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Accurately and rapidly measuring the diameter of central serous chorioretinopathy (CSCR) lesion area is the key to judge the
severity of CSCR and evaluate the efcacy of the corresponding treatments. Currently, the manual measurement scheme based on
a single or a small number of optical coherence tomography (OCT) B-scan images encounters the dilemma of incredibility.
Although manually measuring the diameters of all OCT B-scan images of a single patient can alleviate the previous issue, the
situation of inefciency will thus arise. Additionally, manual operation is subject to subjective factors of ophthalmologists,
resulting in unrepeatable measurement results. Terefore, an automatic image processing method (i.e., a joint framework) based
on artifcial intelligence (AI) is innovatively proposed for locating the key boundary points of CSCR lesion area to assist the
diameter measurement. Firstly, the initial location module (ILM) benefting from multitask learning is properly adjusted and
tentatively achieves the preliminary location of key boundary points. Secondly, the location task is formulated as a Markov
decision process, aiming at further improving the location accuracy by utilizing the single agent reinforcement learning module
(SARLM). Finally, the joint framework based on the ILM and SARLM is skillfully established, in which ILM provides an initial
starting point for SARLM to narrow the active region of agent, and SARLM makes up for the defect of low generalization of ILM
by virtue of the independent exploration ability of agent. Experiments reveal the AI-based method which joins the multitask
learning, and single agent reinforcement learning paradigms enable agents to work in local region, alleviating the time-consuming
problem of SARLM, performing location task in a global scope, and improving the location accuracy of ILM, thus refecting its
efectiveness and clinical application value in the task of rapidly and accurately measuring the diameter of CSCR lesions.

1. Introduction

CSCR is a common fundus macular disease, which causes
the visual object to be deformed, darkened, or become
smaller and is one of the factors afecting human visual
health. But its pathogenesis is still unknown in ophthal-
mology. In recent years, some scholars have put forward new
theories on the pathogenesis of CSCR, such as the theory of
choroidal dysfunction and the theory of retinal pigment
epithelium dysfunction, which have explained the

pathogenesis of CSCR to a certain extent and appropriately
promoted human cognition of the fundus disease. Tis
macular disease is mostly seen in young men aged 30 to 50
and is typically characterized by neurosensory retinal de-
tachment (NRD, as shown in Figure 1) with or without
pigment epithelium detachment (PED) [1, 2]. Although the
vision of some patients may recover spontaneously within a
few months without any intervention, it is still difcult for
some patients to recover to normal vision without surgery or
drugs in a short time. In general, the main active
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interventions for the treatment of CSCR are laser surgery
and drugs. Nomatter whichmethod is adopted, it is essential
and critical to carry out efective quantitative monitoring of
the CSCR lesion area, which lays a foundation for timely
obtaining the disease information and then assisting oph-
thalmologists to more objectively evaluate the severity of this
disease and the efcacy of the corresponding treatment plan
and also provides a basis for better formulating the follow-up
treatment scheme.

At the moment, the monitoring parameters of CSCR
mainly include the central macular thickness (CMT), best
corrected visual acuity (BCVA), maximum height, and di-
ameter of CSCR lesion area. In addition, the CSCR lesion
area is also an important parameter, and its direct seg-
mentation and indirect detection methods have been carried
out by many researchers [3–9]. A fully convolutional neural
network was built for the automatic segmentation of sub-
retinal fuid, and with the help of shrinking and expanding
network structure, an average dice rate of 0.91 was obtained
[3]. To deal with the large variations of the locations and
shapes of CSCR lesion and the low contrast of Bruch
membrane areas, Xue et al. [4] proposed a deep ensemble
neural-like P system that integrated the strengths of deep
convolutional neural networks and the spiking neural P
system and achieved a maximum average dice rate of 0.97,
which showed great potential in actual application. Wu et al.
[5] presented a two-stage scheme consisting of detecting
fuid-associated abnormalities by using thickness map prior
and segmenting the subretinal fuid by using the fuzzy level
set with a spatial smoothness and was benefcial for the
automatic quantifcation of lesion area. Similar to [3], an
end-to-end pipeline [6] inspired by the SegNet neural
network was adopted for the identifcation and segmenta-
tion of CSCR fuid regions, which facilitated a more com-
plete analysis of CSCR. Based on loosely coupled level sets,
Novosel et al. [7] raised a locally-adaptive approach for the
segmentation of the fuid and the interfaces between retinal
layers, and a dice coefcient for fuid segmentation of 0.96
was acquired, which revealed a great potential in quantifying
the CSCR lesion area. Moreover, Zhen et al. [8] tried to
detect CSCR based on the deep learning architecture and
color fundus images. However, this method cannot describe
CSCR lesions in detail, so it is not conducive to the mon-
itoring of the disease. A commendable segmentation model
combining the U-Net and generative adversarial network
was ingeniously constructed by Yoo et al. [9]. To the best of
our knowledge, this framework was the frst time to achieve
the segmentation of CSCR lesions in the color fundus images
by developing a cascaded network, which is of great

signifcance for quantitative monitoring of CSCR by virtue
of conventional fundus image examination. In addition to
the previous direct segmentation schemes, there are also
some indirect detection methods [10, 11]. Syed et al. [10]
constructed a support vector machine (SVM) classifer-
based model for the automated diagnosis of CSCR. Spe-
cifcally, they established a feature vector with a length of 8
based on retinal thickness and cyst space cavity to guide the
classifer to learn proper weights for judging the disease
category. A similar idea was also designed by Khalid et al.
[11], where the diference was that 9 extracted features and
more testing samples were adopted to train the classifer for
making more accurate judgments on the type of retinal
diseases. In these schemes, the feature descriptors of the
CSCR lesion area are frstly established by applying the
feature engineering technique, and then, the classifer is
trained by using the feature vectors to construct the lesion
detection model. Since such schemes require detailed digital
description of the lesions, professional cognition of the
characteristics of the lesions is crucial.

Besides, the fuid segmentation of other fundus diseases
also provides a reference for the area quantifcation method
of CSCR lesion [12–17]. To detect three-dimensional retinal
fuid (i.e., symptomatic exudate-associated derangements),
Xu et al. [12] developed a novel voxel classifcation-based
approach using a layer-dependent stratifed sampling
strategy, and this approach performed well in dealing with
the class imbalance issue. By combining the squeeze-and-
excitation blocks and the U-shape network, Chen et al. [13]
put forward a structure called SEUNet to segment fuid
regions in the age-related macular degeneration (AMD) and
supplied an efective for fuid segmentation. Based on graph
shortest paths and neutrosophic transformation, a fully-
automated segmentation method was designed for the ac-
curate segmenting of diabetic macular edema (DME) bio-
markers so as to provide a quantitative measure for DME
diagnosis [14]. Alsaih et al. [15] employed four wide-spread
deep learning models for the segmentation of three retinal
fuids in AMD and explored how the patch-based technique
pushes the performance of deep learning-based models,
which was conducive to the improvement of such scheme.
Lu et al. [16] presented a deep learning-based method for
segmenting multiclass retinal fuids. Diferent from the
common deep learning schemes, this method introduced the
random forest classifer in postprocessing to reduce the over
segmentation problem in the independent network model.
Hassan et al. [17] also constructed a deep learning-based
segmentation network integrating the atrous spatial pyramid
pooling module, residual module, and inception module to
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Figure 1: Te typical lesion characteristic of CSCR: NRD.
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segment multiclass retinal fuids and brought a considerable
gain in efciency.

Te previous direct segmentation pipelines or indirect
detection methods undoubtedly enrich the research ideas of
the automatic quantifcation scheme of the CSCR lesion
area, which is of great signifcance for the precise treatment
of this eye disease. Nevertheless, the tediousness of the pixel-
level annotation task in deep learning-based segmentation
method and its potential defects of insufcient generaliza-
tion ability, the strong dependence of feature engineering on
professional experience in classical machine learning-based
detection way, and the low accuracy and weak adaptability in
traditional image processing-based segmentation plan may
restrict the wide application of the previous methods in the
quantifcation task of CSCR lesion area to a certain extent. It
has to be said that the lesion diameter measurement scheme
[18] based on locating key boundary points does appro-
priately alleviate the previous situations, but the gradient-
based correction module (GBCM) in this scheme relies on
setting appropriate threshold parameters and is sensitive to
the position of the starting point provided by ILM.

Considering the limitations and advantages of the pre-
vious methods, as well as the challenges of diameter mea-
surement caused by the diameter diferences of CSCR lesion
areas in diferent frames (as shown in Figure 2), this paper
constructs an automatic image processing method (i.e., a
joint framework) based on artifcial intelligence for rapidly
and accurately measuring diameter of CSCR lesion area
from the perspective of locating key boundary points in the
CSCR lesion area. Te details are as follows: (1) In the frst
step, the multitask learning-based ILM is appropriately
adjusted and used for rapid location of key boundary points
in the CSCR lesion area, laying the foundation for subse-
quent accuracy improvement. (2) In the second step, the
location task is described as MDP, in which the single agent
aims to explore and lock the key boundary points in the
CSCR lesion area through continuous interaction with the
image environment. (3) Te joint framework based on ILM
and SARLM is skillfully designed tomake up for the defect of
low generalization of ILM by employing the unique ex-
ploration ability of agent in SARLM and to narrow the active
region of single agent by providing the initial starting point
for SARLM through the ILM. (4) In the fourth step, ex-
tensive and in-depth experiments are carefully carried out to
prove and analyze the efectiveness and feasibility of the joint
framework in the key boundary point location task of CSCR
lesion area and its application efect in the lesion diameter
measurement.

Te structure of the remaining part is as follows: Section
2 describes the related works of multitask learning and single
agent reinforcement learning. Section 3 explains the
implementation details of our proposed method. Section 4
shows the results and discussions. Section 5 concludes the
research work.

2. Materials and Related Methods

2.1. Materials. Te CSCR source images used in the ex-
periments are provided by the cooperative eye hospitals, and

the patients’ privacy information has been desensitized
carefully. Te annotation task of all the CSCR B-scan images
is jointly completed and reviewed by professional oph-
thalmologists and relevant academic personnel. After the
conventional data augmentation operations, the number of
image and annotation pairs in the dataset used for training
reaches 3240. Additionally, to evaluate the efect of the joint
framework in the testing dataset, a total of 25 patient-level
data, including 912 OCT B-scan images, are introduced into
this process.

2.2. Related Methods

2.2.1. Multi-Task Learning. As one of the artifcial intelli-
gence technologies, multitask learning [19] is a learning
paradigm that improves generalization ability of the con-
volutional neural network model by using the domain in-
formation contained in the training signals of related tasks as
an inductive bias, which has been extensively applied in
downstream tasks such as object detection, target classif-
cation, and semantic segmentation [20–22]. Meanwhile, this
paradigm also shines brightly in various medical image
processing tasks [18, 23–25]. For assisting the diameter
measurement of the CSCR lesion area, the multitask learning
paradigm was introduced into the key boundary point lo-
cation task for the frst time [18], enabling the rapid locking
of the relevant coordinates. To obtain a robust retinal disease
grading model, Ju et al. [23] extracted additional monitoring
signals from various sources by using multitask learning and
achieved a signifcant improvement. A new canonical cor-
relation analysis model [24] combining the biologically
meaningful structures with the multitask learning frame-
work was designed to mine the shared representations in
multimodal data, which experimentally demonstrated the
potential of multitask learning. Additionally, this paradigm
also performed well in improving the accuracy of glaucoma
diagnosis [25]. By sharing most of the parameters of the
segmentation layers and classifcation layers, the feature
representation ability of the model for a given task is en-
hanced, and then a win-win situation is achieved.

2.2.2. Reinforcement Learning. As a unique machine
learning method to realize artifcial intelligence, the rein-
forcement learning (RL) model has emerged in various
scenes with its unique operating principle, in which the
artifcial agent obtains rewards and punishments through
the continuous interaction with the environment [26] and
then learns the optimal strategy for a given task. In par-
ticular, RL has shown satisfactory performance in various
tasks in the feld of medical image processing, such as
registration, classifcation, and segmentation. In the regis-
tration task [27, 28], instead of directly optimizing an image
matching metric, the goal of artifcial agent was to fnd the
best sequence of motion actions to achieve the best align-
ment between images. In the classifcation task [29], the
agent cropped the appropriate patch on the original image
through hard attention mechanism and updated the crop-
ping strategy with the feedback of the classifcation network,
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so as to achieve better classifcation accuracy of breast
cancer. In the segmentation task [30], the process of lymph
node segmentation was completed by the interaction of two
networks, where the decision network provided the target
bounding box for the segmentation network, and the output
of the segmentation network guided the policy network to
make better strategies. Moreover, RL has also been applied
and performed well in landmark detection [31–34]. Diferent
from the traditional machine learning schemes, in this kind
of application, the object appearance and parameter search
strategy are unifed into a framework, in which the be-
haviour strategy of agent and the efective object feature
representation are jointly learned to better achieve the given
task.

Te previous research explored and confrmed the
feasibility and efectiveness of the application of multitask
learning and RL in the corresponding scenes and also
promoted the inspiration of our research ideas in this paper.
Te specifc details will be shown in the following sections.

3. The Proposed Method

As shown in Figure 3, it is the overall fow chart of the
scheme proposed in this paper, including image pre-
processing module (IPM), ILM, and SARLM. Firstly, IPM is
employed to provide datasets for the subsequent training
and testing steps of ILM and SARLM. Secondly, the oper-
ation of independently training ILM and SAILM based on
the training dataset is carefully performed. Ten, the testing
images are input into the trained ILM model to obtain the
preliminary results of key boundary points. Finally, the
testing images and the corresponding location results are
sent to SARLM to get the fnal results.

3.1. Motivation. Trough the previous brief analysis, it can
be clearly found that both the multitask learning and re-
inforcement learning have achieved a wide layout in various
visual tasks and obtained gratifying results. In the previous
applications, the multitask learning paradigm does improve
the adaptability of the deep learning model to a certain
extent. Nevertheless, the paradigm usually works indepen-
dently in the downstream tasks, thus resulting in the

generalization of the multitask model that is still afected by
factors such as the volume of data and network structure.
Although the RL model performs well in diferent scenarios,
agents usually regard the global region of the input image as
the interactive environment, which is bound to lead to a
signifcant increase in the time cost and computing power
required to complete the task. Tis cannot help but bring
some thoughts to our research in this paper, that is, whether
these two learning paradigms can be integrated to alleviate
the above issues. On the one hand, ILM is used to realize the
preliminary and rapid location of key boundary points to
provide the initial starting point for the RL model, which in
turn achieves the reduction of the active region of artifcial
agent. On the other hand, based on the unique exploration
ability of agent in the RL model, the position of key
boundary points is further adjusted on the basis of the initial
location results of ILM in a local range. Te specifc
implementation route and experimental results will be de-
tailed in the following sections. It is the successful appli-
cation and surprising achievements of these two learning
paradigms in various visual tasks that encourage us to make
further attempts in this key boundary point location task.

3.2. Te Preprocessing Step. Due to the equipment and
human factors, the quality and size of medical images ini-
tially obtained from the clinic are often unable to directly
adapt to the downstream tasks, so the image preprocessing
operation is particularly critical. In this paper, the source
images acquired from the clinic are in a whole composed of
the scanning laser ophthalmoscope (SLO) part and the OCT
B-scan part, which cannot be directly applied to the key
boundary points location tasks. In view of this, we use the
separation operation designed in our previous work [18] to
realize the separation of the previous parts. In addition,
considering that the image size and speckle noise may in-
terfere with the performance of both the ILM and SARLM,
the clipping operation and the BM3D (Block-matching and
3D fltering [35])-based denoising operation are then ap-
plied to OCT B-scan images. Te overall process of IPM is
shown in Figure 4. After the image preprocessing, the size
and quality of OCT B-scan images have been improved and
then followed by image annotating step which is completed

Patient A

B-scan 4

Patient A

B-scan 10

Patient A

B-scan 1

Diameter Diameter Diameter

Figure 2: Te diameter diference of CSCR lesion area in B-scan images under diferent frames.
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by professional ophthalmologists. Finally, the OCT B-scan
image dataset used to locate the key boundary points in the
CSCR lesion area is established, which paves the way for the
follow-up work.

3.3. Te Joint Framework

3.3.1. ILM. Inspired by the excellent performance of the
multitask model in face key point detection [36], we adjusted

the architecture appropriately for the frst time and intro-
duced it into the key boundary point location scene in the
CSCR lesion area [18], realizing another application test of
this paradigm. In this paper, ILM continues to serve the task
of initial location of key boundary points, and its specifc
composition is shown in Figure 5. Te residual network [37]
and MobileNet [38, 39] network are employed here as the
CNN backbones to mine the background and nonback-
ground information contained in the OCT B-scan images,
enabling the feature representation of CSCR lesion

IPM

ILM

SARLM 

.
.

.

IPM: Image Preprocessing Module ILM: Initial Location Module SARLM: Single-Agent Reinforcement Learning Module

Training Dataset

.
.

.

.
.

.

Testing Dataset Preliminary Results

Final Results

:The preprocessing step :The training step :The final testing step:The preliminary testing step

Figure 3: An overall fow chart.

.
. .

Source Images

: Separating Operation : Denoising Operation : Clipping Operation

Figure 4: Te image preprocessing process.
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information. Specifcally, we constructed the MobileNet
with a width multiplier of 0.25 (i.e., MB1-0.25) [38] and its
improved version (i.e., MB2-0.25) based on the inverted
residual network [39], which are regarded as two kinds of
backbone networks. Taking into account the network pa-
rameters and experimental conditions, resnet18 (i.e., R18),
resnet34 (i.e., R34), and resnet50 (i.e., R50) are selected as
another three kinds of backbone networks. Te previous fve
backbone network structures are shown in Table 1. In ad-
dition, considering the capacity limitation in this paper, the
FPN module [40], context module, and multitask loss
module [41] will not be repeated further.

3.3.2. SARLM. As previously analyzed, RL has been pop-
ularized in various visual tasks; especially, its successful
application in landmark detection promotes the proposal of
our scheme. It should be noted that considering the dis-
tribution characteristics of key boundary points in this task
and the time cost of agent interaction with the environment,
this paper establishes SARLM to deal with the location task
based on a single agent. Te overall framework of SARLM is
shown in Figure 6(a). Since the key boundary points are
located on both sides of the CSCR lesion area, the SARLMs
based on the left agent and the right agent are designed
respectively. Although the structure of the two SARLMs is
the same, the training process is carried out separately.
Unlike the traditional machine learning scheme, the training
samples required by SARLM are obtained through the
continuous interaction between the agent and the envi-
ronment, which are stored in the experience memory. Te
terms involved in the process are as follows:

(i) State: Tis term describes the surrounding envi-
ronment including the location of the agent, which
is mainly divided into the current state and the next
state. In this task, in order to improve the operation
efciency of the agent, based on the initial location
point provided by ILM, we frst limit the active
region of the agent to the purple square box (as
shown in Figure 6(a)) with the size of 80. Ten, with
the location of the agent as the center, a square
region with a size of 32 is cropped on the B-scan
image as the state.

(ii) Action: Tis term refers to the moving direction of
the agent in the environment, which is used to
realize the interaction between the agent and the
environment. In this paper, we set up four discrete
actions, namely, up, down, left, and right, to control
the agent to move in the corresponding direction
with a step of one pixel, so as to achieve its ex-
ploration of the environment.

(iii) Reward: Tis term denotes the feedback of an agent
after taking an action, aiming at evaluating whether
the current action is conducive to the agent to
achieve the given task. In the task of locating the key
boundary points in the CSCR lesion area, the dif-
ference of the Euclidean distances between the agent
and the target point before and after the action is
regarded as reward. In addition, in order to avoid
excessive Q value and obtain good conditional
gradient, reward is clipped between −1 and 1
according to the common operation. Te reward
function is defned as follows:

R � D Pi, PT(  − D Pi−1, PT( . (1)

(iv) Policy: Tis term is a mechanism to determine the
behavior of an agent. It is a mapping from the
current state of the agent to the corresponding
behavior taken by the agent. It defnes various
possible behaviors and corresponding probabilities
of the agent in each state. In the key boundary point
location task, the strategy is the behavior selection
mechanism that enables the agent to reach the key
boundary point of the CSCR lesion by a series of
optimal actions. In the process of taking the optimal
action, the agent can obtain the maximum cumu-
lative reward.

(v) Termination: Tis term is used to defne the stop-
ping rules of agents in the training or testing stages,
so as to prevent the agents from exploring and
exploiting in the environment indefnitely. In this
paper, in the training stage, we defne the termi-
nation fag as true when the Euclidean distance
between the agent and the target point is less than or
equal to one pixel.

Classifcation Head

CNN
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FPN Module

+

+

+

+
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P2

Context
Module Box Regression Head

Boundary Point Head

Classifcation Loss

Box Regression Loss
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Total Loss

+

+

=

ILM 

: Up-sampling Operation
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: Back Propagation CNN: Convolutional Neural NetworkFPN: Feature Pyramid Network

C1 C2 C3 C4 C5 : Feature Map From CNN Backbone

P3
P4
P5
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C2

C3
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Figure 5: Te overall framework of ILM.
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Ttrain �

True, if D Pi, PT( < 1,

False, else,
 if   step<NTrain,

True, else,

⎧⎪⎪⎨

⎪⎪⎩

(2)

where NTrain denotes the maximum iteration value to limit
the number of times the agent implements the target point
location operation in the environment during training stage,
and its value is empirically set to 100. In the testing stage,

Table 1: Te fve backbone networks used in ILM.

Layer name Output size R18 R34 R50 MB1-0.25 MB2-0.25

Conv1 C5: 160×160 7× 7, 64, stride 2

3× 3, 8, stride 2 3× 3, 8, stride 2
3× 3, 8 1× 1, 48

1× 1, 16 3× 3, 48
1× 1, 16

Conv2 C4: 80× 80

3× 3 max pool, stride 2 3× 3, 16, stride 2 1× 1, 96

3 × 3, 64
3 × 3, 64  × 2 3 × 3, 64

3 × 3, 64  × 3
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

1× 1, 32 3× 3, 96, stride 2
3× 3, 32 1× 1, 32

1× 1, 32 1× 1, 192; 3× 3, 192
1× 1, 32

Conv3 C3: 40× 40 3 × 3, 128
3 × 3, 128  × 2 3 × 3, 128

3 × 3, 128  × 4
1 × 1, 128
3 × 3, 128
1 × 1, 512

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 4

3× 3, 32, stride 2 1× 1, 192
1× 1, 64 3× 3, 192, stride 2
3× 3, 64 1× 1, 64

1× 1, 64 1× 1, 384; 3× 3, 384
1× 1, 64

Conv4 C2: 20× 20 3 × 3, 256
3 × 3, 256  × 2 3 × 3, 256

3 × 3, 256  × 6
1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 6

3× 3, 64, stride 2 1× 1, 384
1× 1, 128 3× 3, 384, stride 2

3 × 3, 128
3 × 3, 128  × 5

1× 1, 128
1 × 1, 768
3 × 3, 768
1 × 1, 128

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 5

Conv5 C1: 10×10 3 × 3, 512
3 × 3, 512  × 2 3 × 3, 512

3 × 3, 512  × 3
1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

3× 3, 128, stride 2 1× 1, 768
1× 1, 256 3× 3, 768, stride 2
3× 3, 256 1× 1, 256

1× 1, 256 1× 1, 1536; 3× 3, 1536
1× 1, 256
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Figure 6: Te overall framework of SARLM and deep Q-network: (a) SARLM; (b) deep Q-network.
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because the ground truth of the target point cannot be
provided, we design the following termination rule
according to the experimental observation:

δQ � abs
1
n



i−8

j�i−15
Qj −

1
n



i

k�i−7
Qk

⎛⎝ ⎞⎠,

Ttest �

True, if  δQ <Tr  and q � Tq,

False, else,

⎧⎪⎨

⎪⎩
if   step<NTest,

True, else,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

where δQ represents the diference between the average value
of the frst eight elements in the last 16 Q values and the
average value of the last eight elements in the last 16 Q
values. Tr is the threshold which is set to 0.3. q is used to
confrm whether the agent has converged to the target point,
and its corresponding threshold Tq is set to 2 in this paper
according to the time cost and experimental observation.
NTest denotes the maximum iteration value to limit the
number of times the agent implements the target point
location operation in the environment during testing stage,
and its value is empirically set to 60.

After the previous brief introduction and analysis, it is
followed by the typical reinforcement learning paradigm (i.e.,
Q-Learning) [42]. In various RL scenarios, appropriate actions
are the core to achieve efective and continuous interaction
between agent and environment, the optimization process of
which can be completed based on the state-action value
function Q (s, a) [43]. By solving the following formula, the
correspondingQ value can be obtained after implementing the
corresponding action in each state, and then the best action can
be selected depending on the highest long-term Q value.

Qi+1(s, a) � E R + cmax
a′

Qi s′, a′(  , (4)

where Qi+1 and Qi represent the Q values at step I and i+ 1,
respectively. s and s′ denote the current state and the next
state, respectively. Correspondingly, a and a′ are the current
action and the next action, respectively. c is the discount
factor and is set to 0.95 in this paper. However, when there
are too many state-action pairs in Q-learning, the Q-Table
will be too large and cause excessive memory consumption.
At this time, the Q(s, a; θ) obtained by approximating
Q(s, a) with the help of the deep neural network (i.e., Deep
Q-Network, DQN) can avoid the previous issue. By peri-
odically assigning the weight parameters of the current
Q-Network to the target Q-Network, the parameters of the
Q-Network can be continuously updated. Specifcally, the
parameters of DQN can be obtained by solving the following
equation:

LDQN(θ) � E R + cmax
a′

Q s′, a′; θ′  − Q(s, a; θ) 

2
⎡⎣ ⎤⎦,

(5)

where θ′ and θ are the parameters of target Q-Network and
the current Q-Network, respectively. In this paper, the DQN
structure is designed as shown in Figure 6(b). Te input size
of the network is 32× 32× 4. During the training or testing
stage, the input image is composed of four cropped single
channel patches with the size of 32× 32. After a series of
convolutional layers, pooling layers, fully-connected layers,
and various activation functions, a four-dimensional Q-
value vector can be obtained, and then the corresponding
action can be selected for the agent to interact with the
environment.

3.3.3. ILM-SARLM. On the basis of the previous research,
the joint framework shown in Figure 7 is fnally established,
mainly consisting of three parts, namely, ILM part, SARLM
part, and joint location part. Te execution contents of each
part are as follows:

① ILM is frstly trained based on all the OCT B-scan
images in the training dataset. Since fve CNN
backbone networks are applied in the ILM frame-
work, the training process needs to be repeated fve
times. Ten, ofine testing models corresponding to
various backbone networks can be acquired.

② It should be pointed out that the location model of
key boundary points on both sides of the CSCR lesion
area is trained independently. Although the network
structure on both sides is the same, the weight pa-
rameters will not be shared between them. Under the
previous premise, SARLMs are trained based on
some OCT B-scan images in the training dataset to
obtain independent DQN models for the action se-
lection of left and right agents, respectively.

③ On the basis of ① and ②, the location task of key
boundary points is achieved through a cascade op-
eration. Specifcally, the testing image is frstly sent to
the ofine testing model to obtain the initial coor-
dinates of the key boundary points on both sides.
Ten, the testing image and its corresponding initial
location results are sent to the DQN models, and the
agents further optimize the initial points of ILM
again in the purple square active region (as shown in
Figure 7) which is delimited according to the initial
points on both sides.

3.4.TeBackboneNetworks andAlgorithmStep. Tis section
shows the structures of fve CNN backbone networks used in
ILM, and the specifc details are shown in Table 1. In ad-
dition, the algorithm steps of ILM are detailed in [18], and
the algorithm steps of SARLM and joint location parts are
shown in Table 2.

4. Experimental Settings

In order to verify the feasibility and efectiveness of the
proposed scheme, this paper has conducted in-depth and
extensive experiments. Te training dataset, testing dataset,
parameter settings and equipment conditions, and
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Table 2: Te algorithm of ILM-SARLM.

Input DTrain, NTrain, c, learning rate, batch size B, epoch, max episode P, update frequency L, sample step S;
∗Training step for SARLM∗∗
//Initialize θ, θ′, and Experience memory M;
for each K in epoch do
//Shufe DTrain;
//While (j<� DTrain); select the jth B-scan image Bj;
//Initialize Experience memory M;
for each k inPdo
Initialize Ttrain � False and step;

While notTtrainand step<NTrain;
//Agent interact with environment E using a selected randomly

or calculated by argmaxaQ(s, a; θ), and receive next state s′;
//Get reward R using (1) and termination fag Ttrain using (2);

//Store (s, a, R, s′, Ttrain) in M;
if M≥ batch size and M % S⩵ 0;

//Randomly select samples at size of B from M;
ifTtrain;

//Calculate LDQN(θ) � E[(R − Q(s, a, θ))2];
//Update θ using Adm optimizer;
//Update θ′ � θ every L steps;

else
//Calculate (5);
//Update θ using Adm optimizer;
//Update θ′ � θ every L steps;

end
end
// step++;

end
// j ++;

end
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Figure 7: Te overall framework of ILM-SARLM.
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evaluation metric involved in the experiments will be briefy
described.

4.1.Parameter Settings andEquipmentConditions. Both ILM
and SARLM are based on the TensorFlow framework as the
development platform, and the computing power involved
in the training and testing process of these models is mainly
supplied by NVIDIA-3080ti GPU. For ILM, the parameters
of epoch, learning rate, batch size, and optimizer are set to
40, 0.001, 20, and Adam, respectively; [18]can be referred for
other settings. For SARLM, the parameters of epoch,
learning rate, batch size, max episode, update frequency,
sample step, and optimizer are set to 80, 0.0001, 32, 25, 50, 5,
and Adam, respectively.

4.2. Evaluation Metric. In order to quantify the location
accuracy of the key boundary points in the CSCR lesion area
so as to evaluate the performance of the proposed scheme,
this paper adopts an average Euclidean distance (AED)
evaluation metric, which is expressed as follows:

AED �
1

2NT



NT

i�1
‖LG‖2 +‖RG‖2( . (6)

For left key point,

LG � xnew L − xtruth L, ynew L − ytruth L( . (7)

For right key point,

RG � xnew R − xtruth R, ynew R − ytruth R( , (8)

where LG and RG are vectors determined by the coordinate
of the left key point (i.e., (xnew L, ynew L)), its corresponding
ground truth value (i.e., (xtruth L, ytruth L)), the coordinate of
the right key point (i.e., (xnew R, ynew R)), and its corre-
sponding truth value (i.e., (xtruth R, ytruth R)), respectively.

‖ · ‖2 represents the 2-norm to perform the calculation of
Euclidean distance, and NT denotes the number of OCT
B-scan images included in a single patient data.Te diameter
measurement of the CSCR lesion area is also based on the 2-
norm, and the specifc equation is as follows:

D � ‖LR‖2, (9)

LR � xnew R − xnew L, ynew R − ynew L( , (10)

where LR is the vector determined by the left and right key
boundary points.

5. Results and Discussions

Tis section analyzes and discusses the experiment. Before that,
we will explain the terms involved in this process. It should be
pointed out that in order to verify the efectiveness and fea-
sibility of the joint framework proposed in this paper, not only
the pure DQN based SARLM is combined with each kind of
ILMs but also the DDQN-based [44, 45], Duel DQN
(DuelDQN)-based [46], and Duel DDQN (DuelDDQN)-based
SARLMs are introduced into the joint framework. As men-
tioned earlier, the SARLMmodel for locating the key boundary
points on both sides in this paper is independent of each other,
and the training process is carried out separately. In this way,
the left key point location model based on DQN is named
DQN_LP, and the corresponding location model for the right
key point is named DQN_ RP. According to the same rule,
DDQN_LP, DDQN_RP, DuelDQN_LP, DuelDQN_RP,
DuelDDQN_LP, and DuelDDQN_RP can be obtained, re-
spectively. Moreover, for diferent ILMs, we name it according
to the name of the CNNbackbone network in Section 3.3.1.We
take the R18 backbone network and DQN for example, the
pure ILM is named R18-Base, and the corresponding joint
framework is called R18-DQN. Te names of other joint
frameworks also comply with this rule.

Table 2: Continued.

Input DTrain, NTrain, c, learning rate, batch size B, epoch, max episode P, update frequency L, sample step S;

Input DTest, Tr, NTest, Tq;
∗∗Testing step for ILM-SARLM∗∗
//Initialize q and step;
//Get the initial coordinates (xL, yL) and (xR, yR) using the ofine testing ILM;
//Send the initial results and testing images into the DQN models;
While True;
//Agents interact with environment E using actions calculated by argmaxaQ(s, a; θ);
//Calculate δQ using (3);
//step++;
if step <NTest and δQ <Tr;
//q+� 1;

end
//Calculate Ttest using (3) and (4);
ifTtestor step�=NTest;
//Agents stop interaction behaviour and output the fnal location coordinates

(xnew L, ynew L) and (xnew R, ynew R);
Break
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5.1. Convergence Observation of ILMs and SARLMs on the
Training Dataset. Properly judging whether the model
converges in the training process is an indispensable link
related to the later model performance test and actual de-
ployment. As shown in Figure 8(a), each ILM can converge
from a large value to a small loss value after 6480 iterations,
revealing that the weight parameters of the model can better
ft a nonlinear function to deal with the task given in this
paper. In addition, it can also be found that the progress
trend of each task loss curve in ILM is almost the same, and
the diference between losses is very small, which has im-
portant reference signifcance for setting the proportion
parameter of each task item in the total loss. For SARLM,
each model was trained with 80 epochs on the training
dataset including 30 OCT B-scan images, and the total
training time of eight models was about 240 hours, that is,
10 days. In order to boost the adaptability of SARLM to the
initial position during the testing stage, the initial coordinate
of the agent is initialized randomly in each episode of
training, based on the coordinate ground truth of each key
boundary point and the corresponding margin randomly
selected from [−4, −6, −8, −10, −12, −14, 4, 6, 8, 10, 12, 14]. It
can be clearly observed from Figure 8(b) that compared with
the initial period, the reward value of each SARLM in the
later training period fnally stabilized within a certain range,
which implies that through continuous exploration and
exploitation, the agent gradually learned how to formulate
appropriate behaviour strategies according to its environ-
ment to achieve the location task of the key boundary points
in the CSCR lesion area. Te previous observations show
that the feasibility of ILMs and SARLMs in the training
dataset has been preliminarily verifed, laying a foundation
for subsequent analysis.

5.2. Performance Analysis of SARLMs on the Validation
Dataset. In order to select the appropriate SARLM for later
application in the testing dataset, we conducted relevant
experiments on the validation dataset consisting of 10 OCT
B-scan images. Specifcally, in order to check the location
performance of SARLM under the random starting point in
the local region of CSCR lesion, we designed 16 random
initialization starting points for both the left and right agents
based on the coordinate ground truth of the key boundary
points and their corresponding margins in the X-axis di-
rection and Y-axis direction (i.e., [−4, −14, 4, 14] for the X-
axis direction and [−4, −14, 4, 14] for the Y-axis direction).
Under the previous settings, the AED curves of various
SARLMs based on 80 epochs are obtained as shown in
Figure 9. On the whole, in the later stage of training, the AED
value of each SARLM on the validation dataset decreases
compared with the initial stage, which indicates that the
ability of the agent to locate the key point under the con-
dition of random initial position is appropriately improved
with the increase of learning times, corresponding to the hint
of the reward convergence curve of SARLM on the training
dataset. Moreover, the overall trend of the AED curves of
SARLMs for the left and right key points in the same en-
vironment is similar, indicating that even if the local regions

of the key points on both sides are diferent, the strategy of
training the SARLMs on both sides independently in this
paper can make the agents properly adapt to this change.

Q value is an important indicator to measure the
closeness of agents to target points and is the key basis to
terminate the interaction between agents and the environ-
ment. As pointed out in [29], when the agent approaches the
target point, Q value is relatively small; otherwise, it is
relatively large. Tis view is further confrmed by the ex-
perimental results involved in the task of this paper. As
shown in Figure 10, each best SARLM-selected based on the
minimum AED can almost converge from the largerQ value
at the initial time to the smaller Q value at the fnal stage,
which means that the agent can perform well in the vali-
dation dataset after continuous learning. In some cases,
when the initial position of the agent is set to approach the
target point, the Q value does not change much before and
after convergence, suggesting that the agent judges that it is
close to the target point fall into the local optimized point in
advance.Tis situation is also where we strive to break in the
future.

However, we can be gratifed that when the initial
position of the agent is far away from the target point, each
kind of SARLM can stabilize at a small Q value after the
iteration stops, which shows that even if the maximum
distance between the agent and the target point is about 19
pixels in the local region, it can fnally converge near the
target point. In fact, the initial location accuracy of ILM is
usually less than this value (as shown in Table 3), which
proves that it is feasible to use ILM to narrow the active
region of the agent for SARLM. Corresponding to Fig-
ures 10 and 11, it shows the visual performance of each
SARLM in the key boundary point location task under 16
initial positions, in which the silver dotted line represents
the fnal position of the agent corresponding to the initial
position. What can be clearly captured is that the agent
can fnally converge near the target point at diferent
initial positions. Although there are great diferences in
each initial position, each fnal position of the agent is very
close, and in some cases, the agent even locks the same
fnal point (such as Figure 11(a) DQN_RP,
DuelDDQN_LP, DuleDDQN_RP and so on). Te previ-
ous analysis not only shows the good location ability of
each SARLM on the validation dataset but also implies its
low sensitivity to the initial position in the local region,
which plays an important role in promoting the proposal
of the joint framework.

5.3. Performance of ILMs and ILM-SARLMs on the Testing
Dataset. Based on the previous results and analysis, this
section formally investigates the performance of the joint
framework constructed based on the multitask learning and
the single-agent reinforcement learning on the testing
dataset, including qualitative analysis, quantitative analysis,
and efciency analysis, so as to explore and discover the
value and potential of the framework in practical application
scenarios and the corresponding details to be further
improved.
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5.3.1. Qualitative Analysis. As shown in Figures 12 and 13,
the Q value convergence and practical application efect of
the joint framework composed of diferent ILMs and
SARLMs under the key boundary point location task at the
image level are shown, respectively. Te icon on the right in
Figure 12 represents the scanning number of all B-scan
images in the patient-level data. In general, each joint
framework can achieve convergence under a certain number
of iterations, that is, obtain a smaller Q value in the later
stage. However, similar to the observations in the validation
dataset, the diference between the Q value of the agent
before and after the key point location task in some B-scan

images of the testing dataset is small. Tis reveals that the
initial starting point provided by ILM for SARLM is rela-
tively close to the target point, thus making the agent wander
around the target point all the time, and the external rep-
resentation is the periodic small amplitude fuctuation of Q
value. As shown in Figure 13, the reason behind the previous
phenomenon is further demonstrated by the actual location
efect. It can be clearly captured that sometimes the initial
starting point is indeed in the region near the target point,
resulting in the agent naturally interacting with the envi-
ronment in a small range and gaining a small Q value, which
echoes the observation in Figure 12. In addition, the cyan
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Figure 8: Convergence curves of ILM and SARLM in the training process: (a) the loss curves of diferent ILMs [16]; (b) the reward curves of
diferent SARLMs.
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Figure 10: Continued.
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line in the fgure represents the distance between the fnal
location point of the joint framework and the target point,
while the silver dotted line here denotes the distance between
the starting point provided by ILM and the target point. It
can be seen that in most cases, the length of the cyan line is
smaller than that of the silver dotted line, which indicates
that the joint framework has the ability to further optimize
the position of the initial key boundary points. Meanwhile,
Figure 13 also visually shows the performance diference
between joint frameworks and conveys the level of various
ILMs in the initial location task, which is conducive to the
selection and deployment of the joint framework in practical
application.

In addition to the previous qualitative analysis at the
picture level, we also verify the ability of the diferent joint
framework and the corresponding ILMs on patient-level

data, so the discussion based on patient level is also in-
troduced here. Figure 14(a) clearly reveals the AED of
each ILM and its corresponding joint framework on each
patient-level data. It is obvious that compared with the
pure ILMs, all kinds of joint frameworks can basically
obtain lower AED values, further enriching the evidence
of the efectiveness of the proposed model. Furthermore,
the robustness of various joint frameworks and their ILMs
at the patient level has also been carefully considered. As
shown in Figure 14(b), compared with ILM, the box
height of its corresponding joint framework is relatively
small, showing that the performance of the joint frame-
work on patient-level data fuctuates little, implying that
the joint framework has good robustness. Te cyan tri-
angle in the fgure denotes the average AED value of ILM
or joint framework. Te lower value also proves that the

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

DQN_LP DQN_RP DDQN_LP DDQN_RP
Q

 v
al

ue

2

4

6

8

10

12

Q
 v

al
ue

2

4

6

8

10

Q
 v

al
ue

2

4

6

8

10

12

Q
 v

al
ue

2

4

6

8

10

0 10 20 30 40
Iteration

Q
 v

al
ue

2

4

6

8

10

0 10 20 30 40
Iteration

Q
 v

al
ue

2

4

6

8

10

12

0 10 20 30 40 50
Iteration

Q
 v

al
ue

2

0

4

6

8

10

12

0 10 20 30 40
Iteration

Q
 v

al
ue

DuelDDQN_LP

Iteration

DuelDDQN_RP

Iteration

DuelDQN_LP

Iteration

DuelDQN_RP

Iteration

2

4

6

8

10

12

(b)
DQN_LP DQN_RP DDQN_LP DDQN_RP

0 10 20 30 40
Iteration

0 10 20 30 40
Iteration

0 10 20 30 40
Iteration

0 10 20 30 40
Iteration

0 10 20 30 40
Iteration

0 10 20 30 40
Iteration

0 10 20 30 40
Iteration

0 10 20 30 40
Iteration

DuelDDQN_LP DuelDDQN_RP DuelDQN_LP DuelDQN_RP

Q
 v

al
ue

2

4

6

8

10

12

Q
 v

al
ue

2

4

6

8

10

12
Q

 v
al

ue

2

4

6

8

10

12

Q
 v

al
ue

2

4

6

8

10

12

Q
 v

al
ue

2

4

6

8

10

Q
 v

al
ue

2

4

6

8

10

Q
 v

al
ue

2

0

4

6

8

10
Q

 v
al

ue

2

4

6

8

10

12

(c)

Figure 10: Q value convergence curve of SARLMs under diferent initial starting points: (a) example-1; (b) example-2; (c) example-3.
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Table 3: Comparison of ILMs and ILM-SARLMs based on the AED.

Model AED (pixels) Size (M)

ILM-SARLMs

R18-DQN 3.71

166.2R18-DDQN 3.78
R18-DuelDQN 3.61
R18-DuelDDQN 3.91

R34-DQN 3.71

283.2R34-DDQN 3.88
R34-DuelDQN 3.72
R34-DuelDDQN 3.95

R50-DQN 3.79

313.2R50-DDQN 3.91
R50-DuelDQN 3.72
R50-DuelDDQN 4.06
MB1-0.25-DQN 4.61

41MB1-0.25-DDQN 4.87
MB1-0.25-DuelDQN 4.51
MB1-0.25-DuelDDQN 4.97

MB2-0.25-DQN 3.68

66.3MB2-0.25-DDQN 3.78
MB2-0.25-DuelDQN 3.62
MB2-0.25-DuelDDQN 4.01

ILMs

R18 5.73 138
R34 8.21 255
R50 6.21 285

MB1-0.25 10.19 12.8
MB2-0.25 5.40 38.1
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joint framework possesses a more prominent key point
location ability as a whole. What can also be seen is that
there is a signifcant diference in robustness between joint
frameworks, which, together with the information pro-
vided in Figure 13, sets a reference for the selection of
models.

At the end of this section, the DQN-based SARLM is
taken as an example to show the actual results of the joint
frameworks under diferent ILMs in locating the key
boundary points of CSCR lesion. As shown in Figure 15,
with the ground truth as a reference, it is easily judged
that various joint frameworks can achieve the efective
reoptimization of the position of key boundary points on
the basis of the initial results of ILM, which is consistent
with the previous qualitative analysis based on the AED
metric. Trough the actual location results, the

efectiveness and feasibility of the joint framework are
demonstrated again.

5.3.2. Qualitative Analysis. Tis section further analyzes the
performance between the joint framework and the corre-
sponding ILM from the quantitative perspective. When the
AED between the key boundary points on both sides pro-
vided by the joint framework and the corresponding target
points is less than that between the key boundary points on
both sides provided by the ILM and the corresponding target
points, the joint framework successfully corrects the key
boundary points on the B-scan image. As shown in Fig-
ure 16, from the image level, the successful correction rate of
the key boundary point of the joint framework exceeds half
of the total number of testing images, and the maximum
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Figure 11:Te location of key boundary points of SARLMs under diferent initial starting points: (a) example-1; (b) example-2; (c) example-
3.
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value reaches 92.11% (i.e., a total of 840 B-scan images).
Besides, there are some diferences in the successful cor-
rection rate between joint frameworks based on fve kinds of
ILMs. However, in view of the defects of the weak gener-
alization ability of ILM itself and the performance difer-
ences between them, it cannot be directly said that a smaller
value corresponds to a joint framework with weak correction
ability, and a larger value represents a strong ability. Te
successful correction rate here mainly refects that the joint
framework can further optimize the location of key
boundary points based on the corresponding ILM. As for the
comparison of performance diferences between models, it
can be based on the qualitative analysis in the previous
section and the AED metric at the patient level shown in
Table 3.

As shown in Table 3, the patient-level-based AEDs are
counted. It can be clearly observed that each joint framework
is signifcantly superior to the corresponding ILM in terms

of this metric, obtaining an AED value with a minimum of
3.61 pixels, and the maximum diference between the two
types of models is 5.68 pixels, which quantitatively shows the
advantages of the joint framework. Additionally, due to the
introduction of SARLM, the size of the joint framework is
larger than that of the corresponding ILM, but this margin
has little impact on the actual deployment. In general, the
previous quantitative analysis also confrms the positive role
of the joint framework in the given task.

5.3.3. Efciency Analysis. Tis section focuses on analyzing
the efciency of the proposed joint framework and ILM.Te
time cost is the key reference to judge the efciency of the
model in completing the given task. In view of this, we
recorded the time cost of ILMs and the corresponding joint
frameworks in the key boundary point location task in the
CSCR lesion. Figure 17(a) shows the time consumption
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Figure 12: Q value convergence curve of SARLMs under diferent ILMs: (a) MB1-0.25 (b) MB2-0.25 (c) R18 (d) R34 (e) R50.
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Figure 13: Te location of key boundary points of SARLMs under diferent ILMs: (a) MB1-0.25; (b) MB2-0.25; (c) R18; (d) R34; (e) R50.

0 242322212019181716151413121110987654321
Patient Number

Av
er

ag
e E

uc
lid

ea
n 

D
ist

an
ce

2

4

6

8

10

12

Av
er

ag
e E

uc
lid

ea
n 

D
ist

an
ce

2

4

6

8

10

12

Av
er

ag
e E

uc
lid

ea
n 

D
ist

an
ce

2

4

6

8

10

12

Av
er

ag
e E

uc
lid

ea
n 

D
ist

an
ce

2

4

6

8

10

12

14

16

18

20

Av
er

ag
e E

uc
lid

ea
n 

D
ist

an
ce

2

4

6

8

10

14

12

0 242322212019181716151413121110987654321
Patient Number

0 242322212019181716151413121110987654321
Patient Number

0 242322212019181716151413121110987654321
Patient Number

MB1-0.25-SARLM MB2-0.25-SARLM

R18-SARLM R34-SARLM R50-SARLM

0 242322212019181716151413121110987654321
Patient Number

(a)

Figure 14: Continued.

Computational Intelligence and Neuroscience 21



0

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

Av
er

ag
e E

uc
lid

ea
n 

D
ist

an
ce

M
B1

-0
.2

5-
D

ue
lD

Q
N

M
B1

-0
.2

5-
D

ue
lD

D
Q

N

M
B1

-0
.2

5-
D

Q
N

M
B1

-0
.2

5-
D

D
Q

N

M
B1

-0
.2

5-
Ba

se

M
B2

-0
.2

5-
D

ue
lD

Q
N

M
B2

-0
.2

5-
D

ue
lD

D
Q

N

M
B2

-0
.2

5-
D

Q
N

M
B2

-0
.2

5-
D

D
Q

N

M
B2

-0
.2

5-
Ba

se

R1
8-

D
ue

lD
Q

N

R1
8-

D
ue

lD
D

Q
N

R1
8-

D
Q

N

R1
8-

D
D

Q
N

R1
8-

Ba
se

R3
4-

D
ue

lD
Q

N

R3
4-

D
ue

lD
D

Q
N

R3
4-

D
Q

N

R3
4-

D
D

Q
N

R3
4-

Ba
se

R5
0-

D
ue

lD
Q

N

R5
0-

D
ue

lD
D

Q
N

R5
0-

D
Q

N

R5
0-

D
D

Q
N

R5
0-

Ba
se

ILM-SARLM vs ILM

(b)

Figure 14: Te performance of ILM-SARLMs under patient level: (a) the AED diference between models; (b) the robustness diference
between models.
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based on the patient level, in which the time of ILM is
signifcantly lower than that of the joint framework, and its
minimum time consumption is only about 6.05 seconds.
Furthermore, the time consumption based on the image
level refected in Figure 17(b) also displays the efciency

advantage of various ILMs. Tis situation is mainly due to
the fact that SARLM in the joint framework needs to rely on
the continuous interaction between the agent and the en-
vironment. Such an iterative process will naturally lead to an
increase in time cost. To alleviate the previous issue, this
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Figure 16: Te successful correction ratio of key boundary points of ILM-SARLMs under image level.
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Figure 17: Comparison of time consuming between ILMs and ILM-SARLMs: (a) average time consuming at patient level; (b) average time
consuming at image level.

Computational Intelligence and Neuroscience 23



paper aims to compress the time expenditure for the joint
framework from two perspectives. On the one hand, the
active region of the agent is limited to a local scope through
the initial key boundary point location function of ILM, so as
to avoid the transition time consumption caused by the
global activities of the agent. On the other hand, the ter-
mination rule is properly developed to stop the repeated
interaction behaviour of the agent in the later stage as soon
as possible when it has approached the target point. Te
former can undoubtedly improve the efciency of the agent.
As for the latter, although the termination rule based on the
Q value and the maximum iteration designed in this paper
can appropriately stop the repeated wandering behaviour of
the agent on time, better termination hints still need to be
explored, which is also the perspective we need to further
improve in the future.

5.4. Discussion on the Efectiveness of SARLMs for ILM-
GBCMs on the Testing Dataset. Te analysis and discussion
in the previous sections show the superiority of the joint
framework proposed in this paper over ILM. Tis section
intends to explore whether SARLM can be equally efective
in further improving the performance of ILM-GBCM [18]
through qualitative and quantitative experiments. As shown
in Figure 18, MB1-0.25-T50-P11, MB2-0.25-T40-P9, R18-
T30-P9, R34-T20-P9, and R50-T20-P9 represent diferent
ILM-GBCMs, respectively. Similarly, taking the DQN-based
SARLM as an example, the joint frameworks based on the
previous GBCMs are MB1-0.25-T50-P11-DQN, MB2-0.25-
T40-P9-DQN, R18-T30-P9-DQN, R34-T20-P9-DQN, and
R50-T20-P9-DQN, respectively. Figure 18(a) shows that the
AED values of the joint frameworks at the patient level are
higher than those of the corresponding ILM-GBCMs most
of the time, indicating that the joint framework can further
optimize the position of the key boundary points after the
GBCM correction. It can also be found from Figure 18(b)
that whether considering the average value of AED (the cyan
triangle in the fgure) or based on the box height, all kinds of
joint frameworks are signifcantly better than their corre-
sponding ILM-GBCMs, not only confrming the role of the
joint framework in improving the location accuracy of key
boundary points of ILM-GBCM but also revealing its good
robustness in this task.

Furthermore, quantitative analysis experiments were
carried out accordingly. As shown in Figure 19, the maxi-
mum successful correction rate of the joint framework is
83.00%, which shows that it has the ability to further im-
prove the location accuracy on the basis of the correction
results. However, by observing Figures 16 and 19, it can be
found that compared with the successful correction rate of
the location results of pure ILM, the improvement degree of
SARLM on this metric of ILM-GBCM is relatively low,
which stems from the fact that GBCM has played a cor-
rective role in the initial location results of ILM to a certain
extent, thus making the space for SARLM to further opti-
mize the location accuracy of key boundary points smaller.
Concurrently, AEDs of the two models based on the patient
level are also emphatically recorded, as shown in Table 4.

Compared with ILM-GBCM, the AED values of the cor-
responding ILM-GBCM-SARLM are reduced, and the
maximum diference between them is 3.64 pixels, which
together with the image-level-based successful correction
rate shows that SARLM also has a certain efect in boosting
the ability of ILM-GBCM to locate the key boundary points
in the CSCR lesion area.

5.5. Preliminary Application. Extensive experiments and
analysis have proved the superiority of the proposed joint
framework compared with the corresponding ILM in the key
boundary point location task in the CSCR lesion area, which
is embodied in the fact that it can make up for the weak
generalization of ILM in this scene through the unique
autonomous learning ability of agent in the lesion envi-
ronment, which paves the way for its preliminary application
in the actual measurement of the diameter of CSCR lesions
in this section. Based on formulas (9) and (10) and the
coordinates of the key boundary points output by the joint
framework, the diameters of the CSCR lesions at all scanning
angles can be measured quickly. As shown in Figure 20, the
diameter measurement results of four patient-level samples,
in which Figures 20(a) and 20(b) correspond to samples
containing 24 OCT B-scan images, and Figures 20(c) and
20(d) correspond to samples containing 48 OCT B-scan
images. On this basis, it is not only convenient for oph-
thalmologists to review the diameter size of the lesion at all
scanning angles but also convenient for them to check the
diameter size of the lesion at a certain scanning angle.
Moreover, based on the diameter measurement results of
lesions in all B-scan images, the maximum, minimum, and
average values can also be obtained, providing a quantitative
reference for ophthalmologists to judge the severity of the
CSCR and evaluate the efcacy of the corresponding
treatment scheme.

5.6. Te Clinical Advantages of Tis Study in Ophthalmology.
By and large, in the previous sections, both the qualitative-
quantitative analysis oriented to the evaluation of location
efect and the time-cost consideration oriented to the
evaluation of efciency provide strong support for dem-
onstrating the feasibility, efectiveness, and potential clinical
application value of the proposed joint framework based on
ILM and SARLM in the task of locating key boundary points
in the CSCR lesion area. In addition, the qualitative-
quantitative experiments of the joint framework composed
of SARLM and ILM-GBCM reveal that the introduction of
SARLM can also add luster to the further optimization of the
initial key boundary points provided by ILM-GBCM. On the
basis of the previous part, based on the preliminary appli-
cation of the diameter measurement of the CSCR lesion area,
the potential deployment value of the proposed joint
framework is afrmed from a practical point of view, and the
signifcance of this study is further consolidated. It should be
noted that although the scheme proposed in this paper is
aimed at the diameter measurement of the CSCR lesion area,
this method is also instructive for the design of the automatic
measurement scheme of the diameter of the focus area in
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OCT B-scan images of other fundus diseases (such as dia-
betic macular edema, macular hole, and retinal angiomatous
proliferation), which has potential guiding signifcance for
more comprehensive monitoring of the lesion morphology
and assisting ophthalmologists in the more objective as-
sessment of patients’ eye conditions.

5.7. Limitation Analysis and Future Work. Although this
study reveals good clinical application value, the inade-
quacy of the proposed scheme still needs to be properly

faced. Specifcally, the joint framework may encounter the
phenomenon of an agent wandering around the target
point repeatedly in the procedure of processing a given
task, which is also the factor leading to its slightly lower
efciency. We hold that this phenomenon may be due to
the fact that the surrounding environment is too similar
when the agent is approaching the target point in the
process of interaction with the environment, resulting in
the agent being unable to learn more efective behavior
strategies and then falling into a local area and unable to
extricate itself. For this problem, in the future, we plan to
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Figure 18: Te performance of ILM-GBCM-SARLMs under patient level: (a) the AED diference between models; (b) the robustness
diference between models.
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Figure 19: Te successful correction ratio of key boundary points of ILM-GBCM-SARLMs under image level.

Table 4: Comparison of ILM-GBCMs and ILM-GBCM-SARLMs based on the AED.

Model AED (pixels) Size (M)

ILM-GBCM-SARLMs

R18-T30-P9-DQN 3.79

166.2R18-T30-P9-DDQN 3.82
R18-T30-P9-DuelDQN 3.61
R18-T30-P9-DuelDDQN 3.98

R34-T20-P9-DQN 3.63

283.2R34-T20-P9-DDQN 3.74
R34-T20-P9-DuelDQN 3.54
R34-T20-P9-DuelDDQN 3.93

R50-T20-P9-DQN 3.78

313.2R50-T20-P9-DDQN 3.81
R50-T20-P9-DuelDQN 3.56
R50-T20-P9-DuelDDQN 3.99
MB1-0.25-T50-P11-DQN 4.38

41MB1-0.25-T50-P11-DDQN 4.50
MB1-0.25-T50-P11-DuelDQN 4.21
MB1-0.25-T50-P11-DuelDDQN 4.64

MB2-0.25-T40-P9-DQN 3.79

66.3MB2-0.25-T40-P9-DDQN 3.91
MB2-0.25-T40-P9-DuelDQN 3.66
MB2-0.25-T40-P9-DuelDDQN 4.13

ILM-GBCMs

R18-T30-P9 4.79 138
R34-T20-P9 5.57 255
R50-T20-P9 4.65 285

MB1-0.25-T50-P11 7.85 12.8
MB2-0.25-T40-P9 5.21 38.1
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Max:337 Min:287 Aver:302

(a)

Max:166 Min:131 Aver:148

(b)

Max:224 Min:200 Aver:210

(c)

Max:298 Min:267 Aver:284

(d)

Figure 20: Te diameter measurement of CSCR lesion area based on ILM-SARLM: (a) example-1; (b) example-2; (c) example-3; (d)
example-4.
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continue to mine solutions from the design of the ter-
mination rule and the adjustment of the DQN framework
structure, so as to further improve the performance of the
joint framework.

6. Conclusions

An automatic image processing method (i.e., the joint
framework) based on the multitask learning and single-agent
reinforcement learning paradigms is constructed to achieve the
goal of rapid and accurate location of key boundary points in
CSCR lesion area, so as to facilitate the automatic diameter
measurement of CSCR lesion. On the one hand, the adjustment
and introduction of ILM initially realize the rapid locking of
key boundary points and efectively narrow the activity range of
agents, which helps to improve the location efciency of
SARLM. On the other hand, the unique exploration ability of
the agent enables it to independently learn task-oriented be-
havior strategies, so that SARLM can better adapt to the dif-
ferences of CSCR lesion areas in diferent scanning frames and
appropriately make up for the defect of low generalization of
ILM. Extensive experiments have been carried out carefully,
demonstrating the efectiveness and feasibility of the joint
framework in improving the location performance of ILM.Te
preliminary test on the diameter measurement of the CSCR
lesion further reveals the potential clinical application value of
the proposed joint framework, which also has a certain ref-
erence signifcance for the designation of the diameter mea-
surement scheme of lesions in other fundus diseases (diabetic
macular edema, macular hole, and retinal angiomatous pro-
liferation). Generally speaking, the method proposed in this
paper is a further innovation based on our previous work from
the perspective of the algorithm, and in the future, we will pay
attention to the inadequacy of this scheme and improve it.
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