10.58 2,126 5.42 1.95 0.25
1,500-2,000 88 9.4 2,099 5.35 1.76 0.22

>2,000 592 60.86 30,638 78.06 0.78 0.1
0-50 170 1748 6,688  17.04 1.03 0.15
50-100 146 1507 5767  14.69 1.03 0.15
100-150 151 15.62 6,054 15.42 1.01 0.14
Distance to drainage network (m) 150-200 154 15.84 5,709 14.54 1.09 0.15
200-250 146 15.01 5,697 14.51 1.03 0.15
250-300 94 9.75 3,481 8.87 1.1 0.16

>300 109 11.23 5,855 14.92 0.75 0.1

TasLE 3: Training pattern recognition expression.

The input |
Serial number € nput fayer The output layer

Elevation Slope Slope direction Lithology Distance to fault lines Distance to drainage network

1 0.37 0.21 0.11 0.17 0.1 0.16 0
2 0.37 0.21 0.14 0.18 0.25 0.15 0
3 0.37 0.21 0.11 0.18 0.22 0.15 0
4 0.37 0.25 0.1 0.18 0.22 0.15 0
5 0.59 0.27 0.1 0.12 0.25 0.16 1
6 0.59 0.21 0.14 0.12 0.22 0.15 0
7 0.59 0.25 0.14 0.17 0.21 0.15 0
8 0.59 0.25 0.13 0.17 0.1 0.15 0
9 0.37 0.21 0.14 0.17 0.1 0.15 0
10 0.37 0.25 0.13 0.17 0.1 0.15 0

Output layer: 0—no landslide and 1—landslide occurred.
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TaBLE 4: Predicting pattern recognition expression results.

Serial number

The input layer

Predicted value

Elevation Slope Slope direction Lithology Distance to fault lines Distance to drainage network

1 0.37 0.21 0.1 0.08
2 0.37 0.21 0.1 0.08
3 0.37 0.21 0.1 0.08
4 0.04 0.27 0.11 0.08
5 0.37 0.16 0.12 0.08
6 0.04 0.21 0.13 0.08
7 0.04 0.27 0.11 0.08
8 0.04 0.16 0.11 0.08
9 0.37 0.16 0.11 0.08
10 0.37 0.21 0.1 0.08

0.1 0.1 0.339177359
0.1 0.16 0.363726631
0.1 0.15 0.33955281

0.1 0.15 0.111640847
0.1 0.14 0.340385979
0.1 0.1 0.115212578
0.1 0.1 0.113106344
0.1 0.15 0.114075971
0.1 0.14 0.339466781
0.1 0.16 0.333726631

0.005, 0.001, and 0.0001 were fitted with high accuracy by
comparing the study. The expected and actual outputs of the
training data were not significantly inaccurate. However,
during the test, the error between the expected and actual
outputs of the test data was significant, reflecting the fact that
these 3 are networks with poor generalization capabilities and
cannot be used. When training the network with a set target
error of 0.1 was performed, a faster network fit occurred.
However, at the same time, there were significant errors.
When comparing the desired output with the actual output
for both the training and test data, both have significant errors,
reflecting poor prediction accuracy, and therefore cannot be
used. Finally, experimentation and comparison determined
that an expected error of 0.01 was more appropriate.

In addition, the learning rate plays an important role in BP
neural networks as it affects the amount of variation in the
connection weight coefficients produced in each network cycle.
Too high a learning rate can make the system unstable, while
too low a rate can make the network converge slower and take
longer to train. For general training, the tendency is to start
with a small learning rate to maintain the stability of the system
and then gradually increase the value to a value appropriate for
the network model. Based on previous experience, the learning
rate was taken to be in the range of [0.01, 0.8]. The learning rate
of the BP neural network model in this study was determined
to be 0.01 using trial algorithms for comparison.

The training function is a function that comes with the
software. The expected error is set to 0.01, the learning rate is
0.01, the initial weights are randomly selected between 0.1
and 0.3, and the number of training sessions is 10,000 times.
The parameters are set and brought into the software for
operation. The trained model was also tested against 7851
test samples after training, and the test results showed that
the training model was feasible.

After training and testing, the influencing factor data of
39,251 samples were brought into the previously trained BP
network model to output the predicted values between [0, 1],
where a value closer to 1 represents a higher probability of a
landslide occurring in that slope unit and closer to 0 rep-
resents a lower probability of a landslide occurring in that
slope unit. Again, 10 sets of data were brought from the
prediction sample for illustration, as shown in Table 4.

3.2.3. Weight Analysis of Influencing Factors. Due to the self-
learning feature of the BP neural network, there is no need to
determine the weights of influencing factors in advance,
which avoids the error of subjective determination of
weights. The neural network can get the most appropriate
and objective weights of influencing factors through actual
data and continuous learning training and then apply them
to the subsequent model prediction. As shown in Figure 6,
by constructing the BP neural network model and training
and predicting the data, the weight values of each factor are
0.55 for slope, 0.28 for elevation, 0.11 for slope direction,
0.04 for distance from drainage network, 0.02 for distance
from fault lines, and 0.01 for lithology, respectively. It in-
dicates that in Qingchuan County, the slope has a more
significant influence on landslide hazard development,
followed by elevation and slope direction. Distance to
drainage network, distance to fault lines, and lithology have
less effect.

4. Results and Discussion

4.1. Landslide Susceptibility Mapping through BP Neural
Network Model. When dividing slope units, catchment area
thresholds need to be entered manually in the process of
generating catchment basins, and they directly determine
the morphology of the generated digital river network.
Catchment areas with larger thresholds will extract a sparser
network and vice versa will extract a denser network. It also
indirectly determines the number of segmented units. If the
drainage network is sparse, fewer slope units will be divided;
more slope units will be divided if the drainage network is
dense. It can be found that the catchment area threshold has
a significant influence on the formation and density of the
drainage network and also indirectly on the effectiveness and
accuracy of the traditional hydrological methods for
extracting slope units.

In response to the above problems, this study has addi-
tionally divided 4,401, 13,146, 39,251, 46,504, 56,570, and
69,013 slope units of different scales by dynamically adjusting
the catchment area thresholds shown in Figure 7. After the
slope units are divided, the six influencing factors of elevation,
slope, slope direction, lithology, distance to fault lines, and
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distance to drainage network were studied and analyzed. A BP
neural network model evaluates the susceptibility of landslide.

The landslide susceptibility index obtained from the
abovementioned BP neural network needs to be converted
into a landslide susceptibility map to better manage landslide
hazards. The susceptibility values of each unit were con-
verted to raster format files in GIS to generate the final
landslide susceptibility map. The pixel values were classified
into three susceptibility classes: low, moderate, and high. The
final six vulnerability evaluation partition maps were ob-
tained according to the different scales of the divided slope
units, as shown in Figure 8.

It can be seen that the landslide susceptibility evaluation
was generated by slope units classified according to different
scales differs. The resulting landslide susceptibility model
was then validated to verify the degree to which the model
fitted/predicted landslide occurrence; this validation was
achieved through a confusion matrix and ROC curves
presented in Figure 9. The area under the curve (AUC) is one
of the most effective indicators of a model’s predictive ac-
curacy. AUC generally ranges from 0.5 to 1.0. In the state of
AUC >0.5, the closer the AUC is 1, the higher the accuracy is
reflected. AUC is less accurate in the state of 0.5 to 0.7, while
it responds to some accuracy in the case of 0.7 to 0.9 and has
a higher accuracy above 0.9. The results of the validation are
shown in Figure 9.

4.2. Validation of Landslide Susceptibility Maps. By verifi-
cation and comparative analysis of the results of landslide
hazard susceptibility analysis based on different scale slope
units, the results are shown in Figure 10.

The AUC values for slope units 4,401, 13,146, 39,251,
46,509, 56,570, and 69,013 were 0.773, 0.821, 0.9306, 0.9309,
0.9424, and 0.9168, respectively. By analyzing Figures 9 and
10, it can be concluded that the value of AUC for each slope
unit is higher than 0.77, which proves the good accuracy of
the results based on six scale slope units selected in this
study. Further analysis shows that the AUC value shows an
increasing trend from 4,401 slope units to 56,570 slope units,
with the smallest AUC value (0.773) at 4,401 and the
maximum AUC value (0.9424) at 56,570. As the number of
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slope units continues to increase, the AUC value shows a
decreasing trend from 0.9424 (56,570 slope units) to 0.9168
(69,013 slope units), indicating that the accuracy of the
model evaluation will decrease when the number of slope
units is greater than 56,570. In summary, from the ROC
curve test results, the results for 39,251, 46,504, 56,570, and
69,013 slope cells are more accurate, while the results for
4,401 and 13,146 slope cells are less accurate compared with
the other four results.

The division of slope units into overelaborate or too
rough a degree of elaboration is not conducive to the
evaluation of landslide susceptibility. 69,013 slope units are
finely divided but do not give results of higher accuracy. In
particular, it should be noted that the historical landslide
data used to evaluate landslide susceptibility are generally
point data. If the slope units are divided too finely, there is a
possibility that the information from the historical landslide
data will be segmented. The evaluation is negatively affected
by replacing the actual information about the landslide with
segmented local information about the landslide. In con-
trast, 4,401 slope units are rougher cells, which do not ac-
curately represent factors such as aspect and slope, which are
sensitive to unit size, and thus will also affect the accuracy of
the evaluation results. In this study, 69,013 slope units are
too delicate, while 4,401 and 13,146 slope units are rough, so
the accuracy of the evaluation results of these three is worse
than that of 39,251, 46,504, and 56,570.

Particularly, it is suggested that the 56,579 slope units are
the most appropriate scale compared with the other five
slope units in this study. In contrast, more accurate and
appropriate map units may exist in practice.

At the same time, the division scale chosen in this study
may not be optimal for different study areas, depending on
the specific details of the study area and the historical
landslide occurrence. At the same time, the division scale
selected in this study may not be the best for the other areas,
which depends on the specific details of the study area and
the historical landslide occurrence.

4.3. Discussion. Landslide susceptibility evaluation is one of
the important tools for landslide disaster prevention and
mitigation. The suitability of map cell selection is directly
related to the accuracy of landslide susceptibility mapping.
Although the traditional grid cell-based partitioning method
has a simple operation, it is not easy to present the spatial
correlation between landforms, and it does not reflect the
features of landforms, which often generates interference
information in the partitioning results and affects the results
and accuracy of classification. The slope unit is the basic unit
for the development of geological hazards such as landslide
and collapse, which is closely related to the geological en-
vironment conditions and can synthesize the effect of var-
ious control or influence factors. Most of the existing slope
unit delineation methods use the principle of delineation
based on catchment overlap; however, the accuracy of de-
lineation results is limited by the determination of the
catchment area threshold, with a high degree of subjective
dependence and lack of uniform standards.
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FIGURE 7: Slope units of different scales in Qingchuan County.
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FIGURE 8: Landslide evaluation map of Qingchuan County for different scales of slope units.
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For the problem that the accuracy of the slope unit
classification results is limited by the determination of the
catchment area threshold and the high degree of subjective
dependence, this study divides Qingchuan County into
4,401, 13,146, 46,504, 56,570, and 69,013 slope units and
discusses the influence of different scales of slope units on
the evaluation results. Using the ROC curve analysis and
comparing the six zoning results based on different scales of
slope units and BP neural network model, it can be seen that
the scale of slope units will affect the accuracy of the results,
and too fine or coarse slope units are not good for the results,
so it is necessary to consider the trial algorithm to find the
slope units that best match the actual situation.

5. Conclusions

This study selected six different scales of slope units, and a
BP neural network model was computed to evaluate
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landslide susceptibility in Qingchuan County, a landslide-
prone area in Sichuan Province, China. The study focuses on
the following three issues: (1) selection of the factors
influencing the evaluation of landslide susceptibility and
using the Z score method to eliminate the differences be-
tween the magnitudes of the factors; (2) analysis of the
spatial distribution characteristics of landslide geological
hazards in the study area; and (3) evaluation and comparison
of division results from slope units at different scales using
the ROC and AUC. The result indicates that the evaluation
generated by 56,570 slope units has the highest accuracy with
a ROC curve of 0.9424. Overelaborate and rough division of
slope units may not get the best evaluation results. Thus, it is
necessary to obtain the most suitable slope unit for the actual
situation through debugging.

Therefore, the landslide susceptibility map of Qingchuan
County shows the areas prone to landslides and provides an
informative map that can be used for the infrastructural
planning process and land use. In addition, developing
accurate landslide susceptibility maps can generate baseline
information for further evaluation of landslide and related
risk.

Finally, an important limitation lies in the fact is the
determination of catchment thresholds. In the process of
applying the hydrological analysis method, the catchment
threshold determination is mainly through continuous
debugging to select the most realistic segmentation
threshold, which is computationally intensive. In the future,
integration with advanced technologies in other fields will be
enhanced to find more automatic and accurate segmentation
methods.
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