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One of the most prevalent malignant bone tumors is osteosarcoma. Te diagnosis and treatment cycle are long and the prognosis
is poor. It takes a lot of time to manually identify osteosarcoma from osteosarcoma magnetic resonance imaging (MRI). Medical
image processing technology has greatly alleviated the problems faced by medical diagnoses. However, MRI images of osteo-
sarcoma are characterized by high noise and blurred edges. Te complex features increase the difculty of lesion area identi-
fcation. Terefore, this study proposes an osteosarcoma MRI image segmentation method (OSTransnet) based on Transformer
and U-net. Tis technique primarily addresses the issues of fuzzy tumor edge segmentation and overftting brought on by data
noise. First, we optimize the dataset by changing the precise spatial distribution of noise and the data-increment image rotation
process. Te tumor is then segmented based on the model of U-Net and Transformer with edge improvement. It compensates for
the limitations of U-semantic Net by using channel-based transformers. Finally, we also add an edge enhancement module (BAB)
and a combined loss function to improve the performance of edge segmentation. Te method’s accuracy and stability are
demonstrated by the detection and training results based on more than 4,000 MRI images of osteosarcoma, which also
demonstrate how well the method works as an adjunct to clinical diagnosis and treatment.

1. Introduction

Osteosarcoma is the most common primary malignant bone
tumor, accounting for approximately 44% of primary ma-
lignant tumors in orthopedics [1]. In developing countries,
limited by medical level, the death rate of osteosarcoma has
far exceeded that of developed countries. Te survival rate of

patients with advanced osteosarcoma is less than 20% [2].
Early detection and timely development of reasonable
treatment strategies can efectively improve the survival rate
of patients [3]. Te advantage of MRI is that it can detect
aberrant signals in the early stages of a lesion. It can produce
multidimensional images thanks to its multidirectional
imaging. It can also display more information about the soft
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tissues and their links to the surrounding neurovascular [4].
It can also quantify the extent of the bone marrow cavity’s
involvement [5]. As a result, MRI is a critical technique for
doctors to use when diagnosing and evaluating probable
osteosarcoma.

In most developing countries, the treatment and prog-
nosis of osteosarcoma have been troubling for those involved,
and it is also a pain point for every osteosarcoma patient.
Developing nations are unable to provide patients with os-
teosarcoma with a more individualized course of treatment
due to their economic underdevelopment and lack of medical
resources and equipment [6]. On the other hand, the lack of
technical personnel and the backward medical technology
make the early diagnosis of osteosarcoma a huge problem
[7–10]. Te larger problem is that even with adequate
screening equipment and MRI images, inefcient manual
recognition measures may lead to delays in diagnosis and
treatment, thus worsening the condition of patients with
osteosarcoma. Since 600–700 MRI images are generated per
patient [11], there are often fewer than 20 valid osteosarcoma
images. A large amount of data can only be diagnosed by
doctors’ manual identifcation [11, 12], which burdens doc-
tors. Long-term high-intensity work can also fatigue doctors
and reduce the speed and accuracy of discrimination [13].
Worst of all, the location, structure, shape, and density of
diferent osteosarcomas are not identical [14]. It is difcult to
distinguish the tumor location from normal tissues. Diferent
osteosarcomas may also have image diferences under the
same imaging method [15–17]. It is extremely difcult to
diagnose with the naked eye, which requires doctors to have
rich diagnostic experience. Otherwise, it may lead to inac-
curate diagnostic results and delays in patient treatment [18].

Medical image processing technology has steadily been
employed in the direction of medical diagnostics as com-
puter image technology has progressed [19]. Among the
existing studies, there are many types of segmentation al-
gorithms applied to medical images, such as thresholding
[20, 21], region growing [22, 23], machine learning [24, 25],
deep learning [26, 27], active contouring [28, 29], quantum-
inspired compilation [30, 31], and computational intelli-
gence [32, 33]. Tese algorithms are able to provide efective
support for the clinical routine. Trough algorithm pro-
cessing, the system can more accurately segment the tumor
area that the doctor is interested in [34]. It is helpful for
precise localization and diagnosis and treatment, reducing
the possibility of tumor recurrence, and thereby greatly
improving the survival rate of patients [35]. For example, the
literature [36] uses the convolutional neural network for the
localization and segmentation of brain tumors, and the
literature [37] realizes the classifcation of brain tumors and
the grading of glial tumors. However, segmenting osteo-
sarcoma MRI images remains a signifcant difculty. Te
amount of noise in MRI pictures varies. Furthermore,
the segmentation model is prone to noise [38] and over-
ftting, resulting in worse segmentation accuracy. Mean-
while, osteosarcoma has a wide range of local tissue
development and shape [39, 40]. Tese properties cause
indistinct tumor boundaries and complex form structures,
making it difcult to maintain edge features [41–43]. As a

result, it is worth looking into how to segment osteosarcoma
efectively and properly.

We present a segmentation approach for osteosarcoma
MRI images using edge enhancement features (OSTransnet).
To begin, we optimize the dataset by altering the spatial
distribution of natural noise.Te overftting problem of deep
learning models caused by MRI image noise is solved using
this method. Ten, for osteosarcoma image segmentation
(UCTransnet), we employed Transformer and U-net net-
work models. Te channel CTrans module was introduced
by UCTransnet. Te jump connection element of U-Net is
replaced by this module. Tis method compensates for
U-Net segmentation’s semantic shortcomings and accom-
plishes global multiscale segmentation of tumor patches of
various sizes. Tis approach also increases the accuracy of
osteosarcoma segmentation by resolving complicated and
changeable lesion areas in MRI images of osteosarcoma.
Finally, we employ a combined loss function and an edge
augmentation module. Tey collaborate to improve the
segmentation results and efectively handle the problem of
tumor edge blurring. Tis method increases diagnostic ef-
fciency while reducing diagnostic workload and time
without compromising diagnostic accuracy.

Te contributions to this paper are listed as follows:

(1) A new data alignment method is introduced in this
paper to optimize the dataset. Te new data align-
ment is achieved by altering the spatial distribution
of real noise to generate more training samples that
include both actual content and noise. Te strategy
efectively mitigates the efect of noise on model
segmentation while broadening the data.

(2) Te segmentation model utilized in this paper is
UCTransnset, which is built on Transformer and
U-Net. Instead of using the skip-connected section
of the U-Net, this network structure uses the
channelized Transformer module (CTrans). It real-
izes the localization and identifcation of tumors of
diferent scales.

(3) Te edge enhancement module (BAB) with a
combined loss function is introduced in this study.
Tis module can increase tumor border segmenta-
tion accuracy and efectively tackle the problem of
tumor edge blurring.

(4) Te experimental results show that our proposed
method of osteosarcoma segmentation has higher
precision than previous methods and has advantages
in various evaluation indexes.Te results can be used
by physicians to assist in the diagnosis and treatment
of osteosarcoma. Tis study has important impli-
cations for the ancillary diagnosis, treatment, and
prognosis of osteosarcoma.

2. Related Work

With the development of computer technology, there have
been many artifcial intelligence decision-making systems
and image processing methods used in these systems to
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assist in disease diagnosis. In the diagnosis of osteosarcoma,
we use computer technology to analyze and process images
to help doctors quickly fnd the tumor location and improve
the speed and accuracy of diagnosis. Tis has become a
research hotspot today, and some mainstream algorithms in
this feld are introduced below:

To discriminate between live tumors, necrotic tumors,
and nontumors, Ahmed et al. [44] proposed a compact CNN
architecture to classify osteosarcoma images. Te method
combines a regularized model with the CNN architecture to
reduce overftting, which achieves good results on balanced
datasets. Fu et al. [45] designed a DS-Net algorithm com-
bining a depth model with a Siamese network to address the
phenomenon of overftting of small datasets in osteosarcoma
classifcation. Anisuzzaman et al. [46] used a CNN network
for pretraining. In this way, an automatic classifer of os-
teosarcoma tissue images is realized, thereby better pre-
dicting the patient’s condition.

Additionally, a lot of research has suggested osteosar-
coma segmentation algorithms that predict and separate the
tumor region of osteosarcoma. Nasir and Obaid [47] pro-
posed an algorithm-KCG that combines multiple image
processing techniques, which involves iterative morpho-
logical operations and object counting, and achieves high
accuracy on existing datasets. Te MSFCN method was
proposed by Huang et al. [48].Te idea is to add a supervised
output layer to ensure that both local and global image
features can be captured. Te MSRN proposed by Zhang
et al. [49] can provide automatic and accurate segmentation
for the osteosarcoma region of the image. By adding three
additional supervised side output modules, the extraction of
image shape and semantic features is realized respectively.
Shuai et al. [50] designed a W-net++ model by considering
two cascading U-Net networks in an integrated manner. It is
mainly implemented by applying multiscale inputs to the
network and introducing deep adaptive supervision. Ho
et al. [51] described a deeply interactive learning (DIAL)
approach to training a CNN as a labeling method for pre-
dictive assessment of prognostic factors for survival in os-
teosarcoma. Tis method can efectively predict the necrosis
rate within the variation rate range.

In addition to its use for osteosarcoma segmentation,
there are many studies on the application of computer
technology in the treatment of osteosarcoma. Kim et al. [52]
compared the performance of diferent methods in pre-
dicting response to neoadjuvant chemotherapy in osteo-
sarcoma patients, which can help clinicians, decide whether
to proceed with further treatment of this patient. Dufau et al.
[53] developed a support vector machine-based predictive
model to predict the treatment efect of neoadjuvant che-
motherapy, which predicted the chemotherapy response of
patients before starting treatment. Hu et al. [46, 54]
established an MRI image recognition model based on the
proposed CSDCNN algorithm. Tis method obtained better
indicators than SegNet, LeNet, and other algorithms. Te
F-HHO-based GAN proposed by Badshah et al. [47, 54] can
be used for early osteosarcoma detection work. Te method
classifes tumors by GAN and uses GAN to detect and
segment the extracted image features.

With the development of deep learning-based net-
works, many researchers embed the latest algorithms of the
team into the system for implementation. Arunachalam
et al. [55] created a deep learning architecture that im-
plements a fully automated tumor classifcation system. It
establishes the groundwork for automating the deep
learning algorithms’ extraction of tumor prediction maps
from raw images. Bansal et al. [56] implemented an au-
tomatic detection system based on the F-FSM-C classif-
cation model. Te model can classify the original image
into three types: surviving tumor, nonsurviving tumor, and
nontumor, reducing the number of network features. In
view of the characteristic of high noise in osteosarcoma
MRI images, Wu et al. [57] proposed a segmentation
system based on deep convolutional neural networks,
which efectively improved the speed and accuracy of os-
teosarcoma MRI images.

From the above research work, it can be seen that image
segmentation methods have become increasingly important
for disease diagnosis and prognosis. However, as shown in
Table 1, existing studies still face many problems in the
detection of osteosarcoma MRI images. In particular, it is
still difcult to reasonably preserve edge features when
segmenting osteosarcoma images. Since images are sensitive
to noise, it is necessary to reduce MRI image noise to im-
prove segmentation accuracy. To compensate for segmen-
tation inaccuracy, we present a segmentation method based
on edge enhancement from osteosarcoma MRI (OSTrans-
net). Te method uses strategies such as dataset optimiza-
tion, model segmentation, edge enhancement, and mixed
loss functions to improve the accuracy of osteosarcoma
segmentation.

3. System Model Design

Te diagnosis and treatment of osteosarcoma present many
difculties in most underdeveloped countries due to f-
nancial and technical constraints [58]. Osteosarcoma MRI
scans is complex and data-intensive. Manual screening and
diagnostic tests, which cost a lot of medical resources and are
difcult for clinicians, are extremely difcult to execute
[59, 60]. Image processing technology is gradually becoming
more frequently employed in disease diagnosis, treatment,
and prognosis to aid clinicians in clinical diagnosis and
increase disease diagnosis efciency [61]. In addition, due to
the complexity of osteosarcoma MIR images and the di-
versity of tumors, existing detection methods do not achieve
ideal segmentation results [62]. Tis study ofers a seg-
mentation approach (OSTransnet) for osteosarcoma MRI
images with edge enhancement features based on Trans-
former and U-Net, which is primarily intended to assist
clinicians in more precisely and rapidly diagnosing osteo-
sarcoma lesions areas by recognizing osteosarcoma MRI
pictures. It has been experimentally demonstrated that
OSTransnet outperforms the current famous network ar-
chitecture in segmentation accuracy for the segmentation of
osteosarcoma. Figure 1 depicts the overall layout of this
publication.
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We construct an edge-enhanced osteosarcomaMRI image
segmentation method (OSTransnet), which is mainly divided
into two parts: dataset optimization processing andMRI image
segmentation model based on U-Net and Transformer with
edge-enhanced features. In Section 3.1, we introduced a new
data alignment. It is better for the subsequent segmentation
and diagnosis of the osteosarcoma lesion region. By taking the
optimized image data in 3.1 and feeding it into the segmen-
tation network in 3.2, we can locate the location and extent of
the tumor and provide aid to the doctor’s decision-making for
diagnosis and prediction of the disease.

3.1. Dataset Optimization. One of the most important
problems in AI-assisted diagnosis systems is the lack of
labeled pictures for diagnosing osteosarcoma, despite a large
amount of data in MRI images. Deep learning-based models
are prone to overftting if there are insufcient training
samples. Data enhancement is an efective way to avoid the

overftting problem. At the same time, osteosarcoma images
have the characteristic of being susceptible to noise. It is not
feasible to directly discard labeled images that contain noise,
and they can also contribute to the model. We introduce a
new data alignment method that utilizes the natural noise in
authentic noisy images to solve this problem. More training
examples with actual content and noise are generated by
altering the spatial distribution of natural noise.

Te frst step is to create noisy picture data by subtracting
the validly labeled photos from the corresponding noisy im-
ages, as shown in Figure 2. When working with noisy data, the
noise clustering technique divides it into groups based on
ground-truth intensity values. Te places of these noises are
then swapped using a random permutation inside each cluster.
Te displaced image is combined with the accompanying valid,
ground-truth labeled image to form a new synthetic noisy MRI
image. Tis is done to limit the impact of noise on segmen-
tation model accuracy while expanding the breadth of data.

Table 1: Comparison of diferent auxiliary diagnostic methods for osteosarcoma.

Detection object Literature Technology
involved Application advantages Limitation

CT image

Literature
[48]

Image
normalization,

CNN

Make sure to capture global and local
image features

Segmentation performance is limited in the
face of small tumor regionsLiterature

[49] Residual network Realize the extraction of image shape
and semantic features

Literature
[51]

U-Net, channel
attention module

Prevents loss of detail caused by
multiple encodings and subsampling

Pathological
image

Literature
[44]

Regularization
model, CNN

Diferentiate between live tumors,
necrotic tumors, and nontumors

Pathological evaluation of tissue samples is
prone to interobserver variability and is

highly subjective. Some of the features used
as input to automated machine learners
depend on the features identifed by the
pathologist and require higher costs

Literature
[45]

Siamese network,
FCN

Solve the problem of small data
overftting

Literature
[46]

CNN, transfer
learning, VGG19

Automatic classifcation of tissue
images to predict patient conditions

Literature
[52] CNN

Prognostic factors predicting
survival in osteosarcoma, assessing
necrosis rates within a variable range

Literature
[54]

GAN, F–HHO
algorithm

Detect and segment the extracted
image features

Literature
[55] Deep learning

Lays the groundwork for an
automated process for obtaining
tumor prediction maps from raw

images

Literature
[56]

Binary arithmetic
optimization

Tree types of surviving tumor,
nonsurviving tumor and nontumor

are distinguished

High computational cost and slow system
speed

F-FDG PET
image

Literature
[52] CNN

To compare the use of diferent
methods in predicting the efect of

neoadjuvant chemotherapy
Te data source is relatively single

Difusion
weighted
imaging

Literature
[54] CNN Precise localization of lesions in

patients with osteosarcoma Te sample size is small.

MRI

Literature
[53]

Support vector
machines

Predicting a patient’s chemotherapy
response before treatment Not validated for large scale data

Literature
[47]

K-means,
chan–vese

segmentation
High precision segmentation Te complexity of the model is high

Literature
[57]

Mean-teacher,
SepUNet, CRF Tumor region segmentation Segmentation accuracy is limited
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In this section, we preprocessed osteosarcoma MRI
images. Te processed images can not only reduce the waste
of inefective model training but also improve the seg-
mentation performance. Furthermore, these images can be
used as a reference for doctors’ clinical diagnoses, which can
also improve detection accuracy and diagnosis speed. In the
next section, we describe the MRI image segmentation
process in detail.

3.2. Osteosarcoma Image Segmentation. Te osteosarcoma
segmentationmodel consists of fourmain parts: U-Net without
skip connection mechanism, channeled Transformer module
(CTrans), edge enhancement module (BAB), and combined
loss function. Te general design is shown in Figure 3.

3.2.1. U-Net without Skip Connection Mechanism. U-Net
[30] is the most commonly used model for image seg-
mentation in the medical feld due to its lightweight
properties. Its performance in medical picture segmentation
as a traditional encoder-decoder network structure has been

outstanding. As a result, the U-Net model is used to segment
MRI images in the case of osteosarcoma. Te systolic path
and the extended path are the two sections that make up the
U-Net in general. Te systolic path is on the left and
functions mostly as an encoder for low-level and high-level
characteristics. It is made of two 3× 3 unflled convolutional
repetitions and follows the conventional construction of a
convolutional network. Following that, a 2× 2 maximum
pooling operation and a rectifed linear unit (ReLU) are
coupled. After each convolution, there is a two-step
downsampling process. During each layer’s downsampling,
the number of feature channels is multiplied by two. Te
extended path, on the right, is mostly employed as a decoder,
combining semantic characteristics to produce the fnal
result. Upsampling the feature map and conducting a 2× 2
upconvolution are included in each stage of its journey. It
halves the number of features to match the relevant feature
maps in the associated shrinkage path. Once the features are
linked, the osteosarcoma MRI feature map is subjected to a
3× 3 convolution. Each convolutional output of the feature
map must go through ReLU once more.
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Te feature connection in the original U-net uses a skip
connection mechanism. Te features in the encoder and
decoder stages are incompatible, leading to a semantic gap,
which has a certain impact on the segmentation model. To
segment osteosarcoma MRI images more accurately, we
introduced channel-based transformers (CTrans) instead of
U-Net’s skip connection. It takes advantage of the trans-
formers and U-Net for cross-fusion of multiscale channel
information to achieve efective connection with decoder
feature disambiguation. Te multiscale exploration of suf-
fcient information of global context bridges the semantic
gap and solves the problem of semantic hierarchy incon-
sistency. Better segmentation results are obtained in this
way.

3.2.2. Channeled Transformer Module (CTrans). To elimi-
nate semantic delay and integrate encoder features to im-
prove the segmentation efect of osteosarcoma MRI images,
a channel conversion module is constructed in this paper, as
shown in Figure 4. Tis is mainly to achieve channel-de-
pendent transformation between the U-Net encoder and
decoder. Tis module consists of two parts: the Channel-
wise Cross Fusion Transformer (CCT) and the Channel-wise
Cross-Attention (CCA). CCT realizes multilevel coding
fusion and CCA is used for decoding fusion. Among them,
the extended CCT fusion replaces U-Net with a channel
transformer (CTrans).

(1) CCT: Channel Cross-Merging Transformer for Trans-
forming Encoding Functions. We present a new channel-
based cross-fusion transformer (CCT) that uses long-de-
pendent modeling in the Transformer to fuse multiscale
encoder characteristics in osteosarcoma MRI images during
segmentation to better fuse multiscale features. Te CCT
module consists of three parts: multiscale feature embed-
ding, multihead channel cross-attention, and multilayer
perceptron. Tey are described in detail below.

Multi-scale feature embedding. We tokenize the osteo-
sarcoma features and restructure them into fattened 2D
patch sequences. So that the patch can be mapped to the
same region of the encoder at four scales, we set the patch
size to P, P/2, P/4, P/8, respectively, and use the four skip-
connected layer outputs of the multiscale feature embedding
Ei ∈ RHW/i2×Ci . We preserve the original channel sizes during
this process. Te four layers Ti(i � 1, 2, 3, 4), Ti ∈ RHW/i2×Ci

as key values are then connected.

TΣ � Concat T1, T2, T3, T4( . (1)

Multichannel cross-notice module. Tis is passed to the
multihead channel cross-attention module, which uses
multiscale features to refne features at each U-Net encoder
level. Ten, there is a multilayer perceptron (MLP) with a
residual structure that encodes channels and dependencies.

Te proposed CCTmodule has fve inputs, as shown in
Figure 5, with four tokens Ti serving as queries and a
connected token TΣ serving as keys and values:

Qi � TiWQi
, K � TΣWK, V � TΣWV, (2)

where WQi
∈ RCi×d, WK ∈ RCΣ×d, WV ∈ RCΣ×d is the weight

of the diferent inputs, d is the length of the sequence,
Qi ∈ RCi×d, K ∈ RCΣ×d, V ∈ RCΣ×d, the values of the ac-
quaintance matrix Mi and V are weighted. and
Ci(i � 1, 2, 3, 4) is the size of the channel that skips the
connection layer.

C1 � 64, C2 � 128, C3 � 256, C4 � 512. (3)

Te cross-attention (CA) mechanism is as follows:

CAi � MiV
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where ψ(·) and σ(·) denote the random normalization and
softmax functions, respectively.

We operate attention along the channel axis instead of
the patch axis, which is quite diferent from the original self-
attention mechanism. By normalizing the similarity matrix
for each instance on the similarity maps, we can smooth
down the gradient by using instance normalization. Te
output after multihead cross-attention in an N-head at-
tention condition is computed as follows:

MCAi � CA1
i + CA2

i + · · · + CAN
i N. (5)

In this formula, N is the total number of heads.
After that, we use MLP and residual operator to get the

following output:

Oi � MCAi + MLP Qi + MCAi( . (6)

For simplicity, we omit layer normalization (LN) from
the equation. We repeat the operation of formula (6) L times
to fnally form an L-layer transformer. where N and L are
both set to 4. Tis is mainly because with 4 layers and 4

heads, the model can achieve state-of-the-art segmentation
performance on the dataset after experimental validation
with 2, 4, 8, and 12 layers based on CCT.

(2) CCA: Cross-Channel Focus for Feature Synthesis in De-
coders. Te channel-based cross-notifcation module flters
and disambiguates the decoder features by channel and
information that guide the interrogator features. Its main
purpose is to fuse features that are semantically inconsistent
between the channel interrogator and the U-Net decoder.

We use the level i transformer output Oi ∈ RC×H×W and
the level i decoder feature map Di ∈ RC×H×W as inputs to the
global average pooling (GAP) layer, which uses them to
incorporate global spatial information and shape attention:

Mi � L1 · ς Oi(  + L2 · ς Oi( , (7)

where ς(X) � 1/H × W 
H
i�1 

W
j�1 Xk(i, j), ς(X) ∈ RC×1×1,

L1 ∈ RC×C, L2 ∈ RC×C and being weights of two linear layers
and the ReLU operator δ(·).

To avoid the efect of dimensionality reduction on
channel attention learning, we are constructing channel
attention maps with a single linear layer and S-shaped
functions, and synthetic vectors are used to recalibrate and
excite Oi.

With this method, the process of transformer self-
control is rethought from the perspective of the channel to
close the semantic gap between features through more ef-
fective feature fusion and multidimensional channel cross-
checking. Tis enables acquiring more intricate channel
dependencies to enhance the functionality of MRI image
segmentation models for osteosarcoma.

3.2.3. Edge Enhancement Module (BAB). In the MRI image
segmentation of osteosarcoma, blurred edge segmentation,
and partial region missing have been the main problems to
be solved, which afect the accuracy of MRI image seg-
mentation to a certain extent. We introduce the edge
augmentation block (BAB) to solve this problem, as shown
in Figure 6. It focuses more on enhancing the edge in-
formation of the lesion region by a mask extraction al-
gorithm and attention mechanism, as shown in Figure 7.
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Edge enhancement is performed on osteosarcoma MRI
images to supplement the missing regions. Te BAB
module solves the segmentation problem of blurred edges
to a certain extent.

Te fnal feature map D1,D2,D3,D4 of the decoder in the
U-Net path is fed to the BAB module as an input layer.

After convolving the input feature map, the mask edge
mapMi is obtained by themask edge extraction algorithm as
an important complement to the edge information. Te
process of the mask edge extraction algorithm can be
expressed as follows: traverse each pixel point (i, j) of the
mask, when the traversed pixel value is 0 and the rest of the
pixel points in the nine-box grid centered on the pixel point
are not all 0, the pixel point is recorded as 0 until all the pixel
points of the mask are traversed, and then, the mask edge
map Mi is generated.

Te feature maps obtained after convolution are con-
nected with the complementary layer feature maps fi−1
obtained from the previous layer after BAB upsampling by
channel and input to the attention module to obtain the fnal
prediction.

Fi � AB d3 c d3 c d1 Ri( , Mi  , fi−1   , (8)

where ds(∙) denotes the convolution function, c(∙) denotes
the join operation, AB(∙) denotes the attention module
function, and U ∈ RC×H×W denotes the output.

For the input feature map U ∈ RC×H×W, the feature map
UsCE ∈ RC×H×W and vector UsCE ∈ R1×1×C are obtained by
compressing them on the channel and space, respectively,
and the two are multiplied to obtain the weightW∈RC×H×W,
which is then multiplied pixel by pixel with the input feature
map U to obtain the output.

U � UsCE × UcSE ⊙U. (9)

where × represents direct multiplication after expansion to
read and ⊙ represents pixel-by-pixel multiplication.

3.2.4. Combined Loss Functions. Osteosarcoma MRI im-
ages often have the problem of class imbalance, which
leads to the training being dominated by the class with
more pixels. It is challenging to learn the features of the
part with fewer pixels, thus, afecting the efectiveness of
the network. Terefore, we mostly use the Dice loss
function, which measures the overlapping part of the
samples, to solve the class imbalance. However, for os-
teosarcoma, MRI images have the image characteristics of
blurred edges, and the Dice loss function cannot focus on
the image edge information. So we propose a combined
loss function L. It combines region-based Dice loss and
edge-based Boundary loss, supervised in two diferent
focus dimensions. Dice loss and Boundary loss are defned
as follows:

LDice � 1 −
2

N
i�1 

C
c�1 g

c
i S

c
i


N
i�1 

C
c�1 g

c2

i + 
N
i�1 

C
c�1 S

c2

i

, (10)

where i denotes each pixel point, c denotes the classifca-
tion, gc

i denotes whether the classifcation is correct, and sc
i

denotes the probability of being classifed into a certain
class.

LBD � 
Ω
ϕG(ξ)Sθ(ξ)dξ. (11)

If ξ ∈ G(Goung Truth), then ϕG(ξ) � −DG(ξ), and vice
versa ϕG(ξ) � DG(ξ). Where ϕG is the bounded level set
representation, Dθ(ξ) is the distance map of ground truth,
and the network’s softmax probability output is Sθ(ξ).

Te combined loss function L is defned, as shown in
(11):

L � αLDice + βLDice, (12)

where, parameters α and β are balance coefcients to balance
the efect of area loss and edge loss on the fnal result.

Te loss function L combines the region-based Dice
loss and the edge-based Boundary loss, allowing the
network to focus on both region and edge information. It
complements the edge information while ensuring small
missing values in the region, thus improving the accuracy
of segmentation. As the neural network continues to
iterate, the balance coefcients α and β are updated by
self-learning adjustments, prompting the Dice loss to
occupy a larger proportion of the frst half of the U-Net
network. Tus, the U-Net network is relatively more
concerned with regional information. Boundary loss pays
more attention to edge information, so it occupies a
larger proportion of the second half of the edge-attention
module. In this paper, a combined loss function is used to
play the role of an edge attention module, which realizes
attention to regional information without losing edge
information. It solves the problems of large missing
values and unclear edges in current medical image
segmentation.

Not only can our segmentation algorithm accurately
segment the tumor region in diferent slices of osteosarcoma
MRI images, but it can also solve the problem of the lesion
region’s hazy boundary in osteosarcoma MRI pictures. Our
model places a greater emphasis on edge information, which
is benefcial for precise border segmentation.Te fnal lesion
area and segmentation results from the model can help
doctors diagnose and treat osteosarcoma. It helps to increase
the efectiveness and accuracy of osteosarcoma diagnosis,
which lessens the pressure on doctors in many nations to
treat osteosarcoma. Additionally, it is crucial for the aux-
iliary diagnosis, prognosis, and prediction of osteosarcoma
disease.

4. Experimental Results

4.1. Dataset. Te Center for Artifcial Intelligence Research
at a Monash University provided the data for this article
[57]. We gathered more than 4,000 MRI osteosarcoma
pictures and other index data. To improve the accuracy and
robustness of the model segmentation results, we rotated the
photos by 90, 180, and 270 degrees before feeding them into
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the segmentation network. Te training set consisted of 80%
of the data, whereas the test set consisted of 20% of the data.

4.2. Evaluation Metrics. To evaluate the performance of the
model, we used the Intersection of Union (IOU), Dice
Similarity Coefcient (DSC), Accuracy (ACC), Precision
(Pre), Recall (Re), and F1-score (F1) as the measures [63].
Tese indicators are defned as follows:

IOU �
I1 ∩ I2

I1 ∪ I2
,

DSC �
2∗ I1 ∩ I2




I1


 + I2



,

Acc �
TP + TN

TP + TN + FP + FN
,

Pre �
TP

TP + FP
,

Re �
TP

TP + FN
,

F1 �
2 × Pre × Re

Pre + Re
,

(13)

where I1, I2 are the predicted and actual tumor areas, re-
spectively. A true positive (TP) indicates that the area has
been identifed as an osteosarcoma area. A true negative
(TN) indicates that the area is considered normal, although it
is also a lesion area. A false positive (FP) is normal tissue that
has been determined to be tumor-free. A false negative (FN)
indicates an area predicted to be normal but it is a tumor
area [64].

In addition, for comparative experimental analysis, we use
the FCN [65], PSPNet [66], MSFCN [48], MSRN [49], U-Net
[67], FPN [68], and our proposed OSTransnet algorithms.
Below is a quick description of these strategies.

4.3. Training Strategy. To improve the robustness of the
model and avoid nonsense features, we need to perform data
augmentation on the dataset before training. We use natural

noise augmentation to increase the dataset by rotating the
image.

For the AI model, the rotation of the image is obtained as
a new image. To make the mini-row segmentation efect
more robust and accurate, we rotated one image by 90, 180,
and 270 as data augmentation to fnally obtain the seg-
mentation probability as a weighted average of the four
image probabilities.

A total of 200 epochs were trained to create a seg-
mentation neural network. In the U-net, a joint training
optimization strategy was applied to the convolution and
CTrans parameters, and the inferior attention parameters of
the two channels were optimized. We frst trained the U-net
and then the parameters of the OSTransnet using the same
data.

4.4.Results. Te segmentation efect of themodel before and
after dataset tuning is shown in Figure 8. Each row has three
columns: column A represents the ground truth, column B
represents the model’s segmentation efect graph without
dataset optimization, and column C represents the model’s
segmentation efect after optimization. In the zoomed-in
image of the local area before optimization, as illustrated in
column B, partial and erroneous segmentation occurs. After
the dataset optimization, the model segmentation results are
closer to the real labels, as shown in column C. Te com-
pleteness and accuracy of the segmentation results can be
clearly seen in the enlarged image of the local region. It can
be seen that before the dataset is optimized, there is an
impact on the segmentation model accuracy due to MRI
image noise. After the dataset is optimized, the data aug-
mentation operation using real noise suppresses the infu-
ence of noise on the accuracy of the segmentation model to a
certain extent and there are signifcant improvement in
segmentation completeness and accuracy. Furthermore, for
tumor margins in MRI images, the segmentation efect is
signifcantly improved.

As shown in Table 2, the dataset optimization and edge
improvement modules are advantageous in improving the
prediction results, demonstrating that optimizing the dataset
may considerably improve the OSTransnet border segmen-
tation and improve the results. Preincreased by around 0.5%,
F1 increased by roughly 0.3%, IOU increased by roughly 0.7%,
and DSC increased by roughly 0.7%. Following segmentation
optimization, DSC improved by 1.1%, Pre by 0.2%, Re by
0.5%, F1 by 0.2%, and IOU by 0.8%, respectively.
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Furthermore, the following Figure 9 shows the efect of
each model on the segmentation of osteosarcoma MRI
images. We compared the efect plots of FCN-16s, FCN-8s,
PSPNet, MSFCN, MSRN, FPN, and U-Net with our
OSTransnet segmentation model. Ground-truth segmented
images can be used to visually examine the model’s seg-
mentation performance. Meanwhile, we chose the DSC
metrics. Te following 6 osteosarcoma segmentation ex-
amples show that OSTransnet can achieve better segmen-
tation results in osteosarcoma MRI image segmentation
work. Especially in MRI images with blurred tumor borders,
such as the third example with more tumor border seg-
mentation, our method is more accurate and complete in
segmentation. For FCN, PSPNet, and MSFCN models, there
is an oversegmentation problem.

To evaluate the segmentation efect of the model on MRI
images with fuzzy edges, we selected six osteosarcoma
images with the same fuzzy edge feature as the third example
in Figure 9 for detailed comparison. In this paper, we used
U-Net, which has the best segmentation efect among many
comparison models, and OSTransnet for the comparative
analysis of the images. From the detailed comparison in
Figure 10, we can intuitively see that our model has a more
accurate segmentation efect for the images with the blurred
boundaries of the lesion regions. Compared with other
contrasting models, our OSTransnet model has greater
advantages in boundary blur segmentation due to its unique
edge enhancement module and combined loss function. It
can be clearly seen that it more efectively and accurately
segments the boundary of the lesion area. Te OSTransnet

model efectively solves the blurred segmentation edge that
often occurs in osteosarcoma MRI images.

We quantifed the performance of each method in order
to further examine the performance of each strategy. Ex-
perimental evaluation was performed on the osteosarcoma
MRI dataset, and the results are shown in Table 3. Te
accuracy of the FCN-8s model was the highest, but the
performance was poor in several other metrics. In particular,
the recall rate was the worst for FCN.Te recall rate was only
0.882 for FCN-16s and 0.873 for FCN-8s.Te PSPNet model
had the lowest IOU at 0.772.TeMSFCN andMSRNmodels
showed relatively improved performance. Both models have
improved substantially in all metrics, with recall rates
reaching 0.9. Te U-Net model has the best performance of
all the compared methods, with an IOU of 0.867 and a DSC
of 0.892. Te performance of the OSTransnet model pro-
posed in this paper is the best. It has the highest results in
several metrics of DSC, IOU, Recall, and F1. It achieved a
DSC value of 0.949, which is about 6.4% better than U-Net.
It indicates that the OSTransnet model has better perfor-
mance in osteosarcoma segmentation.

On the osteosarcoma dataset, Figure 11 illustrates the
segmentation comparison of diferent approaches, and we
used IOU for numerical comparison with DSC. Our pro-
posed osteosarcoma segmentation model is more accurate,
with the DSCmetric being 5% higher than the second U-Net
and the IOU measure being 4% higher than the second
U-Net, according to the data.

Figure 12 depicts the accuracy variation of each model.
We trained a total of 200 epochs and utilized systematic

Origin
Image

A
(ground-truth)

Regional
amplifcation

B
(No optimization)

C
(optimized)

Regional
amplifcation

Regional
amplifcation

Figure 8: Comparison of the impact of segmentation before and after dataset optimization.

Table 2: Comparison of OSTransnet performance under diferent conditions.

Model IOU DSC Pre Re F1
Our (OSTransnet) No optimization +BAB 0.889 0.931 0.917 0.974 0.946
Our (OSTransnet) No BAB 0.896 0.938 0.922 0.976 0.949
Our (OSTransnet) 0. 04 0. 4 0. 24 0. 81 0. 51
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sampling to select 50 epochs at random (1 epoch randomly
selected per 4 epochs) for comparative analysis. You can
see that the accuracy of each model begins to stabilize
after an average of 50 epochs. Our OSTransnet ofers the
highest value stability, with 98.7% reliability. Te
accuracy ranking among the models is OSTransnet>U-
Net> FPN>MSRN>MSFCN based on the photos supplied.
Te recall of MRSN and MSFCN changes substantially
throughout the frst 120 periods of training, as shown in
Figure 13. Except for MSRN, the other models converge to a
stable state after that. Overall, the recall rate of our suggested
method has been kept as high as possible, ensuring that the
risk of missing a diagnosis is minimal.

Finally, we used our approach to compare each model’s
F1-score. Te F1 of each model changes, as shown in Fig-
ure 14, although our model swings the least in comparison.
In addition, when compared to the F1 of other models, our
model’s F1 is always the greatest. Tis demonstrates the
robustness of our method. We obtained better performance
and segmentation results for the osteosarcoma MRI dataset
compared to the segmentation results for each of the models
in the table. Tis method can be used to diagnose, treat, and
predict osteosarcoma, as well as ofer doctors a diagnostic
tool for the disease.

4.5.Discussion. According to the analysis in Section 4.4, the
performance of each model has a large gap in tumor region
recognition. On the one hand, the shape and location of
osteosarcoma MRI images vary greatly. On the other hand,

the osteosarcoma MRI images are limited by the acqui-
sition equipment, resulting in low resolution and high
noise. All these have a large impact on the segmentation
efect. Te use of deeper and more complex networks alone
does not improve the segmentation accuracy well. Te
performance of the FCN model is relatively poor, and it is
easy to misclassify normal tissues as tumor regions. Al-
though the performance of the PSPNet model and FPN
mode has improved, both have lower recognition accuracy
for tumor subtleties and diferent scales of tumors. Both the
MSFCN and MSRN models showed substantial improve-
ments in all metrics, but the performance of these two
models still fell short of the ideal due to the heterogeneity
of osteosarcoma and the complexity of the MRI image
background. Te U-net model can better avoid the in-
terference of complex background in MRI images by in-
corporating contextual information, so it has better
segmentation performance and all indexes are better than
the other methods in the experiment. However, due to the
network architecture, it is not sensitive enough to multi-
scale tumors and edge details.

Our OSTransnet model has the best segmentation
performance. Especially for tumors of diferent scales and
for subtleties between tumors. It achieves better seg-
mentation results for both. Tis is mainly due to the
combination of Transformer and U-Net network models
we used. By introducing the Channel Transformer
(CTrans) module to replace the jump connection in U-Net.
It efectively solves the problem of semantic defects in
U-Net, thus completing the identifcation of tumors at
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Figure 9: Comparison of the efect of each model on MRI image segmentation of osteosarcoma.
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diferent scales. In addition, we introduce the edge en-
hancement module (BAB) with a combined loss function.
Tis module can improve the accuracy of tumor boundary
segmentation and efectively solve the problem of tumor
edge blurring.

However, although this approach abbreviates the se-
mantic and resolution gaps, it still cannot fully capture local
information due to the introduction of the channel attention
cross-attention model. It still has difculty completing the

identifcation of tumors at diferent scales in MRI maps. In
addition, the small sample dataset has a large impact on the
performance of the model. Overall, the results from Section
4.4 show that our approach has less computational cost and
better segmentation performance, achieving a better balance
between model efectiveness and efciency. Te superiority
of the OSTransnet method can be visualized from Figure 9
and Table 3. Terefore, our method is more suitable for
clinical aid in diagnosis and treatment.

Table 3: Performance comparison of diferent methods on the osteosarcoma dataset.

Model IOU DSC Pre Re F1
FCN-16s 0.824 0.859 0.922 0.882 0.900
FCN-8s 0.830 0.876 0. 41 0.873 0.901
PSPNet 0.772 0.870 0.856 0.888 0.872
MSFCN 0.841 0.874 0.881 0.936 0.906
MSRN 0.853 0.887 0.893 0.945 0.918
FPN 0.852 0.888 0.914 0.924 0.919
U-Net 0.867 0.892 0.922 0.924 0.923
Our (OSTransnet) 0. 04 0. 4 0.924 0. 81 0. 51
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Blurred edge
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Figure 10: Comparison of edge blur image segmentation efect.
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5. Conclusions

In this study, a U-Net and Transformer-based MRI image
segmentation algorithm (OSTransnet) for osteosarcoma
with edge correction is proposed. Dataset optimization,
model segmentation, edge improvement, and a combined
loss function are all part of the strategy. Te method out-
performs other existing methods and has good segmentation
performance, according to the fndings of the experiments.
In addition, we visualized the segmentation fndings for data
processing, which can aid clinicians in better identifying the
osteosarcoma lesion location and diagnosing osteosarcoma.

With the development of image processing techniques,
we will add more information to the method, enabling us to
design a multiscale segmentation method. Tis will help us
to better address segmentation errors caused by slight gray-
scale diferences between tumor tissue and surrounding
tissue, as well as improve the accuracy of segmentation.
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