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Automatic recognition and positioning of electronic components on PCBs can enhance quality inspection efficiency for electronic
products during manufacturing. Efficient PCB inspection requires identification and classification of PCB components as well as
defects for better quality assurance. The small size of the electronic component and PCB defect targets means that there are fewer
feature areas for the neural network to detect, and the complex grain backgrounds of both datasets can cause significant in-
terference, making the target detection task challenging. Meanwhile, the detection performance of deep learning models is
significantly impacted due to the lack of samples. In this paper, we propose conditional TransGAN (cTransGAN), a generative
model for data augmentation, which enhances the quantity and diversity of the original training set and further improves the
accuracy of PCB electronic component recognition. The design of cTransGAN brings together the merits of both conditional GAN
and TransGAN, allowing a trained model to generate high-quality synthetic images conditioned on the class embeddings. To
validate the proposed method, we conduct extensive experiments on two datasets, including a self-developed dataset for PCB
component detection and an existing dataset for PCB defect detection. Also, we have evaluated three existing object detection
algorithms, including Faster R-CNN ResNet101, YOLO V3 DarkNet-53, and SCNet ResNet101, and each is validated under four
experimental settings to form an ablation study. Results demonstrate that the proposed cTransGAN can effectively enhance the
quality and diversity of the training set, leading to superior performance on both tasks. We have open-sourced the project to
facilitate further studies.

1. Introduction

A printed circuit board (PCB) is the carrier of many
electronic components in electronic products. Electronic
components must be assembled according to categories
and in the right positions during the manufacturing of
electronic products. In practice, the recognition and
positioning of electronic components on PCBs has been
the key technology in the manufacturing and assembly of
electronic products. There have been mainly three types
of recognition methods for printed circuit board (PCB)
electronic components: traditional artificial visual de-
tection methods, machine vision-based detection
methods using image processing, and deep learning-

based detection methods. Some other novel detection
methods have also been developed, for example, auto-
mated x-ray detection and laser detection systems.
However, they all have the shortcomings of high cost and
failure rate, as well as slow detection. Traditional object
detection techniques basically consist of three steps: first,
identify the candidate region by using a sliding search
window with different scales, next, retrieve the visual
features of the candidate region, such as Haar features or
HOG features, and lastly, classify the regions. There are
inherent shortcomings in traditional object detection
methods: (1) using sliding windows for region identifi-
cation and selection has the problem of weak pertinence,
high time complexity, and lots of redundant windows;
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(2) manually designed features are subjective and rely on
an individual’s prior knowledge, and the process of
detection is cumbersome; (3) the methods are time-
consuming, which cannot meet the needs of real-time
detection.

In recent years, the automatic optical inspection
technology (AOI) [1] has been used to detect PCB defects
during its manufacturing. Compared with traditional
manual inspection, it has multiple advantages, such as
fast detection, low cost, and high accuracy. During the
past decade’s evolution of AOI technology, there are
mainly three categories of methods: reference compar-
ison, nonreference comparison, and mixing. The refer-
ence comparison method involves matching a given
image based on a given standard target sample image,
finding regions in the given image that have a high
correlation with the target sample image and then using
an algorithm to align the edge contours as closely as
possible to achieve the target frame. The main challenge
of this method is to align the reference image and the test
image precisely, which requires a complex configuration
process. Meanwhile, light and noise greatly impact the
detection process, which can easily cause false alarms [2].

PCB electronic component identification tasks
mainly aim to detect different types of capacitors,
optocouplers, and diodes. Traditional artificial visual
inspection methods and image processing-based ma-
chine vision detection methods have problems such as
low accuracy, poor generalization ability, poor robust-
ness, and lacking compatibility with multiple PCB
electronic components. Eventually, they cannot meet the
needs of manufacturing. Deep learning-based object
detection methods have become the mainstream in the
field. Deep learning methods demonstrate an advantage
in automatic feature extraction. Typical object detection
algorithms based on two-stage model of region detection
classification include R-CNN [3], SPP-Net [4], Fast
R-CNN [3], and Faster R-CNN [5]. Typical object de-
tection algorithms based on regression single-stage
models include SSD [6], RetinaNet [7], and YOLO [8].
The main challenges and difficulties of the identification
of printed circuit board (PCB) electronic components are
as follows: first, there are many types of PCBs and dif-
ferent design rules on the market; second, electronic
components on the PCB and its features are complex and
diverse; third, the PCB electronic component industry
lacks a large number of samples of different types,
resulting in data imbalance in traditional methods.
Therefore, it is practically significant to design a method
to expand the samples and increase the accuracy of the
DNN prediction model.

In this paper, we propose a deep-learning pipeline for
PCB electronic component inspection. The core technical
contribution is conditional TransGAN (cTransGAN) uti-
lized for data augmentation. The proposed cTransGAN, after
extensive training, can generate high-quality synthetic PCB
components and defect samples used to enhance the
quantity and diversity of the original training set, leading to
impressive performance gains in mean average precision
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(mAP). cTransGAN is featured with a TransGAN generator
and discriminator, both conditioned on the class embed-
dings, which are latent representations of the classes in the
dataset. These embeddings, served as inputs, can effectively
guide the generator to produce an image belonging to a
desired class; meanwhile, the discriminator is also guided to
better distinguish real and generated images given the de-
sired class.

To validate the proposed method, we conduct extensive
experiments on two datasets, including a self-developed
dataset for PCB component detection and an existing dataset
for PCB defect detection. Also, we have evaluated three
existing object detection algorithms, including Faster
R-CNN ResNet101, YOLO V3 DarkNet53, and SCNet
ResNet101, and each is validated under four experimental
settings to form an ablation study. Results demonstrate that
the proposed cTransGAN can effectively enhance the quality
and diversity of the training set, leading to superior per-
formance on both tasks. The code of this project is available
at https://github.com/long-deep/pcb-detect.

The rest of this paper is organized as follows. Section 2
reviews research work related to PCB object detection and
data augmentation. Section 3 explains our proposed model
and dataset. In Section 4, several comprehensive experi-
ments are conducted to evaluate the effectiveness of the
proposed model. Finally, in Section 5, we conclude the paper
and provide future work.

2. Related Work

2.1. Object Detection and PCB Electronic. In recent years,
computer vision has made significant progress in object
detection [9, 10], which has advanced the development of
autonomous vehicles [11], robotics [12], and many other
practical applications. The networks have achieved reliable
performance, with stable, easy-to-use, open-source imple-
mentations [13] published. These implementations are also
well documented, which is convenient for researchers to
fine-tune their pretrained models for specific tasks. How-
ever, almost all object detection networks need to be trained
on large-scale datasets to obtain good performance. Un-
fortunately, for the PCB component detection tasks, it is
expensive to build a large-scale dataset to fine-tune such
detection networks. In addition, due to intraclass variance,
there is inherent ambiguity in classifying components.
Therefore, we have studied methods that utilize the inherent
structure in the data (that is, within the PCB board), which
cannot be achieved by traditional detection methods.

As well known, there are different categories of elec-
tronic components with different shapes. CNN simulates the
brain’s visual cognition principles. Through dimensionality
reduction, CNN retains the characteristics of the object even
if the object reappears in a different scale, direction, and
position. Therefore, CNN can be applied for the detection of
electronic components. In [14], a novel graphical network
block is proposed to refine the component features on each
PCB. It can reach a 65.3% mAP of electronic component
detection on the testing PCBs [14]. In [8], an improved
YOLOV3 algorithm is proposed, adding an output layer that
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is sensitive to small objects. The paper also verifies the ef-
fectiveness of the algorithm in both real PCB pictures and
virtual PCB pictures, which include many PCB electronic
components. In [15], a fast object recognition method is
proposed, which combines YOLO-V3 and Mobilenet. They
use MobileNet to replace Darknet53, the original architec-
ture in YOLOV3, to achieve lightweight and fast speed.
However, a common issue in the above CNN-based elec-
tronic component detection methods is that the dataset is
limited, which cannot enable CNN to learn PCB electronic
components well, resulting in low accuracy of PCB com-
ponent recognition. In this research, we build our dataset,
including images of the same type of electronic components
in four ways (up, down, left, and right), which provides the
model with more accurate recognition data.

2.2. Data Augmentation Techniques. In industrial applica-
tions, the prediction accuracy of a deep learning model
mainly relies on the size and quality of the training samples.
The collection of samples for electronic component recog-
nition takes a long time and is even difficult to obtain. The
generative adversarial network (GAN) [16], as a generative
model, can generate new synthetic instances of data that
follow rather similar, if not exactly the same, distribution of
real samples through continuous confrontation between the
generator and the discriminator. At present, GAN has been
widely used in different areas including image generation,
style transfer, and many other fields [17-19]. Due to the
limited size of the training dataset and the ambiguity of
unknown electronic components, identification of unknown
electronic components is still a challenging task. Deep
learning-based image recognition usually requires lots of
sample images for training. Data augmentation techniques
should be adopted when there are limited images available
for training. Based on this consideration, Abayomi-Alli et al.
proposed an image augmentation technology [20] based on
the random permutation of coefficients of within-class
principal components obtained after applying principal
component analysis (PCA). After reconstruction, the newly
generated replacement image is used to train the deep
network. Experimental results show that the method can
improve classification accuracy and classification ambiguity
in applications [20]. In the case of a small dataset, data
augmentation has always been an effective method to reduce
overfitting. Even though there are already a variety of
augmentation techniques, such as horizontal flip, random
crop, and Mixup, they are not suitable for object detection
tasks because of the lack of labeled bounding boxes infor-
mation for corresponding generated images. To address this
issue, in [21], an unsupervised data augmentation frame-
work using GAN is proposed. The authors proposed a two-
step pipeline based on YOLOv4, which enables the gener-
ation of an image with the object lying in a certain position.

Recent advances attempt to explore the potential of
generative models for image augmentation to address the
issue of low training resources that has been a long-lasting
challenge to train a deep learning model with satisfying
generalization ability [22]. Compared to traditional

augmentation methods, mostly based on image processing
techniques, generative models such as GANs can capture the
semantic features of images used for training and generate
similar but different images to enhance the quantity and
diversity of training data. Such capability of GANs has
driven its usage in image augmentation for various com-
puter vision tasks, including classification [23, 24], object
detection [25, 26], and semantic/image segmentation
[27-30]. These prior studies have validated the effectiveness
of GANs as an image augmentation technique. The way to
use a GAN-based augmentation model in the proposed
method is similar to the ones in the literature. In other
words, a collection of training data in the original dataset are
utilized to train a GAN; then, the generator of the GAN can
generate synthetic images that can be selectively added to the
augmented dataset. The key difference between our work
and the prior efforts is the proposed cTransGAN model,
which inherits the merits of two powerful models, namely,
c¢GAN [31] and TransGAN [32]. Experimental results on two
datasets can demonstrate the superiority of the proposed
method, compared to other GAN-based competitors in the
area of image augmentation.

3. Materials and Methods

3.1. Dataset. We chose two datasets to validate the proposed
method. The first one is a self-developed dataset for PCB
component detection, and the second one is an existing
dataset for PCB defect detection. We aim to verify that the
proposed method can achieve superior performance on both
tasks.

3.1.1. Self-Developed Dataset

(1) Dataset Basics. Our dataset includes 2544 image samples
that are divided into 3 categories: capacitors, diodes, and
optocouplers. There are 1349 images of optocouplers, in-
cluding 504 images for large optocouplers IC 1, 372 images
for medium optocouplers IC100, and 473 images for small
optocouplers. There are 799 images of capacitors, including
400 images for large capacitors and 399 images for small
capacitors. There are 396 images of diodes. The basic in-
formation of the PCB dataset is illustrated in Table 1. The
column “Original Dataset” explains the number of sample
images for each category of electronic components. The next
column “Portion in Original Dataset” explains the pro-
portion of samples of each category in the original dataset.
The next three columns provide the number of image
samples of each category in the training set, the test set, and
the generated dataset.

(2) Dataset Acquisition. Our PCB images are acquired using
a BASLER camera, a2A5320-7gcBAS; an OPT lens, C1616-
10M; and the light source by Haoli, HLFL478408K-K50. The
height of both the lens and camera is 460 mm.

(3) Dataset Preprocessing. To alleviate complex calculation
during training, we use the color image resolution fixed
filling algorithm to process the images. The specific steps are
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TaBLE 1: PCB dataset.
Original dataset Percentage (%) Training set Test set Generated images
Optocoupler 1349 50.03 944 405 1200
Diode 396 15.57 277 119 400
Capacitor 799 31.41 559 240 800
Total 2544 100.00 1780 164 1200

as follows: the X and Y values (i.e., width and height) of the
original image are obtained and compared with a predefined
value (here 418); the image is then adjusted based on the
comparison, where there are four cases to consider:

(1) If X>418 and Y<=418, we use the NI visual
function, IMAQ Resample, to change the X value of
the image size to 418, and Y is fixed; then, we use the
difference between Y and 418 and extend Y by
((418 —Y)/2) on both up and down directions and
fill the pixels with zero.

(2) If X<=418 and Y <=418, the same operations are
performed on Y as in A; that is, we extend Y by
((418 —Y)/2) on both up and down directions and
fill the pixels with 0. Then, the same operations are
performed on X; that is, we extend X by ((418 —
X)/2) on both left and right directions and fill the
pixels with zero.

(3) If X > 418 and Y > 418, the same NI visual function is
used to change the Y value of the image to 418, and X
is fixed; then, we use IMAQ resample to change the X
value of the image size to 418, and Y is fixed.

(4) If X<=418 and Y > 418, the NI’s visual function is
performed to change the Y value of the image to 418,
and X is fixed; then, we extend X by ((418 — X)/2) on
both left and right directions and fill the pixels with
zero.

The four cases are illustrated in Figure 1. Also, Figure 2
shows three samples, representing the three classes con-
sidered in this dataset.

3.1.2. The DeepPCB Dataset. DeepPCB [33] is a dataset that
contains 1,500 imagepairs, each of which includes a defect-
free template image and an aligned testing image with an-
notations that include the positions of the six most common
PCB defects: open, short, mousebite, spur, pin hole, and
spurious copper.

All of the images in this dataset were captured using a
linear scan CCD with a resolution of around 48 pixels per
1 millimetre. The defect-free template images are created by
manually inspecting and cleaning sampled images in the
manner described previously. The original size of the
template and the image that was tested is approximately
16 k x 16 k pixels. Once this is done, the images are chopped
into many smaller subimages of the same size as their parent
image and aligned using template-matching techniques.
Following that, a carefully chosen threshold is used to utilize
binarization in order to avoid illumination disturbance.
Although preprocessing algorithms can differ depending on
the specific PCB defect detection algorithms used, the image

registration and thresholding techniques used for high-ac-
curacy PCB defect localization and classification are a
common procedure used for PCB defect localization and
classification.

Due to the fact that the real tested image has just a few
defects, the authors augment the image by manually adding
defects to each tested image in accordance with the PCB
defect patterns, resulting in around 3 to 12 defects in each
640 x 640 image. After the annotation, the dataset is split
into a training set with 1000 images and a test set with 500
images. Figure 3 shows the number of the six defect classes
for both training and test sets in DeepPCB. It is noted that
the classes are relatively balanced in terms of quantity. We
generated a total of 800 synthetic images with 600 instances
for each defect class spread across the generated samples.
Figure 4 shows several annotated samples in DeepPCB.

3.2. System Overview. As shown in Figure 5, there are two
stages in the workflow: data augmentation using TransGAN
[32] and electronic component recognition using Faster
R-CNN, YOLOvV3, and SCNet [34]. TransGAN is an un-
supervised deep learning method. Its generator is designed
to be memory-friendly and consists of multiple stages, and
each stage is formed by stacking several transformer en-
coders. In this paper, we use synthetic images generated by
TransGAN and the annotations of the source images to
augment the training dataset for Faster R-CNN, YOLOv3,
and SCNet detectors.

3.3. Conditional TransGAN-Based Data Augmentation. In
this subsection, we first provide a brief introduction of GAN,
c¢GAN, and TransGAN, followed by a detailed description of
the proposed cTransGAN.

3.3.1. GANs. The vanilla GAN consists of two neural net-
works: a generator and a discriminator. The generator takes a
random vector as input and attempts to create a synthetic
data point that resembles a true sample from the original
dataset. The discriminator, on the other hand, is trained with
both real and fake samples and predicts whether a particular
sample is real or not. To optimize the parameters, the
prediction result is back-propagated via both networks.
c¢GAN improves on the vanilla GAN by conditioning the
model on auxiliary information (e.g., class labels or y) to
direct data production, allowing for more control over data
modalities. Conditioning can be done by combining the
generator and discriminator with a layer to generate a
combined representation of x and y. The generator learns
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FiGure 1: Illustration of color image resolution fixed filling algorithm for four cases (a-d).
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FIGURe 2: PCB samples. The red boxes marked in each image are for a different task and not used in this task. The blue boxes are the

bounding box annotations used in this study. (a) Capacitor. (b) Diode. (c) Optocoupler.
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FIGURE 3: Number of defect classes in DeepPCB.
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more semantic properties of a sample provided y after
injecting y.

TransGAN [32] is an unsupervised deep learning
method and uses a pure transformer with no convolution.
Multiple transformer encoder blocks are utilized as building
blocks for the discriminator and generator in TransGAN. A
transformer encoder [35] is composed of a multihead self-
attention component to obtain the long-term dependence
between words in the sentence and the contextual semantic
information. Even though the transformer was originally
designed for natural language processing systems, it has been
adopted in computer vision [36] areas. To mimic the se-
quential input required by the original transformer, the
vision transformer (ViT) divides an input image into a
collection of patches, which is the basis of TransGAN. Also,
to reduce the memory cost caused by the numerous image
patches, TransGAN develops a multistage memory opti-
mization strategy to gradually increase/decrease the image
resolution. Furthermore, TransGAN integrates a grid self-
attention module, which converts an entire feature map to a
grid of nonoverlapping feature patches. Next, it uses the
local attention to replace the global attention in the grid,
which greatly reduces the amount of calculation.

3.3.2. cTransGAN. Figure 6 shows the architecture of
cTransGAN, which can be divided into three parts. First, we
change the detection head of the TransGAN discriminator to
output a tensor of size N, where N is the number of classes in
the dataset. This way, the discriminator is treated as a
classifier and trained using the original training set. The
trained model is then used to produce an embedding for
each class of samples. Specifically, the original training set is

divided into multiple sets by class. We feed samples in class i
into the trained model sequentially and extract the feature
map from the last layer before the detection head and use it
as the embedding, denoted by e;, to represent the class i
samples. One major difference between the proposed
method and cGAN is that we adopt the class embedding,
rather than the label y, as an additional input of the GAN.
The idea is inspired by the way how Word2Vec generates
word embeddings. The strategy has been empirically ef-
fectively during training. After the embeddings are pro-
duced, they serve as inputs to guide the training of
cTransGAN. As shown in Figure 6(c), the embedding for
class i images, e;, is concatenated with a linearized real image
of class 7, and the result of concatenation is fed into the
original TransGAN discriminator. Similarly, the concate-
nation of e; and the noise vector z are fed into the original
TransGAN generator, which aims to output a generated
image of class i. Both the output representations of the
cTransGAN discriminator and generator stay unchanged.
Also, the internal neural structure and the optimization
scheme remain unchanged.

Conditioned on the class embedding e;, the trained
cTransGAN can generate high-quality synthetic images
belonging to class i. The model can be trained end-to-end
and speed up the process of data augmentation.

3.3.3. Data Augmentation via GAN. A trained cTransGAN
can be used to produce high-quality synthetic samples that
look similar to the real samples. For the object detection task,
the process involves the following steps. First, the marked
bounding boxes in an annotated sample are warped, rescaled
into the same size, and saved as images. This way, a collection
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of labeled images can be gathered to train a cTransGAN.
After that, the trained cTransGAN generator can produce
synthetic defect images that can be plugged back into the
original sample image where the bounding boxes were
warped from. Therefore, an augmented sample with syn-
thetic defect annotations can be produced. For the task
considered in DeepPCB, images belonging to the same class
present clear patterns, which can be effectively captured by
the cTransGAN.

3.4. Models. This subsection covers the models evaluated in
this study for object detection.

3.4.1. YOLOv3. YOLO (you only look once) is a fast object
detection algorithm. As a good option for real-time detection
without sacrificing too much accuracy, it can provide fast de-
tection even though it is no longer the most accurate algorithm.
It identifies a specific object in videos, images, or live feeds.
YOLOV3 (YOLO version 3) [20] published in 2018, is the third
improved version of YOLO, which is also the model we choose
to use in this research. It uses Darknet-53 [9] instead of Darknet-
19 [10] as its backbone network for feature extraction, inspired
by SSD and ResNet [8]. The framework of Darknet-53 is shown
in Figure 7. It is mainly composed of convolutional and residual
structures. As illustrated in Figure 6, neither pooling layer nor
fully connected layer is found in Darknet-53. Specifically, the last
three layers: avgpool, connected, and softmax layer are used for
classification training on the ImageNet dataset. The main
components of Darknet-53 are 3x 3 and 1 x 1 filters. It has 53
convolutional layers, more powerful and more efficient than the
previous 19. There are residual connections, just as in ResNet. In
forwarding propagation, changing the step size of the convo-
lution kernel will change the size of the tensor. For example,
Stride = 2 is corresponding to changing the length of the image

to be half of it. YOLOV3 splits the image into seconds x small
cells. Each grid unit predicts three components: (1) the coor-
dinates of the B bounding box (x, y, w, h), (2) the confidence
score P (object), and (3) C conditional class probability, which is
conditional based on the presence of an object in the grid cell.
YOLOV3 makes predictions over three different scales and uses
nine anchor boxes, three for each scale. There could be a loss of
precision in small structures because of low-resolution 3D
methods. In this research, YOLOV3 is trained with 450 epochs
and with a decreasing learning rate.

3.4.2. SCNet. SCNet can establish a convolutional neural
network structure of semantic correspondence between images
of different instances of the same object or scene category. It is
used to learn geometrically plausible models for semantic
correspondence. In SCNet, regional proposals are used as
matching primitives, and geometric consistency is explicitly
added to its loss function. Image pairs obtained from the
PASCAL VOC 2007 keypoint dataset are used to train SCNet. In
this research, we use ResNet101 [37] as the backbone of SCNet
for training. ResNet101 [37] is residual network with 101 layers.
Each layer is composed of an identity block and convolution
block. Also, the skip connections in ResNet allow alternate
shortcut for the gradient to flow through. It also allows the
model to learn identity functions which make sure the higher
layer will perform as good as or better than the lower layer, but
not worse.

3.4.3. Faster R-CNN. R-CNN is the pioneering work of two-
stage algorithms for object detection. There are mainly three
modules in R-CNN: region proposal, vector transformation,
and classification. SSP-net [38] improves R-CNN in multiple
areas including detection performance. Fast R-CNN [39] is a
combination of R-CNN and SSP-net. Compared with
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[ Type Filters Size Output
Conv 32 3x3 256 x 256
Conv 64 3x3/2 128 x 128
Conv 32 1x1
1x| Conv 64 3x3
Res 128 x 128
Conv 128 3x3/2 64 x 64
Conv 64 1x1
2x|Conv 128 3x3
Res 64 x 64
Darknet-53 — Conv 256 3x3/2 32x32
Conv 128 1x1 —
8x|Conv 256 3x3 Feature Vector 52x52 |
Res 32 %32
Conv 512 3x3/2 16 x 16
Conv 256 1x1
8x|Conv 512 3x3 Feature Vector 26x26 | —— Input
Res 16 x 16
Conv 1024 3x3/2 8x8
Conv 512 1x1
4x|Conv 1024 3x3 Feature Vector 13x13 |
L Res 8x8 JE—

FiGure 7: The neural architecture of Darknet-53.

various CNN technologies, the main advantage of Fast
R-CNN is that it uses selective search to generate region
proposals, which greatly saves time and improves the ac-
curacy of object detection. Faster R-CNN uses the regional
proposal network (RPN) to replace the selective search
module in Fast R-CNN, which further improves the time
efficiency and accuracy of object detection.

The regional proposal network (RPN) uses a fully con-
volutional network to generate rectangular object proposals
from the dataset images. It uses the input image to create anchor
points or region boxes and predicts whether an anchor is in the
background or the foreground. It then selects the area frame
with the most region proposals as the optimal proposal. It
improves the efficiency of regional proposals and accurately
detects objects. The task is to mark the anchor with the highest
overlap with the ground truth box as the foreground and the
anchor with the lowest overlap as the history. Therefore, each
anchor is considered to be a foreground or background with a
predicted label. After RPN, a region proposal can be obtained
with feature maps of various sizes. However, it is difficult to
process feature maps of different sizes.

Faster R-CNN uses a region proposal network faster
than R-CNN. In R-CNN, pixel-level region proposals are
used as input while in Faster R-CNN, feature map-level
region proposals are taken as input. As explained in [37],
using the combination of Faster R-CNN and ResNet101 can
improve the performance of the network. The framework of
Faster R-CNN is illustrated in Figure 8.

4. Experiments and Results

4.1. Experiment Settings. We conduct experiments on a
computer with Windows 10, which is equipped with 16 GB
RAM and Intel Core i7-8700 CPU. The TensorFlow
framework and Nvidia GeForce RTX 2070 GPU are used to
train the DCNN model. The program uses Python 3.6.7.

4.2. Model Training. To train TransGAN, we use the Adam
optimizer, a batch size of 64 for both the discriminator and
the generator, and a learning rate of 0.0001. The cTransGAN
model has been trained for 240 epochs. We train Faster
R-CNN ResNet101, YOLO V3 DarkNet-53, and SCNet
ResNet101 models on the original training set and the
augmented training set. The three deep learning models
combined before or after using data augmentation, and there
are 12 models in total for comparative study, as shown in
Table 2 in Subsection 4.4. An image is taken as the input for
each training model that can detect the bounding boxes of
the detected PCB objects within the image. Each bounding
box consists of the predicted category and confidence. The
chosen hyperparameters include a momentum of 0.7, a
verification period of 4000, a learning rate of 0.004, a weight
decay of 0.0004, a batch size of 32. The training was con-
ducted for 2000 epochs.

4.3. Evaluation Metrics. The mean average precision
(mAP) is the primary performance metric, which is also a
commonly used performance indicator in object detec-
tion. In addition, we consider four classification metrics,
including accuracy (Acc), recall (Rec), specificity (Spe),
and Fl-score (F1). The mAP is calculated based on In-
tersection overUnion (IoU). IoU is a metric to evaluate
how similar our predicted bounding box is to the ground
truth bounding box. It is the ratio of the intersection area
and the combined area between the prediction and the
ground truth bounding box. Normally, if IoU > 0.5, it is a
true positive (TP); otherwise, it is a false positive (FP).
Furthermore, if (1) no detection at all or (2) detection of
IoU > 0.5 but the object being misclassified, it is a false
negative (FN). Precision (Pre) is the ratio of true positives
(TP) to the total number of predicted positives. Recall
(Rec) is the ratio of TP to the total number of ground truth
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TaBLE 2: Experimental results (mAP in percentage) on the self-developed dataset. The highest scores for each column are marked in bold.

Models Settings Capacitor Diode Optocoupler mAP
w/o augmentation 90.1 91.8 92.6 91.5

W/IP aug 90.4 92.5 93.3 92.1

Faster R-CNN ResNet101 w/TransGAN 90.7 93.2 93.0 92.3
w/cGAN 91.2 92.9 93.1 92.4

w/cTransGAN 93.0 93.9 93.5 93.4

w/o augmentation 92.6 93.1 94.2 93.3

w/IP aug 93.3 93.1 94.8 93.7

YOLOV3 DarkNet w/TransGAN 93.1 93.2 95.6 94.0
w/CGAN 94.0 94.5 95.2 94.6

w/cTransGAN 94.9 95.1 95.8 95.3

w/o augmentation 93.8 94.1 94.5 94.1

w/IP aug 94.5 94.7 96.3 95.2

SCNet ResNet101 w/TransGAN 94.7 95.3 95.9 95.3
w/cGAN 94.1 95.4 96.7 95.4

w/cTransGAN 95.2 95.5 97.9 96.2

Table 2 gives the metrics for the best models trained by the Faster R-CNN ResNet101, YOLOV3 DarkNet, and SCNet ResNet101 models using different
enhancements on the two dataset tasks, respectively, where the metrics include the AP value and the mean AP value (mAP) for each subtarget. The range of
AP values is from 0% to 100%, with higher values demonstrating better detection of the target. As can be seen in Tables 2, the detection results using

cTransGAN are almost always optimal.

positives. The interpolation precision is calculated at each
recall level by taking the maximum precision of that level.
Then, we calculate the average precision (AP) by taking
the precision and checking the area under the curve. The
mAP is the mean value of AP calculated for all categories
of all images in the test set. Generally speaking, the higher
the mAP value, the better the model. The definitions of
these four indicators are as follows:

TP + TN

Acc = >
TP + TN + FP + FN

TN

Spe=———
Pe = TN+ FB

>

(1)
TP

Rec=——
CTTPTEN

3 Pre x Rec
" Pre + Rec’

4.4. Comparative Results. We evaluated three object de-
tection models, including Faster R-CNN ResNetl0l,
YOLOvV3 DarkNet, and SCNet ResNet101, on both datasets.
Each model was validated with four settings, including
without augmentation, with image processing-based aug-
mentation (referred to as IPAug), with TransGAN, with
c¢GAN, and with cTransGAN. For IPAug, we defined a set of
transformation algorithms including blur, flip, center crop,
CLAHE, color jitter, rotate, and transpose. For each image to
be augmented, we randomly selected three transformation
algorithms applied to the image to generate an augmented
image. Therefore, these experiments also serve as an ablation
study. We provide the result interpretation, insights, and
analysis as follows.

(1) Results on the Self-Developed Dataset. Table 2 shows the
results of the three models under four experimental settings
in mAP. We have listed mAP for each object class as well as
the overall mAP, i.e., the last column. The highest score for
each column is marked in bold. We have the following
findings.
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TABLE 3: Experimental results (mAP) on the DeepPCB dataset.
Models Settings Open Short Mousebite Spur Copper Pin-hole mAP
w/o augmentation 94.8 95.7 98.5 98.8 98.9 99.5 97.7
W/IPAug 95.6 96.3 98.2 98.7 98.8 99.4 97.8
Faster R-CNN ResNet101 w/TransGAN 95.4 96.1 97.9 98.4 99.1 99.6 97.8
w/CGAN 96.2 97.6 98.2 98.3 98.9 99.5 98.1
w/cTransGAN 98.1 98.3 99.2 98.9 99.1 99.2 98.8
w/o augmentation 91.2 92.4 94.8 92.3 96.4 93.2 93.4
W/IPAug 92.4 93.2 94.6 92.5 96.8 93.7 93.9
YOLOV3 DarkNet w/TransGAN 92.8 93.6 94.9 92.4 97.1 94.5 94.2
w/cGAN 93.5 93.5 94.7 92.6 97.8 94.1 94.4
w/cTransGAN 95.2 95.6 96.1 94.3 98.1 97.2 96.1
w/o augmentation 93.6 93.8 96.2 96.9 97.5 99.2 96.2
W/IPAug 94.5 95.2 98.1 97.3 97.9 99.1 97.1
SCNet ResNet101 w/TransGAN 94.7 95.9 97.6 96.9 97.9 99.2 97.0
w/CGAN 95.1 96.4 98.4 97.2 97.8 99.3 97.4
w/cTransGAN 97.5 96.9 98.9 98.1 98.4 99.3 98.2
SOTA [33] w/max pooling 98.5 98.5 99.1 98.2 98.5 99.4 98.7

Table 3 gives the metrics for the best models trained by the Faster R-CNN ResNet101, YOLOV3 DarkNet, and SCNet ResNet101 models using different
enhancements on the two dataset tasks, respectively, where the metrics include the AP value and the mean AP value (mAP) for each subtarget. The range of
AP values is from 0% to 100%, with higher values demonstrating better detection of the target. As can be seen in Tables 3, the detection results using

cTransGAN are almost always optimal.

(i) IPAug was slightly worse than the GAN-based
augmentation methods for all three models. How-
ever, the difference between IPAug and TransGAN
was minor, with a gap less than 1%.

(ii) The adopted four settings for each model form an
ablation study that evaluates the effect of each added
module. Since ¢TransGAN can be regarded a combi-
nation of cGAN and TransGAN, it is expected to in-
herit the merits of both GANSs. Our results can confirm
this hypothesis. It is observed that if the training set is
augmented by either TransGAN or cGAN, the mAP
improves by 0.7%-1.3% across all three models,
compared to base setting where augmentation is not
applied. Moreover, when augmented by cTransGAN,
the overall mAPs have been further lifted by 0.7%-
1.0%. The mAP gains for each individual class have also
been consistent for all models.

(iii) The best performing model out of the three was
SCNet RestNet101 augmented by cTransGAN with
an mAP of 96.2%, outperforming Faster R-CNN
ResNet101 and YOLOv3 DarkNet by 2.8% and
1.6%, respectively.

(iv) These results demonstrate the effectiveness of
cTransGAN in generating high-quality synthetic
images to enhance the diversity and quantity of the
dataset used for training.

(2) Results on the DeepPCB Dataset. The authors of [33] have
provided a strong baseline model, which is a custom deep neural
network that utilizes a group pyramid pooling (GPP) technique
to obtain features of different resolutions from a pyramid
pooling structure. The pooling operation can be either average or
max pooling. Their results showed that GPP with max pooling
presented the best score. Thus, we consider GPP with max

pooling as the SOTA on this dataset. The results are shown in
Table 3, where the first three sections cover the results of the
three models used in this study, and the last section shows the
SOTA. Similar to the self-developed dataset, each model has
been validated with four settings. We provide the observations as
follows.

(i) Similar observations were found for IPAug, which
presented comparable scores with TransGAN but
was worse than cGAN and cTransGAN. Our ex-
periments can validate that GAN-based augmen-
tation methods are generally superior to IPAug.

(ii) Despite the differences in task characteristics and
object patterns between the two datasets, the GAN-
based data augmentation strategy has consistently
improved the mAP for both tasks. In the DeepPCB
dataset, the gains brought by cGAN and TransGAN
are in the range of 0.1% and 1.2%. The low end, i.e., a
gain of 0.1% is observed for the Faster R-CNN
ResNet101 model with TransGAN. Given that the
mAP for the base setting of Faster R-CNN
ResNet101 has been relatively high (97.7%), the
effect of TransGAN became limited. However, the
gains brought by the proposed cTransGAN have
been impressive, in the range of 1.1% (for Faster
R-CNN ResNetl01) and 2.7% (for YOLOV3
DarkNet).

(iii) Our best model, Faster R-CNN ResNet101 with
cTransGAN has an mAP of 98.8%, posting an 0.1%
gain compared to the SOTA. Despite the minor
gain, the results show that a comparable perfor-
mance can be obtained via cTransGAN-based data
augmentation applied to an existing model. The
point we made is that the efforts on data, rather than
model, are as effective.
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5. Conclusion

PCB is prone to open circuit, short circuit, or magnetic leakage
during manufacturing. In order to automate the identification of
PCB electronic components, we have established an image
dataset that includes three categories of PCB components,
namely optocouplers, capacitors, and diodes. In addition, we
propose cTransGAN to generate synthetic samples, which ef-
fectively enhance the scale and diversity of the original training
set. Three deep learning models, including Faster R-CNN
ResNet101, YOLO V3 DarkNet-53, and SCNet ResNet101, are
trained and evaluated on the datasets. We also design plenty of
comparative experiments to verify the effectiveness of object
detection. The results have demonstrated that the augmentation
method based on cTransGAN makes the image samples more
diversified, so that the models can capture better semantic
features, thereby obtaining significant performance improve-
ment. Based on the experimental results, with data augmen-
tation using cTransGAN, SCNet ResNet101 achieves the best
detection accuracy. In addition to the self-developed dataset, we
also evaluated cTransGAN on DeepPCB, a dataset for PCB
defect detection, and similar observations can be found as well.
In summary, the superiority of cTransGAN has been validated
on two datasets to handle two different PCB object detection
tasks.

Meanwhile, there are some limitations in this study,
which will be addressed in future work. First, classic image
processing-based augmentation can be used together with
cTransGAN-based data augmentation to quickly obtain
larger number and greater diversity of datasets. It will be
interesting to explore the individual and combined effects of
these two types of augmentation, and how they complement
each other to maximize the benefits of augmentation. Sec-
ond, this paper only studies cTransGAN architecture, be-
cause its performance in generating high-quality synthetic
images has been verified. As a future work, many GAN
options can be studied. Third, the samples generated by the
GAN-based augmentation need to be manually selected and
labeled before they can be used for training, which is very
time-consuming. It is worthwhile to develop additional
supporting algorithms to facilitate the application of the
generated samples.
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