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Tis article proposes a cuckoo algorithm (GFCS) based on the global feedback strategy and innovatively introduces a “re-fy”
mechanism. In GFCS, the process of the algorithm is adjusted and controlled by a dynamic global variable, and the dynamic global
parameter also serves as an indicator of whether the algorithm has fallen into a local optimum. According to the change of the
global optimum value of the algorithm in each round, the dynamic global variable value is adjusted to optimize the algorithm. In
addition, we set new formulas for the other main parameters, which are also adjusted by the dynamic global variable as the
algorithm progresses. When the algorithm converges prematurely and falls into a local optimum, the current optimum is retained,
and the algorithm is initialized and re-executed to fnd a better value. We defne the previous process as “re-fy.” To verify the
efectiveness of GFCS, we conducted extensive experiments on the CEC2013 test suite. Te experimental results show that the
GFCS algorithm has better performance compared to other algorithms when considering the quality of the obtained solution.

1. Introduction

Swarm intelligence algorithm is an algorithm designed to
simulate the behavior of natural biological groups, which
have been extensively applied for solving complex and
highly nonlinear optimization problems. As an emerging
optimization algorithm, swarm intelligence algorithm has
become one of the focuses of increasingly researchers. Re-
searchers have proposed a variety of algorithms, such as ant
colony algorithm (ACO) [1], diferential evolution (DE) [2],
particle swarm optimization algorithm [3] (PSO), artifcial
bee colony algorithm [4] (ABC), frefy algorithm [5] (FA),
and cuckoo search algorithm [6] (CS). At present, these
algorithms have been applied to a variety of engineering
optimization problems and have a potential research value.
Hence, it is still a promising domain to develop more ef-
fective swarm intelligence algorithms.

Te CS algorithm, inspired by the parasitic brooding
behavior of cuckoos, was proposed by Yang and Deb et al. in
2009. Tis parasitic behavior has become a breeding strategy
for cuckoos, and inmost cases, they lay their eggs in the nests
of other bird species. Terefore, the host bird may discover

that the egg is not its own, at which point it either throws
away the foreign egg or abandons the nest and builds a new
one. In addition, the CS algorithm employs methods such as
greedy selection, random walk, and Lévy fight [7] to solve
the global optimal solution. Compared with the uniform
distribution and Gaussian distribution algorithm, the long-
hop mode algorithm provided by the Lévy fight can search
the solution domain better. Te combination of Lévy fight
advantage and local search ability makes the CS algorithm
one of the most efective optimization algorithms. Com-
pared with other swarm intelligence algorithms, CS has the
advantages of fewer parameters, simple operation, and
strong optimization ability, and it is more efective in solving
optimization problems. However, on the contrary, there are
also the defects of unbalanced exploration ability andmining
ability, and it is easy to fall into the local optimal solution.

Since similar search strategies, Lévy fight and random
walk strategies, are adopted in most CSs, the search be-
haviors of cuckoos are similar, which can easily lead the
algorithm to fall into a local optimum and enter premature
convergence. Sometimes, the algorithm converges to a local
optimum at a very early stage, but the whole algorithm ends
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without obtaining a better ftness value. Under these cir-
cumstances, it not only is difcult to obtain a better value but
also wastes subsequent computing resources.

Based on this situation, a new type of cuckoo algorithm
(GFCS) is proposed. GFCS dynamically adjusts the pa-
rameters of the algorithm according to whether each round
of the algorithm iteration produces a better ftness value. In
the case where the ftness value remains unchanged for a
long time, the current optimal value is retained; then, the
algorithm will be reset, resulting in better algorithm per-
formance for the same computational generation. Briefy,
the core idea of this work is as follows:

Te GFCS algorithm is a CS algorithm which employs
random walk and Lévy fight to search for the global op-
timum. We have proposed three innovations based on the
original CS algorithm:

(i) We introduce the concept of global feedback to
adjust the dynamic global variables by the current
round of iterations and determine whether the al-
gorithm falls into a local optimum.

(ii) Te fxed parameter pattern of the original CS al-
gorithm is optimized. We set the parameter for-
mulas that vary with the number of iteration rounds
and is controlled by the dynamic global variables.

(iii) We introduced the “re-fy” mechanism. When the
algorithm falls into the local optimum, the algo-
rithm can save the current global optimum value
and the algorithm will be initialized and re-executed
to fnd a better value.

Te article is organized as follows. Section 2 reviews the
original CS and its technical details. In Section 3, the lit-
erature on CS and its application to optimization problems
are presented. Section 4 elaborates on the proposed algo-
rithm. A comparative analysis of numerical experiments
between GFCS and CS, multiple CS variants, and several
other state-of-the-art algorithms is presented in Section 5.
Finally, in Section 6, we summarize the proposed algorithm.

2. Basic Cuckoo Search Algorithm

Te cuckoo search algorithm (CS) is a swarm intelligence
algorithm inspired by the natural behavior of some cuckoo
species laying their eggs in other birds’ nests. Diferent from
other algorithms, the search process of CS is divided into two
stages: global search and local search, corresponding to
exploration and exploitation, respectively.Te global stage is
carried out by the Lévy fight, as the Lévy distribution has
infnite mean and variance, which helps to explore the so-
lution space efciently. Te local phase is executed by using
the biased random walk.

In the CS algorithm, the number of hosts available is
constant. In each iteration, each cuckoo lays only one egg
and then randomly places the egg into the host’s nest. Each
egg is used as a solution to the problem. Te host bird has a
probability of Pa (Pa ∈ [0, 1]) to fnd the cuckoo laying eggs
in its nest. When this happens, the laid eggs are thrown away
or the host bird simply abandons the nest to make a new one.

It is assumed that N is the number of cuckoos and D

represents the dimension of problem, the position of i th
cuckoo is denoted as Xi, and t represents the current it-
eration. Ten, the new position can be generated by the
following equations:

x
t+1
i � x

t
i + α⊕ Lévy(s, λ), (1)

where α is the step size, which should be related to the scale
of the problem, and the product ⊕ represents the multi-
plication of the corresponding position of the vector.
Terefore, the formula for the Lévy fight is as follows:

Lévy(s, λ) �
λΓ(λ) · sin (πλ/2)

π
1

s1+λ , (2)

where

α � α0 x
t
i − x

t
best , (3)

where xt
best represents the optimal solution of the tth gen-

eration, Lévy(s, λ) represents the feature scale, λ represents
the power coefcient (1< λ< 3), and Γ represents the
gamma function. In addition, α0 represents the scaling
factor, which controls the size of the step.

In formula (1) and formula (2), s represents the step size
of the Lévy fight, and it was designed by Mantegna’s al-
gorithm [8] as follows:

s �
μ

|]|
1/λ , (4)

where μ and ] are random numbers drawn from a normal
distribution:

μ ∼ N 0, σμ
2

 , ] ∼ N 0, σ]
2

 , (5)

where the value of σ] is usually set to 1, and the formula for
σμ is shown as follows:

σμ �
Γ(1 + λ) · sin (πλ/2)

Γ[(1 + λ)/2] · λ · 2(λ−1)/2 

1/λ

. (6)

Ten, the formula for the local random walk can be
expressed as

x
t+1
i �

x
t
i + r · x

t
j − x

t
k , rand>Pa,

x
t
i , otherwise.

⎧⎪⎨

⎪⎩
(7)

where r is a scaling factor uniformly distributed in the range
[0, 1] and xt

j and xt
k represent two diferent solutions

randomly selected in the population.
Based on the previous introduction, the original CS

algorithm framework is shown in Algorithm 1.

3. Related Works

Te main advantages of the CS algorithm are few param-
eters, simple operation, easy implementation, optimal
random search path, and strong search ability. At present,
scholars at home and abroad have also proposed many
improvement strategies for the cuckoo algorithm. Te main
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research directions in previous years include improving the
step size of the Lévy fight and the random walk algorithms,
or adjusting the parameter Pa by introducing a new Pa

formula, or setting a new step size adjustment formula to
adjust the performance of the algorithm.

Valian et al. proposed an improved cuckoo algorithm [9]
for reliability optimization problems. Te optimization of
the step size of the Lévy fight was introduced into the al-
gorithm, and the probability of cuckoo eggs being found Pa

was adjusted. With the change of the number of iterations,
the step size alpha and Pa were gradually reduced according
to a certain formula. Naik et al. proposed a new cuckoo
algorithm [10] that abandoned the Lévy fight by using a step
size based on the number of iterations, the contemporary
optimal nest, the contemporary worst nest, and the average
nest ftness value. Ong proposed an adaptive cuckoo algo-
rithm [11], which compared the current ftness value with
the average ftness value and used diferent step size algo-
rithms according to the comparison results to ensure that the
algorithm had a faster convergence speed in the early stage
and a large convergence accuracy in the later stage. Wang
et al. proposed a cuckoo algorithm with diferent scale
factors [12]. During the iteration process, random numbers
were introduced to make fuctuations at each step, which
improved the performance of the algorithm but reduced the
stability of the algorithm. Li and Yin proposed a modifed
cuckoo search algorithm with a self-adaptive parameter
method [13]. A linear change of parameters was achieved by
introducing the ratio of the current algebra to the total
algebra, and according to the success rate of the evolution of
the previous generation, diferent schemes of Pa were se-
lected. Huang et al. proposed a cuckoo search (CS) algorithm
using an elite opposition-based strategy [14], in which the
proposed algorithm generated the opposite solutions of elite
individuals in the population by an opposition-based
strategy. Te algorithm was guided to explore the optimal
solution by simultaneously evaluating the current pop-
ulation and the opposite population. Based on the elite

opposition-based strategy mentioned previously, Baset et al.
proposed a new cuckoo search algorithm [15] for solving
integer programming problems, which had faster conver-
gence and higher computational accuracy and was more
efective.

Some scholars adjusted or replaced the Lévy fight with
some new models, such as introducing other algorithms or
introducing Gaussian functions to speed up the optimiza-
tion. Kamoona et al. proposed an enhanced cuckoo algo-
rithm [16], which replaced the Lévy fight with the Gaussian
virus difusion idea, and innovatively introduced the search
formula of the artifcial bee colony algorithm. Zheng and
Zhou proposed a new cuckoo algorithm based on Gaussian
distribution optimization [17]. Te algorithm replaced the
Lévy fight with the Gaussian distribution to a certain extent,
and the algorithm had relatively good performance in local
optimization performance. He et al. proposed a Spark-based
Gaussian Bare-bones cuckoo Search with dynamic param-
eter selection [18]. For Pa values, a pool of candidate Pa

values in the range [0.01, 0.5] was introduced, and the value
for the step size was generated by a Gaussian distribution.

Inspired by the organizational evolutionary algorithm
for numerical optimization, Zheng and Zhou designed a
novel algorithm, the cooperative co-evolutionary cuckoo
search algorithm (CCCS) [19], which combined dynamic
populations and evolutionary operators for solving both
unconstrained, constrained optimization and engineering
problems. Cheng and Wang proposed a neighborhood-
attracting cuckoo algorithm [20], which introduced the
concept of neighborhood in the cuckoo algorithm, making
the ftness value of the bird’s nest closer to the best bird’s nest
in the area. At the same time, the diference between the
ftness value of the individual and the best individual was
analysed, and the step size of this iteration was determined
by the diference.

Some researchers tried to optimize the cuckoo algorithm
by mixing multiple algorithms, randomly or based on
certain feedback to select the most suitable algorithm for the

Input: population size N, the maximum number of iterations MaxIt, problem dimension D, and the probability of the bird’s nest
being found Pa.

(1) Randomly initialize the solution set with a population size of N : xt
i (i � 1, 2, · · · , N);

(2) Calculate the fitness of all solutionsft
i � f(xt

i ); Get the best solution xt
best and its ftness value fbest;

(3) for t� 1: MaxIt do
(4) for i� 1 : N do
(5) Generate a new solution xnew by the Lévy fight mode in equation (1);
(6) Calculate its ftness fnew � f(xnew);
(7) if fnew < ft

i then
(8) xt+1

i � xnew;
(9) ft+1

i � fnew;
(10) end if
(11) end for
(12) Trow away a small fraction (controlled by Pa) of the worst solutions and use equation (7) to generate a new solution;
(13) Update the global optimal solution;
(14) end for
(15) Output: Final optimized solution

ALGORITHM 1: Cuckoo search (CS) original algorithm.
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current generation, which diversifed the iteration selection
of the algorithm.Te disadvantage was that while promoting
the algorithm’s search ability, it also increased the instability
of the algorithm. Rakhshani and Rahati proposed a new
cuckoo algorithm based on Snap-Drift [21]. Te algorithm
divided the entire optimization process into two modes:
snap and drift, selecting the best search mode according to
the optimization efect of the current algebra. Peng et al.
proposed a multistrategy serial cuckoo algorithm [22],
which divided the execution process of the overall algorithm
into three stages, including jump learning, Gaussian walking
learning, and begging behavior. Diferent strategies were
formulated at each stage and achieved better results. In
addition, he also proposed another similar algorithm, the
multistrategy reconciliatory cuckoo search algorithm [23],
which updated individuals based on a harmonic strategy.
Te adaptive step size guided the cuckoo to seek optimi-
zation in a better direction, and three improved update
methods were explored analytically from three perspectives:
their own neighborhood, the current optimal individual, and
the random position. Gao et al. proposed a multistrategy
adaptive cuckoo algorithm [24], and the algorithm was
designed with fve diferent search ideas. According to the
performance of each iteration, a certain selection ratio was
set for these fve strategies, making the algorithm tend to be
diversifed.

In addition, the cuckoo algorithm also has some other
improvements. Zhang et al. proposed a dynamic adaptive
cuckoo search algorithm [25], which introduced feedback
into the algorithm framework and established a closed-loop
control system for CS algorithm parameters. Te im-
provement rate was maintained at 20 percent, and Pa and α
were dynamically adjusted. Walton et al. proposed an ad-
justed cuckoo algorithm [26] to classify bird nests. Te
excellent parts were set as the top nests; then, new nests were
constructed by the relationship between the top nests. Ex-
cellent nests were used to construct new nests, thus selecting
the best ones and improving the local exploration ability of
the algorithm, while the poor nests used a larger step size to
improve the global ability of the algorithm.

At the same time, the cuckoo algorithm and its improved
algorithm also have a very broad application, such as PID
controller design [27], grayscale image enhancement [28],
cryptanalysis of Vigenere ciphers [29], data privacy pro-
tection [30], image segmentation [31], spam detection [32],
the design of multidocument summarization extractor [33],
and robot path planning [34, 35].

4. Cuckoo AlgorithmBased on Global Feedback

Te cuckoo algorithm based on global feedback is described
in the following sections.

4.1. Motivation. In Lévy fights, it is difcult to balance the
large-scale global exploration in the early stages and the local
fne-grained search in the later stages with a fxed step size
and probability of nest discovery. To improve the dynamic
search characteristics of the CS algorithm, an adaptive

adjustment scheme of step size α and the probability of nest
discovery Pa are proposed to coordinate the overall search
performance of the algorithm according to the evolution of
the globally optimal individuals. Due to the guidance of the
optimal solution in the population, the CS algorithm is easy
to converge prematurely when solving some complex op-
timization problems and falls into the local optimal value
prematurely. Even at the end of the whole algorithm, the
algorithm fails to jump out of the local optimum. Given this
situation, we introduce additional dynamic parameters to
adjust the step size and Pa according to the change of the
best ftness value of the current generation. If it has been
determined that the algorithm is stuck in a local optimum
after many rounds, then we consider resetting the algorithm.

4.2. Step Size and Pa Adjustment. Te main parameters in
the CS algorithm are step size α and the probability of the
bird’s nest being found Pa. αmainly controls the step size
of the algorithm, and the value of Pa mainly controls the
diversity of the algorithm for each round of exploration. If
a smaller value of Pa is used, the global bird’s nest will
tend to be concentrated, and the local search ability of the
algorithm will be strengthened, but the diversity of the
algorithm gets worse. If the value of Pa is small but the
value of α is large, the performance of the algorithm will be
poor, resulting in a large increase in the number of it-
erations. If the value of Pa is large but the value of α is
small, the convergence rate is fast, but the optimal so-
lution may not be found. In the original CS algorithm,
both Pa and α use fxed values, which cannot be changed
during the algorithm iteration. It is difcult for the al-
gorithm to guarantee the speed of global exploration in
the early stage, and the lack of overall exploration ca-
pability may contribute to the inability of the algorithm to
explore the global optimum. And in the later stage, due to
the slightly larger step size, it is difcult for the algorithm
to perform a very fne search locally. To improve the
performance of the algorithm, an adaptive step size for-
mula is introduced as follows:

α(t) � m∗ αmax exp(c), (8)

where

c � ln
αmin

αmax
 ∗

t

MaxIt
, (9)

and the formula for Pa is as follows:

Pa(t) �
m∗ 2Pamax

(1 + exp (T∗ t/MaxIt))
, (10)

where t represents the current number of iterations, MaxIt
represents the total number of iterations, αmin and αmax
represent the preset minimum step size and the preset
maximum step size, respectively, Pamax represents the preset
maximum value of Pa, T represents a constant between 1
and 10, and m represents a dynamically adjusted global
parameter, which will be introduced in the following
sections.
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Equations (8) and (9) refer to parts of [9], on which we
change the values of the upper and lower bounds of their
defnitions and use dynamic global variables to adjust their
values again. So, we choose αmax � 0.5 andαmin � 0.005 .

For equation (10), inspired by the sigmoid function [36]
in deep learning, we hope the value of parameter Pa to
smoothly over from a larger value in the early stage to a
smaller value in the later stage like the inverted sigmoid
function during the whole algorithm, so equation (10) is
designed. In order to prevent the curve from changing too
drastically or slowly, an adjustable variable T is added on top
of it to control the whole change process.

To ensure that Pa(t) can obtain a large value when t is
small at the beginning of the algorithm, we choose Pamax �

0.5. To ensure that the curve of Pa(t) changes quickly but not
too steeply, we did experiments on the value of T. Te
experimental results show that the overall efect is best when
T is taken as 6, so we choose T � 6 .

4.3. Global Feedback and Re-Fly. Te previous formulas of
Pa and α ensure that Pa and α can be quickly changed from
larger values in the previous stage to relatively small values as
the algorithm progresses. Tis process is essentially irre-
versible, and the algorithm is likely to fall into a local op-
timum, thus afecting the subsequent global exploration. For
this, we introduce a dynamic adjustment parameter m and
set the initial value of m to 1. As the algorithm runs, the
formula for m is as follows:

m �
1, f

new
best <fbest,

m + 0.001, otherwise.
 (11)

If the optimal ftness value does not change after this
round of iteration, we will increase the value of m. Due to the
infuence of m, the step size α and Pa of the algorithm are
enlarged, and the global exploration ability of the algorithm
is improved. If the optimal ftness value of the algorithm
changes after a certain round of iteration, we consider that
the algorithm has found a better solution and reset m to 1 at
this point. If the algorithm falls into a local optimal value
(nonglobal optimal value), as m continues to increase, it still
does not obtain a better optimal ftness value. When m> 2,
we will make a judgment at this time.

If t<MaxIt/2, we will keep the current best ftness value,
reset all nests, set m to 1, and re-execute the algorithm. Tis
stage is called “re-fy.” Otherwise, we will continue to execute
the algorithm and expand m, making the step size gradually
expand until a better ftness value appears.

In the traditional CS algorithm and some improved
versions of the CS algorithm, the algorithm may converge
prematurely at the beginning of the algorithm and fall into a
local optimum, and at the end of the entire algorithm, the
algorithm does not obtain a better value. Terefore, the “re-
fy” method is introduced in GFCS. If the best ftness value
does not change after 1000 iterations and the current
number of rounds does not reach half of the total number of
rounds, the subsequent computing power is reserved to
obtain better results.

In terms of the previous descriptions, the imple-
mentation of GFCS is shown in Algorithm 2.

To show the algorithm process more visually, the
fowchart of the algorithm is shown in Figure 1.

4.4. AlgorithmComplexityAnalysis. To demonstrate that the
GFCS algorithm does not increase the time and space
complexity of the CS algorithm, we analyse the algorithmic
complexity of GFCS and CS. For the CS algorithm, assuming
that the dimension of the problem is D, the time to evaluate
the D-dimensional function is positively related to D, the
total number of iterations is G, and the population size is n.
Terefore, the time complexity of the CS algorithm is ap-
proximately: O(GDn).

GFCS is improved only in the Lévy fight phase and is
consistent with the CS algorithm in the local walk phase, so
we only need to analyse the diferences in the previous phase.
GFCS requires additional calculations of variables α and Pa

in each iteration, determines and updates the value of the
parameter m. Te time consumption during the calculation
is only related to the parameters G and not to D and n. In
addition, “re-fy” is performed at most once in the algorithm,
and the time consumption is only related to n and D and not
to G. Terefore, the total time complexity of GFCS is still
O(GDn).

In terms of space complexity, GFCS does not use extra
storage space to store data, so it does not increase the space
complexity of the algorithm. In summary, the complexity of
GFCS is in the same order of magnitude as that of the
original CS. In the subsequent experiments, we will further
compare the total time consumption of GFCS with the
original CS on the test set functions.

5. Experimental Study

Te experimental study is described in the following
sections.

5.1. Experimental Environment and Benchmark Functions.
To verify the performance of GFCS, experiments are carried
out on the test set of CEC2013 [37], which is widely used
internationally. CEC2013 contains 28 test functions, among
which f1–f5 are unimodal functions, f6–f20 are multimodal
functions, and f21–f28 are combination functions. Te so-
lution constraints of the functions are in the range of
[−100, 100]. All experiments were performed on the Win-
dows 10 platform, and all algorithms were implemented in
MATLAB R2021a.

In our experiments, fopt represents the standard optimal
value of the objective function and fmin represents the actual
optimal value of the objective function obtained by our
algorithm. We record the following equation as the criterion
for the algorithm detection:

res � fmin − fopt. (12)

Terefore, the closer res is to 0, the better it is. Fur-
thermore, to reduce the statistical error, the average error of
all these independently running functions was chosen as the
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performance metric. To ensure the fairness of the experi-
ment, the population size n is set to 25, with the dimension
D � 30 and the maximum number of iterations MaxIt �

20000. Each test function was run 30 times in the same
environment, and its mean and standard error values were
recorded.

5.2. Comparison with CS and Other Variants. To explore the
accuracy and convergence of GFCS, a comparative analysis
was carried out with the original CS and its seven variants.
Te seven CS variants were CS [6], ACS [10], NACS [20],
GCS [17], ICS [9], ACSA [11], VCS [12], and MSRCS [23].
Table 1 lists the core ideas and specifc parameters of each
algorithm.

In this section, we compare GFCS with the original CS
and 7 improved CS variants. Tables 2 and 3 show the 30-
dimensional test results of GFCS and other 8 CS algo-
rithms in the CEC2013 test set. In the tables, bold letters
indicate the best results, “Mean” and “Std” represent the
mean and standard error values, respectively. In addition,
the average ranking results of the Friedman test are added
at the bottom of the table, where “+” indicates that the
results are better than the algorithm, “−” indicates that are
worse, and “≈” indicates that the results are not much
diferent.

Te data in Tables 2 and 3 show that GFCS works best on
f2, f4, f6, f7, f9, f12, f13, f15, f18, f19, f20, f23, f24, f25, f26, and
f27, which include unimodal functions, multimodal func-
tions, and combined functions. In unimodal functions, the
efect of GFCS is clearly better than other algorithms on f2
and f4, and the performance of each algorithm tends to be
consistent on f1, f3, and f5. Te results of GFCS on

multimodal functions f6, f7, f9, f12, f13, f15, f18, f19, and f20
are all better than other algorithms, and the results of f17 are
better than other algorithms except VCS. And in the
combined functions f23, f24, f25, f26, and f27, the results of
GFCS are better, as it obtains better optimal values. Trough
the results of the Friedman test at the bottom of Tables 2 and
3, it can be found that GFCS beats other algorithms on at
least 18 functions compared to other algorithms. And the
average ranking of GFCS for the 28 tested functions in the
two tables are 1.43 and 1.46, respectively, which ranks frst
compared to the other 8 CS algorithms. Te analysis shows
that GFCS has good stability and convergence for diferent
types of problems.

In addition, to visually display the ranking of the results
in Tables 2 and 3, the ranking of the average error value
(minimization problem) of each function is summarized,
and stacked histograms based on the ranking statistics are
drawn. Figures 2 and 3 shows that each ranking is repre-
sented by a color block. Te better the algorithm performs,
the lighter the color of the corresponding block is. Figure 2
shows the ranking of GCS, ACSA, NACS, VCS, and GFCS,
and Figure 3 shows the ranking of MSRCS, ACS, ICS, CS,
and GFCS.

As can be seen from the fgures, the white block that
marks the frst has the largest proportion in GFCS, and
GFCS does not obtain the red square that marks the ffth,
indicating that GFCS has the best performance compared to
other algorithms. In addition, on some functions, such as f11
and f16, GFCS does not achieve the frst place, but still
locates in the second or third position, showing that GFCS is
still competitive. Overall, for the CEC2013 test set with
D� 30, GFCS has a considerable advantage over other
algorithms.

Input: population size N, maximum number of iterations MaxIt, problem dimension D, mode switching parameter Pa.
(1) count � 0;
(2) Randomly initialize the solution set with a population size of N : xt

i(i � 1, 2, · · · , N);
(3) Calculate the fitness of all solutionsft

i � f(xt
i ); Get the best solution xt

best and its ftness value fbest; m � 1;
(4) for t� 1: MaxIt do
(5) Calculate α and Pa using equations (8) and (10) with t, respectively;
(6) for i� 1 :N do
(7) Generate a new solution xnew by the Lévy fight mode in equation (1);
(8) if fnew < ft

i then
(9) xt+1

i � xnew; ft+1
i � fnew;

(10) end if
(11) end for
(12) Trow away a small fraction (controlled by Pa) of the worst solutions and use equation (7) to generate a new solution;
(13) Update the global optimal solution fnew

best ;
(14) if fnew

best < fbest m � 1;
(15) else m � m + 0.001;
(16) end if
(17) if m> 2&& t<MaxIt/2&& count � 0
(18) Repeat 2 and 3, count � 1 (will only be executed once at most)
(19) end if
(20) t � t + 1;
(21) end for
(22) Output: Final optimized solution

ALGORITHM 2: Cuckoo search based on the global feedback.
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To further illustrate the convergence capability and
optimization accuracy of GFCS, the original CS and four
representative CS variants are selected in conjunction with

the comparison results above. In addition, we select rep-
resentative functions from the unimodal, multimodal, and
combinatorial functions of the CEC2013 test set. Tey are f2,

Yes

No

Calculate α and Pa using Eq. (8) and
(10). Generate new solutions xnew

and fnew by Eq. (1)

Yes No

Throw some worst
solutions, generate some
new solution by Eq. (7)

and update fnew

No

reset m = 1

No

Output:
Final optimized solution

Start

count = 0

t < MaxIt

fnew < fi
t

fnew
 < fbest

m = m + 0.001

m > 2 &&
t < MaxIt/2

&& count < 1 

End

count = 1

Yes

Yes

best

Randomly initialize
the solution set

calculate xt
 

set m = 1
 and fbest

Update xt+1
 and f t+1

 values as the
latest solution
i i

best

best

Figure 1: Te fowchart of the GFCS algorithm.
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Table 1: Core ideas and parameter settings for CSs.

Algorithms Core ideas Parameter settings
CS Basic CS α � 0.01 andPa � 0.25

ACS Te Lévy fight is abandoned and a new step control formula and
iteration formula are introduced Pa � 0.25

NACS Neighborhood attraction is introduced to improve the
performance of CS Pa � 0.25, m � 3, andPs � 0.8

ICS Control the step size and Pa with the number of iterations to
improve the performance of CS αmax � 0.5 and αmin � 0.01 Pamax � 0.5 andPamin � 0.005

ACSA Compare the current ftness value with the average ftness value
to decide on the two diferent step size methods αU � 0.8 and αL � 0.2

VCS In VCS, a varied scale factor is added to the step adjustment of
the Lévy fight β � 1.5 andPa � 0.25

GCS Using Gaussian distribution instead of the Lévy fight to improve
the algorithm performance μ � 0.0001, σ0 � 0.5, and Pa � 1.5

MSRCS Based on reconciliatory strategy to update solutions, MSRCS
tries to strike a balance between exploration and exploitation pa � 0.25, p1 � 0.8, and p2 � 0.5

GFCS
Dynamic variables and “re-fy” mechanism are added to the

operation of the algorithm, and feedback is obtained on a per-
round iteration to improve algorithm performance

αmax � 0.5, αmin � 0.005 Pamax � 0.5, andT � 6

Table 2: Te test result of GCS, ASCA, NACS, VCS, and GFCS on CEC2013 (D� 30).

Function Mean/std GCS ASCS NACS VCS GFCS

F1 Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Std 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

F2 Mean 9.47E+ 05 2.22E+ 06 1.41E+ 05 1.44E+ 06 1.96E+ 03
Std 3.22E+ 05 9.51E+ 05 6.01E+ 04 5.45E+ 05 2.48E+ 03

F3 Mean 1.00E+ 10 1.00E+ 10 1.00E+ 10 1.00E+ 10 1.00E+ 10
Std 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

F4 Mean 4.15E+ 03 8.89E+ 02 1.12E+ 00 7.49E+ 02 3.97E − 01
Std 1.46E+ 03 2.88E+ 02 4.04E− 01 2.51E+ 02 4.98E− 01

F5 Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Std 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

F6 Mean 1.52E+ 00 3.74E+ 00 1.33E+ 01 2.33E+ 00 1.36E− 13
Std 2.89E+ 00 8.59E+ 00 1.51E+ 01 6.58E+ 00 4.37E− 13

F7 Mean 6.80E+ 01 5.22E+ 01 1.39E+ 02 5.77E+ 01 3.53E+ 01
Std 3.03E+ 01 2.60E+ 01 3.50E+ 01 1.39E+ 01 7.09E+ 00

F8 Mean 2.09E+ 01 2.09E+ 01 2.09E+ 01 2.09E+ 01 2.09E+ 01
Std 2.40E− 02 5.16E− 02 3.27E− 02 3.19E− 02 5.64E− 02

F9 Mean 2.91E+ 01 2.86E+ 01 3.14E+ 01 2.73E+ 01 2.16E+ 01
Std 9.52E− 01 2.60E+ 00 2.54E+ 00 1.82E+ 00 2.68E+ 00

F10 Mean 1.74E− 02 1.47E− 02 1.44E− 01 2.02E− 02 1.63E− 02
Std 2.01E− 02 1.48E− 02 8.60E− 02 1.87E− 02 1.49E− 02

F11 Mean 1.91E+ 01 4.03E+ 00 6.91E+ 00 8.51E+ 00 1.21E+ 01
Std 1.17E+ 01 2.08E+ 00 3.97E+ 00 3.97E+ 00 3.20E+ 00

F12 Mean 9.73E+ 01 9.08E+ 01 3.07E+ 02 7.66E+ 01 5.38E+ 01
Std 1.76E+ 01 1.26E+ 01 9.22E+ 01 1.17E+ 01 1.12E+ 01

F13 Mean 1.48E+ 02 1.37E+ 02 3.33E+ 02 1.19E+ 02 1.00E+ 02
Std 1.28E+ 01 2.09E+ 01 5.26E+ 01 1.99E+ 01 2.62E+ 01

F14 Mean 1.18E+ 03 9.85E+ 02 7.07E+ 02 8.30E+ 02 1.02E+ 03
Std 3.68E+ 02 3.49E+ 02 2.73E+ 02 4.00E+ 02 2.68E+ 02

F15 Mean 4.59E+ 03 4.41E+ 03 3.65E+ 03 4.27E+ 03 3.46E+ 03
Std 5.07E+ 02 3.29E+ 02 3.98E+ 02 3.47E+ 02 7.47E+ 02

F16 Mean 1.60E+ 00 1.46E+ 00 5.04E− 01 1.42E+ 00 1.38E+ 00
Std 1.20E− 02 1.78E− 01 9.83E− 02 2.37E− 01 3.41E− 01
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Table 2: Continued.

Function Mean/std GCS ASCS NACS VCS GFCS

F17 Mean 7.53E+ 01 5.35E+ 01 1.49E+ 02 4.70E+ 01 5.29E+ 01
Std 9.63E+ 00 9.61E+ 00 5.27E+ 01 7.15E+ 00 7.81E+ 00

F18 Mean 1.59E+ 02 1.45E+ 02 3.63E+02 1.32E+02 8.25E+ 01
Std 8.17E+ 00 1.59E+ 01 9.91E+ 01 9.88E+ 00 1.89E+ 01

F19 Mean 8.20E+ 00 5.95E+ 00 1.75E+ 01 4.34E+ 00 2.29E+ 00
Std 1.44E+ 00 1.85E+ 00 5.57E+ 00 1.45E+ 00 4.77E− 01

F20 Mean 1.21E+ 01 1.19E+ 01 1.33E+ 01 1.19E+ 01 1.11E+ 01
Std 2.94E− 01 3.75E− 01 8.24E− 01 3.65E− 01 4.84E− 01

F21 Mean 2.48E+ 02 2.56E+ 02 3.25E+ 02 2.63E+ 02 2.47E+ 02
Std 4.62E+ 01 6.35E+ 01 1.03E+ 02 5.64E+ 01 5.16E+ 01

F22 Mean 1.94E+ 03 1.39E+ 03 6.07E+ 02 9.87E+ 02 1.04E+ 03
Std 5.21E+ 02 5.55E+ 02 2.66E+ 02 5.76E+ 02 3.16E+ 02

F23 Mean 5.04E+ 03 5.08E+ 03 4.75E+ 03 4.77E+ 03 3.68E+ 03
Std 5.96E+ 02 3.70E+ 02 4.20E+ 02 3.00E+ 02 5.32E+ 02

F24 Mean 2.75E+ 02 2.75E+ 02 2.91E+ 02 2.73E+ 02 2.59E+ 02
Std 7.36E+ 00 6.57E+ 00 8.92E+ 00 1.05E+ 01 7.22E+ 00

F25 Mean 2.90E+ 02 2.84E+ 02 3.06E+ 02 2.85E+ 02 2.75E+ 02
Std 3.32E+ 00 9.33E+ 00 9.78E+ 00 6.18E+ 00 6.45E+ 00

F26 Mean 2.00E+ 02 2.00E+ 02 2.54E+ 02 2.00E+ 02 2.00E+ 02
Std 1.74E− 02 3.31E− 02 8.41E+ 01 2.32E− 02 1.57E− 04

F27 Mean 1.11E+ 03 1.03E+ 03 1.17E+ 03 1.02E+ 03 8.57E+ 02
Std 2.58E+ 01 1.51E+ 02 6.59E+ 01 3.50E+ 01 1.42E+ 02

F28 Mean 3.00E+ 02 3.00E+ 02 1.90E+ 03 3.00E+ 02 3.00E+ 02
Std 0.00E+ 00 0.00E+ 00 1.33E+ 03 0.00E+ 00 0.00E+ 00

Average ranking 2.71 2.79 3.46 2.25 1.43
+/ − / ≈ 21/1/6 19/4/5 20/4/4 18/4/6

In the table, bold letters indicate the best results, “Mean” and “Std” represent the mean and standard error values, respectively.

Table 3: Te test result of CEC2013 of MSRCS, ACS, ICS, CS, and GFCS on CEC2013 (D� 30).

Function Mean/std MSRCS ACS ICS CS GFCS

F1 Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Std 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

F2 Mean 3.78E+ 04 1.06E+ 06 6.65E+ 04 8.91E+ 05 1.96E+ 03
Std 1.59E+ 04 3.74E+ 05 4.40E+ 04 3.76E+ 05 2.48E+ 03

F3 Mean 1.00E+ 10 1.00E+ 10 1.00E+ 10 1.00E+ 10 1.00E+ 10
Std 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

F4 Mean 6.87E− 01 1.07E+ 03 6.14E+ 00 2.10E+ 03 3.97E− 01
Std 5.74E− 01 3.42E+ 02 5.00E+ 00 8.76E+ 02 4.98E− 01

F5 Mean 0.00E+ 00 0.00E+ 00 1.14E− 14 0.00E+ 00 0.00E+ 00
Std 0.00E+ 00 0.00E+ 00 3.50E− 14 0.00E+ 00 0.00E+ 00

F6 Mean 6.70E+ 00 7.04E+ 00 2.08E− 03 1.12E+ 00 1.36E− 13
Std 1.17E+ 01 1.05E+ 01 6.29E− 03 2.63E+ 00 4.37E− 13

F7 Mean 3.62E+ 01 1.03E+ 02 6.03E+ 01 1.06E+ 02 3.53E+ 01
Std 1.43E+ 01 2.15E+ 01 2.85E+ 01 2.27E+ 01 7.09E+ 00

F8 Mean 2.08E+ 01 2.09E+ 01 2.09E+ 01 2.09E+ 01 2.09E+ 01
Std 9.27E− 02 4.26E− 02 4.27E− 02 5.48E− 02 5.64E− 02

F9 Mean 2.42E+ 01 2.70E+ 01 2.61E+ 01 2.89E+ 01 2.16E+ 01
Std 3.73E+ 00 2.51E+ 00 4.07E+ 00 1.45E+ 00 2.68E+ 00

F10 Mean 1.03E− 01 1.24E− 02 3.82E− 03 1.39E− 02 1.63E− 02
Std 5.94E− 02 8.24E− 03 4.91E− 03 1.14E− 02 1.49E− 02

F11 Mean 1.95E+ 01 8.06E+ 00 3.23E+ 00 4.53E+ 00 1.21E+ 01
Std 7.68E+ 00 4.55E+ 00 1.51E+ 00 3.62E+ 00 3.20E+ 00

F12 Mean 6.16E+ 01 1.31E+ 02 1.18E+ 02 1.62E+ 02 5.38E+ 01
Std 1.57E+ 01 2.51E+ 01 2.90E+ 01 3.10E+ 01 1.12E+ 01
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f4, f6, f7, f9, f12, f13, f15, f18, f19, f23, and f24, where f2 and f4
are unimodal functions, f6, f7, f9, f12, f13, f15, f18, and f19
are multimodal functions, and f23 and f24 are combined
functions. Based on the above algorithms and test functions,
their convergence curves are plotted in Figure 4, where the

horizontal axis indicates the number of iterations and the
vertical axis indicates the error values.

From Figure 4, it can be observed that GFCS converges
signifcantly faster than other competitors on f2, f4, f6, f12,
f19, and f24. For the remaining functions, although the

Table 3: Continued.

Function Mean/std MSRCS ACS ICS CS GFCS

F13 Mean 1.13E+ 02 1.58E+ 02 1.44E+ 02 1.80E+ 02 1.00E+ 02
Std 2.39E+ 01 3.03E+ 01 2.51E+ 01 2.30E+ 01 2.62E+ 01

F14 Mean 1.70E+ 03 1.28E+ 03 8.96E+ 02 7.41E+ 02 1.02E+ 03
Std 4.70E+ 02 3.23E+ 02 3.04E+ 02 1.74E+ 02 2.68E+ 02

F15 Mean 3.89E+ 03 4.12E+ 03 3.96E+ 03 4.17E+ 03 3.46E+ 03
Std 5.76E+ 02 3.75E+ 02 5.93E+ 02 2.70E+ 02 7.47E+ 02

F16 Mean 6.84E− 01 9.30E− 01 1.52E+ 00 1.42E+ 00 1.38E+ 00
Std 4.53E− 01 1.31E− 01 2.74E− 01 2.40E− 01 3.41E− 01

F17 Mean 6.51E+ 01 9.12E+ 01 5.85E+ 01 6.36E+ 01 5.29E+ 01
Std 1.20E+ 01 1.35E+ 01 7.11E+ 00 9.61E+ 00 7.81E+ 00

F18 Mean 8.70E+ 01 2.22E+ 02 1.69E+ 02 1.95E+ 02 8.25E+ 01
Std 1.62E+ 01 2.78E+ 01 2.63E+ 01 2.94E+ 01 1.89E+ 01

F19 Mean 3.45E+ 00 8.99E+ 00 5.71E+ 00 6.94E+ 00 2.29E+ 00
Std 1.16E+ 00 1.44E+ 00 2.08E+ 00 1.75E+ 00 4.77E− 01

F20 Mean 1.12E+ 01 1.21E+ 01 1.20E+ 01 1.24E+ 01 1.11E+ 01
Std 5.63E− 01 3.46E− 01 4.08E− 01 3.88E− 01 4.84E− 01

F21 Mean 3.01E+ 02 2.61E+ 02 2.05E+ 02 2.44E+ 02 2.47E+ 02
Std 9.54E+ 01 4.66E+ 01 3.94E+ 01 4.78E+ 01 5.16E+ 01

F22 Mean 1.63E+ 03 1.95E+ 03 1.16E+ 03 1.17E+ 03 1.04E+ 03
Std 8.40E+ 02 5.17E+ 02 4.25E+ 02 3.07E+ 02 3.16E+ 02

F23 Mean 4.04E+ 03 4.81E+ 03 5.07E+ 03 5.11E+ 03 3.68E+ 03
Std 4.98E+ 02 4.42E+ 02 5.54E+ 02 4.41E+ 02 5.32E+ 02

F24 Mean 2.65E+ 02 2.76E+ 02 2.67E+ 02 2.81E+ 02 2.59E+ 02
Std 8.67E+ 00 6.06E+ 00 1.39E+ 01 1.07E+ 01 7.22E+ 00

F25 Mean 2.75E+ 02 2.91E+ 02 2.83E+ 02 3.00E+ 02 2.73E+ 02
Std 1.07E+ 01 6.77E+ 00 1.08E+ 01 4.68E+ 00 6.45E+ 00

F26 Mean 2.16E+ 02 2.00E+ 02 2.00E+ 02 2.00E+ 02 2.00E+ 02
Std 4.84E+ 01 2.41E− 02 3.14E− 03 1.43E− 02 1.57E− 04

F27 Mean 8.79E+ 02 1.05E+ 03 9.47E+ 02 1.03E+ 03 8.57E+ 02
Std 1.21E+ 02 5.27E+ 01 2.04E+ 02 2.20E+ 02 1.42E+ 02

F28 Mean 3.00E+ 02 3.00E+ 02 3.00E+ 02 3.00E+ 02 3.00E+ 02
Std 1.04E− 13 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

Average ranking 2.18 3.43 2.50 3.36 1.46
+/ − / ≈ 22/2/4 19/3/6 19/4/5 18/4/6

In the table, bold letters indicate the best results, “Mean” and “Std” represent the mean and standard error values, respectively.
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Figure 2: System-stacked histogram of ranking for GCS, ACSA, NACS, VCS, and GFCS on CEC2013 (D� 30).
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convergence speed of GFCS is not the fastest compared with
other algorithms, the best optimization results can still be
achieved as the iteration progresses.

In addition, we can fnd that, for functions f2, f4, f6, f13,
f19, and f24, GFCS can obtain a smoother descending curve
during the convergence process because GFCS can quickly
adjust the parameters Pa and step size α, to obtain faster
convergence speed and more precise search results.

For other multimodal functions or mixed functions,
these functions tend to make the algorithm fall into a local
optimum. After the algorithm falls into the local optimum in
a very early period, its optimum value is usually difcult to
change greatly. For these functions, the advantages of GFCS
are even more obvious. As f9, f12, f15, f18, and f23, Figure 4
shows that the optimization curve of GFCS falls rapidly
again after a period of stagnation, jumping out of the current
local optimum. At this time, the global feedback part and
“re-fy” of GFCS play a role, making the algorithm jump out
of the local optimum and fnd a better solution. Since the
algorithm balances exploration and exploitation according
to the optimization of each round of iterations, the con-
vergence curve is not a continuous decline but presents a
state of gradual optimization in stages to approach the global
optimal solution.

According to the previous analysis, GFCS has a good
convergence speed and optimization ability on various types
of test functions and is able to jump out of local extremes.
Terefore, we can conclude that GFCS achieves better
performance than other algorithms when dealing with 30-
dimensional problems.

5.3. Efect ofDimensionGrowth. As can be seen in the above
sections, GFCS outperforms others in handling the 30-
dimensional functions on the CEC2013 benchmark fea-
tures. However, for a good algorithm, it should also be
able to generate high-quality solutions to high-dimen-
sional problems. To study the impact of dimensional
growth on GFCS performance, we investigate the scal-
ability of the algorithm on 28 test functions of CEC2013
with problem dimension size scaled from 30 to 50 In this
section, we choose MSRCS, VCS, ACS, ECS, ICS, and
GFCS, which performed better in the previous sections for
comparison experiments, and the experimental results are
shown in Table 4 and Figure 5.

From Table 4, GFCS wins on f2, f7, f9, f12, f13, f19, f21,
and f27. Although it does not fnish frst on many other
functions, it still achieves a relatively high ranking. Likewise,
MSRCS is the champion on f4, f8, f15, f16, f18, f20, f23, f24,
and f25. ICS is the f10 and f11 champion. VCS obtains the
best results on f14, f17, and f22, CS obtains the best solution
on f5, and ACS obtains the best solution on f6. Furthermore,
all algorithms achieve the same result on f3. As can be seen at
the bottom of the table, compared with other algorithms,
GFCS outperforms at least 17 functions and has an average
rank of 1.96. In addition, Figure 5 shows that GFCS still has
the lightest overall color block and high rankings on most
functions. More specifcally, GFCS achieves the frst- or
second-best results on most functions. It still has a clear
advantage over other algorithms. Based on all previous
experimental analyses, we can conclude that although the
advantage of GFCS mildly decreases when the dimension-
ality of the problem increases from 30 to 50 dimensions,
GFCS is still the best algorithm to handle these benchmark
functions combining the results of the previous experiments.

To visually compare the optimization of GFCS with
other algorithms in the case of D� 50, we draw the opti-
mization images of some functions in Figure 6. Figure 6
shows that, on the six functions f2, f7, f12, f13, f19, and f21,
GFCS is signifcantly faster than the other competitors and is
able to achieve better optimal values. On f4, f9, and f27,
although GFCS is not signifcantly faster than the other
competitors, it is relatively fast and can eventually achieve
the best ftness value. In conclusion, the proposed GFCS has
a better performance compared to the other competitors.

5.4. Comparison with Other Evolutionary Algorithms. To
further confrm the superiority of GFCS, we select some
other evolutionary algorithms for comparison. Te difer-
ential evolution algorithm [2] (DE) and frefy algorithm [5]
(FA) are widely studied and used swarm intelligence opti-
mization algorithms. To further verify the performance of
GFCS, DE, FA, and some variants of DE, ABC, and BSO are
selected for comparison, the variants being NABC [38],
ABCX [39], CUDE [40], and MSBSO [41].

In view of the fairness of the experiments, the population
size� 25, the problem dimension� 30, and the number of
evaluations� 1E6 are set for these algorithms, and each test
function independently runs 30 times. For some other
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Figure 4: Convergence curves of MSRCS, VCS, ICS, ACS, CS, and GFCS on part functions of CEC2013 (D� 30).
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Table 4: Te test result of CEC2013 of MSRCS, VCA, CS, ACS, ICS, and GFCS on CEC2013 (D� 50).

Function Mean/std MSRCS VCS CS ACS ICS GFCS

F1 Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Std 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

F2 Mean 1.99E+ 05 6.35E+ 06 3.58E+ 06 4.01E+ 06 8.87E+ 05 1.37E+ 05
Std 8.87E+ 04 1.74E+ 06 9.78E+ 05 8.16E+ 05 2.02E+ 05 2.48E+ 03

F3 Mean 1.00E+ 10 1.00E+ 10 1.00E+ 10 1.00E+ 10 1.00E+ 10 1.00E+ 10
Std 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

F4 Mean 6.40E+ 01 5.29E+ 03 7.79E+ 03 5.34E+ 03 6.01E+ 02 1.07E+ 02
Std 4.70E+ 01 1.16E+ 03 1.50E+ 03 2.22E+ 03 2.04E+ 02 4.91E+ 01

F5 Mean 1.14E− 13 1.14E− 13 5.68E− 14 7.96E− 14 1.02E− 13 1.06E− 13
Std 0.00E+ 00 0.00E+ 00 5.99E− 14 5.49E− 14 3.60E− 14 2.94E− 14

F6 Mean 4.46E+ 01 4.40E+ 01 4.44E+ 01 4.09E+ 01 4.40E+ 01 4.38E+ 01
Std 2.39E+ 00 1.80E+ 00 1.70E+ 01 1.02E+ 01 1.80E+ 00 1.47E+ 00

F7 Mean 7.62E+ 01 1.05E+ 02 1.23E+ 02 1.14E+ 02 9.54E+ 01 7.53E+ 01
Std 1.75E+ 01 1.59E+ 01 1.63E+ 01 1.72E+ 01 2.74E+ 01 1.26E+ 01

F8 Mean 2.10E+ 01 2.11E+ 01 2.11E+ 01 2.11E+ 01 2.11E+ 01 2.11E+ 01
Std 6.27E− 02 2.95E− 02 2.22E− 02 2.84E− 02 4.96E− 02 2.36E− 02

F9 Mean 5.12E+ 01 5.68E+ 01 5.81E+ 01 5.49E+ 01 5.64E+ 01 4.94E+ 01
Std 6.36E+ 00 1.47E+ 00 2.10E+ 00 3.22E+ 00 3.49E+ 00 3.98E+ 00

F10 Mean 1.10E− 01 4.56E− 2 5.75E− 02 5.30E− 02 2.69E− 02 6.03E− 02
Std 6.13E− 02 2.65E− 02 3.73E− 02 1.98E− 02 3.24E− 02 3.12E− 02

F11 Mean 6.83E+ 01 4.29E+ 01 3.22E+ 01 5.43E+ 01 3.13E+ 01 5.01E+ 01
Std 1.47E+ 01 1.25E+ 01 7.68E+ 00 1.72E+ 01 7.54E+ 00 9.25E+ 00

F12 Mean 1.80E+ 02 2.03E+ 02 3.99E+ 02 3.70E+ 02 3.55E+ 02 1.37E+ 02
Std 3.09E+ 01 2.79E+ 01 6.07E+ 01 6.24E+ 01 7.74E+ 01 2.30E+ 01

F13 Mean 2.65E+ 02 2.94E+ 02 4.73E+ 02 4.08E+ 02 4.18E+ 02 2.50E+ 02
Std 3.92E+ 01 3.97E+ 01 8.72E+ 01 3.91E+ 01 4.27E+ 01 4.04E+ 01

F14 Mean 3.49E+ 03 2.06E+ 03 2.32E+ 03 4.48E+ 03 2.39E+ 03 2.49E+ 03
Std 5.35E+ 02 7.55E+ 02 4.70E+ 02 6.53E+02 5.51E+ 02 4.00E+ 02

F15 Mean 7.91E+ 03 9.48E+ 03 8.51E+ 03 8.48E+ 03 9.19E+ 03 8.19E+ 03
Std 7.64E+ 02 5.39E+ 02 4.79E+ 02 3.52E+ 02 4.16E+ 02 1.32E+ 03

F16 Mean 9.56E− 01 2.24E+ 00 2.36E+ 00 1.70E+ 00 2.51E+ 00 2.25E+ 00
Std 4.04E− 01 2.04E− 01 2.14E− 01 1.75E− 01 2.12E− 01 4.81E− 01

F17 Mean 1.55E+ 02 1.23E+ 02 1.96E+ 02 3.02E+ 02 1.50E+ 02 1.27E+ 02
Std 3.73E+ 01 1.20E+ 01 3.01E+ 01 3.98E+ 01 2.81E+ 01 1.87E+ 01

F18 Mean 1.85E+ 02 3.20E+ 02 5.04E+ 02 6.05E+ 02 4.21E+ 02 2.99E+ 02
Std 2.49E+ 01 3.16E+ 01 8.35E+ 01 6.32E+ 01 8.50E+ 01 8.86E+ 01

F19 Mean 8.36E+ 00 1.17E+ 01 2.82E+ 01 3.01E+ 01 1.52E+ 01 5.67E+ 00
Std 1.03E+ 00 4.43E+ 00 7.78E+ 00 3.14E+ 00 3.25E+ 00 1.39E+ 00

F20 Mean 2.06E+ 01 2.18E+ 01 2.24E+ 01 2.19E+ 01 2.20E+ 01 2.09E+ 01
Std 8.43E− 01 5.08E− 01 7.66E− 01 4.01E− 01 7.31E− 01 5.90E− 01

F21 Mean 9.16E+ 02 6.02E+ 02 6.04E+ 02 5.52E+ 02 4.48E+ 02 3.46E+ 02
Std 2.89E+ 02 4.36E+ 02 4.38E+ 02 4.38E+ 02 4.07E+ 02 3.09E+ 02

F22 Mean 3.90E+ 03 1.98E+ 03 3.76E+ 03 5.27E+ 03 3.11E+ 03 2.65E+ 03
Std 9.09E+ 02 8.13E+ 02 8.16E+ 02 1.06E+ 03 8.90E+ 02 1.12E+ 03

F23 Mean 7.91E+ 03 1.06E+ 04 1.04E+ 04 1.00E+ 04 1.10E+ 04 9.12E+ 03
Std 1.06E+ 03 6.87E+ 02 5.56E+ 02 8.50E+ 02 8.63E+ 02 1.54E+ 03

F24 Mean 3.08E+ 02 3.52E+ 02 3.68E+ 02 3.49E+ 02 3.39E+ 02 3.21E+ 02
Std 1.76E+ 01 9.07E+ 00 1.37E+ 01 1.68E+ 01 2.62E+ 01 1.51E+ 01

F25 Mean 3.36E+ 02 3.76E+ 02 3.98E+ 02 3.82E+ 02 3.80E+ 02 3.65E+ 02
Std 1.22E+ 01 3.41E+ 00 6.96E+ 00 1.40E+ 01 1.28E+ 01 1.17E+ 01

F26 Mean 2.48E+ 02 2.25E+ 02 2.00E+ 02 2.01E+ 02 2.00E+ 02 2.00E+ 02
Std 1.02E+ 02 7.71E+ 01 1.09E− 01 1.76E− 01 2.49E− 02 3.17E− 03

F27 Mean 1.55E+ 03 1.82E+ 03 1.92E+ 03 1.79E+ 03 1.78E+ 03 1.54E+ 03
Std 1.59E+ 02 2.96E+ 01 4.95E+ 01 8.82E+ 01 2.19E+ 02 9.50E+ 01
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parameters of the NABC, ABCX, CUDE, and MSBSO, we
follow the settings in the literature, and the parameters of
GFCS are consistent with the previous tests. Te experi-
mental results are shown in Table 5, and the best result is
shown in bold.

According to Table 5, GFCS fnds the best values on f1,
f2, f5, f6, f10, f12, and f26. Likewise, NABC behaves well on
f11, f15, f16, f19, f25, and f26 and FA provides the best
solutions on f8 and f9, while does not yield optimal results
for any function. In addition, ABCX performs best on f14,
f17, f21, f22, f23, f27, and f28, CUDE fnds the best values
on f3 and f4, and MSBSO provides the best solutions on f1,
f5, f7, f12, f13, f18, f20, and f24. In terms of average
ranking results, GFCS generates an average rank value of
3.00, and ranks frst, followed by the MSBSO algorithm
with a ranking of 3.03, CUDE with a ranking of 3.43,
NABC with a ranking of 3.71, and ABCX with a ranking of
4.25, respectively. Te results of the average rank obtained
by the Friedman test show that GFCS is still competitive
with other swarm intelligence algorithms. In addition, it
can be seen from the bottom of Table 5 that, compared
with these algorithms, GFCS surpasses the other algo-
rithms in most functions, which show that GFCS still has a
relatively large advantage compared with other evolu-
tionary algorithms.

Figure 7 shows that we plotted a superimposed his-
togram based on the ranking statistics to better visualize
the ranking of the results in Table 5. Figure 7 shows that
GFCS has lighter overall color block rankings and ranks in
the top three on 19 functions. Except for the eighth
ranking of GFCS on function 3, GFCS does not achieve
any other sixth or seventh ranking. By comparing the

ranking with other algorithms, we can see that GFCS is
still competitive.

To further verify the performance of GFCS, we select
some other classical evolutionary algorithms for compari-
son. Te genetic algorithm [42], GA, particle swarm opti-
mization [3] (PSO), ant colony algorithm [43] (ACO),
artifcial bee colony algorithm [4] (ABC), and brain storm
optimization algorithm [44] (BSO) are selected for
comparison.

In view of the fairness of the experiments, the population
size N� 25, the problem dimension D� 30, and the number
of evaluations� 1E6 are set for these algorithms, and each
test function independently runs 30 times. For GA, the
probability of crossover is set to 1, and the probability of
mutation is set to 0.01. For PSO, we set the personal learning
coefcient� 1.5 and the global learning coefcient� 2.0. For
ACO, the evaporation rate of pheromone is set to 0.1.
Moreover, for ABC, the parameter limit is set to
(0.6∗N)∗D. For BSO, the number of clusters is set to fve.
For other parameters of the GA, PSO, ACO, ABC, and BSO,
we followed the settings in the literature, and the parameters
of GFCS are consistent with the previous tests. Te exper-
imental results are shown in Table 5, and the best result is
shown in bold.

According to Table 6, GFCS fnds the best values on all
functions except f3, f8, f10, f15, and f16. In terms of the
average ranking results, GFCS produces an average ranking
value of 1.39, which has a greater advantage over other SI
algorithms. In addition, it can be seen from the bottom of
Table 6 that GFCS beats these classical algorithms on most
functions, which shows that the GFCS algorithm has a
greater advantage over them.

Table 4: Continued.

Function Mean/std MSRCS VCS CS ACS ICS GFCS

F28 Mean 7.21E+ 02 4.00E+ 02 7.30E+ 02 1.04E+ 03 4.00E+ 02 4.00E+ 02
Std 1.02E+ 03 0.00E+ 00 1.04E+ 03 1.35E+ 03 1.33E− 13 0.00E+ 00

Average ranking 2.79 3.29 4.25 3.93 3.11 1.96
+/ − / ≈ 17/2/9 18/3/7 20/3/5 21/3/4 18/6/4

In the table, bold letters indicate the best results, “Mean” and “Std” represent the mean and standard error values, respectively.
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Figure 5: System-stacked histogram of ranking for MSRCS, VCS, CS, ACS, ICS, and GFCS on CEC2013 (D� 50).
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We draw a stacked histogram based on the ranking sta-
tistics to better visualize the ranking of the results in Table 6, as
detailed in Figure 8. Figure 8 shows that GFCS has lighter
overall color blocks and ranks frst on 23 functions. Moreover,
GFCS does not achieve any other ffth or sixth ranking except
the sixth ranking on function 3. By comparing the rankings
with these SI algorithms, we can conclude that GFCS has a clear
superiority in searching for the global optimum.

5.5. Comparison of Calculation Time. To demonstrate the
efectiveness of GFCS in terms of running time, we calculate the
time of running the 28 test functions of the CEC2013 test set

with GFCS and the original CS algorithm in diferent di-
mensions. Among them, the dimensions are set to 30 and 50.
For the other parameters, the upper limit of the number of
iterations is set to 20,000, and the population size is set to 25. To
exclude measurement chance, each function on the CEC2013
test set runs 10 times independently, and the total run time is
calculated. Te experimental results are shown in Table 7.

Table 7 shows that there is no signifcant diference in
runtime between CS and GFCS for either dimension D� 30
or D� 50. Tis again validates the complexity analysis of CS
and GFCS in Section 4.4, where there is no signifcant
diference between GFCS and CS in terms of time
complexity.
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Figure 6: Convergence curves of MSRCS, VCS, ICS, ACS, CS, and GFCS on part functions of CEC2013 (D� 50).
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Table 5: Te test result of CEC2013 of DE, FA, NABC, ABCX, CUDE, MSBSO, and GFCS on CEC2013 (D� 30).

Function Mean/std DE FA NABC ABCX CUDE MSBSO GFCS

F1 Mean 1.06E− 13 6.82E− 13 4.09E− 13 2.37E− 13 1.82E− 13 0.00E+ 00 0.00E+ 00
Std 1.17E− 13 1.61E− 13 9.59E− 14 7.15E− 14 1.44E− 13 0.00E+ 00 0.00E+ 00

F2 Mean 4.10E+ 07 4.55E+ 04 2.00E+ 06 1.76E+ 07 8.16E+ 03 5.74E+ 04 1.96E+ 03
Std 9.32E+ 06 3.21E+ 04 5.24E+ 05 3.01E+ 06 4.97E+ 03 1.67E+ 04 2.48E+ 03

F3 Mean 3.38E+ 07 1.82E+ 08 2.74E+ 07 8.99E+ 08 3.69E+ 05 1.04E+ 06 1.00E+ 10
Std 3.93E+ 07 3.07E+ 08 1.76E+ 07 9.89E+ 07 6.62E+ 05 1.18E+ 06 0.00E+ 00

F4 Mean 6.85E+ 03 3.34E+ 02 5.19E+ 04 6.12E+ 04 6.43E− 10 9.19E− 03 3.97E− 01
Std 1.14E+ 03 3.73E+ 02 5.34E+ 03 6.03E+ 03 1.64E− 09 1.21E− 02 4.98E− 01

F5 Mean 1.14E− 13 2.27E− 12 6.03E− 13 2.72E− 13 2.73E− 13 0.00E+ 00 0.00E+ 00
Std 0.00E+ 00 1.73E− 12 9.36E− 14 6.72E− 14 5.87E− 14 0.00E+ 00 0.00E+ 00

F6 Mean 1.43E+ 01 1.38E+ 01 1.46E+ 01 1.49E+ 01 3.32E+ 00 1.09E+ 01 1.36E− 13
Std 4.53E+ 00 1.10E− 11 7.04E− 01 4.69E+ 00 6.15E+ 00 1.08E+ 01 4.37E− 13

F7 Mean 3.89E+ 01 7.13E+ 01 6.01E+ 01 8.43E+ 01 3.97E+ 01 1.07E+ 01 3.53E+ 01
Std 1.16E+ 01 1.30E+ 01 7.26E+ 00 9.02E+ 00 1.09E+ 01 7.00E+ 00 7.09E+ 00

F8 Mean 2.09E+ 01 2.08E+ 01 2.09E+ 01 2.09E+ 01 2.09E+ 01 2.09E+ 01 2.09E+ 01
Std 2.87E− 02 5.41E− 02 3.16E− 02 5.28E− 02 4.48E− 02 5.44E− 02 5.64E− 02

F9 Mean 3.16E+ 01 2.07E+ 01 2.59E+ 01 2.71E+ 01 2.23E+ 01 2.45E+ 01 2.16E+ 01
Std 1.34E+ 00 2.49E+ 00 3.79E+ 00 1.99E+ 00 3.99E+ 00 5.94E+00 2.68E+ 00

F10 Mean 5.07E− 01 1.85E− 01 7.00E− 02 1.41E+ 00 1.21E− 01 4.66E− 02 1.63E− 02
Std 6.21E− 01 8.20E− 02 7.74E− 02 2.20E− 01 5.24E− 02 2.68E− 02 1.49E− 02

F11 Mean 3.32E− 01 7.32E+ 01 5.68E− 14 6.19E− 14 9.05E+ 00 2.31E+ 01 1.21E+ 01
Std 6.14E− 01 2.26E+ 01 0.00E+ 00 1.65E− 14 7.66E+ 00 4.49E+ 00 3.20E+ 00

F12 Mean 1.50E+ 02 8.58E+ 01 1.42E+ 02 2.29E+ 02 6.83E+ 01 3.84E+ 01 5.38E+ 01
Std 1.13E+ 01 2.24E+ 01 2.64E+ 01 1.59E+ 01 1.62E+ 01 9.20E+ 00 1.12E+ 01

F13 Mean 1.58E+ 02 1.54E+ 02 2.01E+ 02 2.00E+ 02 1.12E+ 02 9.31E+ 01 1.00E+ 02
Std 1.51E+ 01 4.33E+ 01 3.00E+ 01 1.04E+ 01 2.43E+ 01 1.69E+ 01 2.62E+ 01

F14 Mean 1.62E+ 02 2.20E+ 03 3.27E− 01 4.03E− 02 1.69E+ 01 4.37E+ 02 1.02E+ 03
Std 9.94E+ 01 6.46E+ 02 3.32E− 01 4.23E− 02 3.78E+ 01 2.15E+ 02 2.68E+ 02

F15 Mean 6.89E+ 03 3.62E+ 03 2.99E+ 03 4.21E+ 03 3.84E+ 03 3.67E+ 03 3.46E+ 03
Std 3.50E+ 02 6.47E+ 02 8.31E+ 02 2.80E+ 02 5.55E+ 02 6.38E+ 02 7.47E+ 02

F16 Mean 2.31E+ 00 1.89E+ 00 6.69E− 01 1.62E+ 00 9.01E− 01 2.09E+ 00 1.38E+ 00
Std 3.01E− 01 2.28E− 01 2.35E− 01 2.77E− 01 5.00E− 01 3.82E− 01 3.41E− 01

F17 Mean 3.07E+ 01 8.09E+ 01 3.04E+ 01 3.03E+ 01 3.18E+ 01 5.69E+ 01 5.29E+ 01
Std 3.11E− 01 1.13E+ 01 5.09E− 03 5.88E− 03 2.66E+ 00 8.30E+ 00 7.81E+ 00

F18 Mean 2.05E+ 02 8.38E+ 01 1.97E+ 02 1.52E+ 02 8.59E+ 01 6.29E+ 01 8.25E+ 01
Std 8.95E+ 00 5.06E+ 01 3.36E+ 01 1.56E+ 01 2.95E+ 01 9.01E+ 00 1.89E+ 01

F19 Mean 4.27E+ 00 3.40E+ 00 5.14E− 02 3.28E− 01 3.33E+ 00 3.11E+ 00 2.29E+ 00
Std 3.72E− 01 5.52E− 01 4.54E− 02 2.23E− 01 2.19E+ 00 9.72E− 01 4.77E− 01

F20 Mean 1.24E+ 01 1.50E+ 01 1.47E+01 1.37E+ 01 1.01E+ 01 9.71E+ 00 1.11E+ 01
Std 2.59E− 01 0.00E+ 00 7.24E− 01 3.98E− 01 8.52E− 01 7.59E− 01 4.84E− 01

F21 Mean 2.96E+ 02 3.57E+ 02 3.76E+02 2.03E+ 02 3.47E+ 02 3.04E+ 02 2.47E+ 02
Std 2.79E+ 01 7.86E+ 01 9.17E+ 01 4.42E+ 01 8.82E+ 01 5.81E+ 01 5.16E+ 01

F22 Mean 1.50E+ 02 2.23E+ 03 8.46E+ 01 5.67E+ 01 1.23E+ 02 4.39E+ 02 1.04E+ 03
Std 3.41E+ 01 8.12E+ 02 4.13E+ 01 4.83E+ 01 1.13E+ 01 1.45E+ 02 3.16E+ 02

F23 Mean 7.09E+ 03 3.89E+ 03 4.39E+ 03 5.01E+ 01 3.87E+ 03 4.16E+ 03 3.68E+ 03
Std 3.84E+ 02 8.23E+ 02 7.12E+ 02 3.58E+ 02 6.47E+ 02 6.81E+ 02 5.32E+ 02

F24 Mean 2.76E+ 02 2.55E+ 02 2.31E+ 02 2.63E+ 02 2.31E+ 02 2.19E+ 02 2.59E+ 02
Std 4.51E+ 00 1.00E+ 01 2.66E+ 00 7.45E+ 00 3.95E+ 00 7.63E+ 00 7.22E+ 00

F25 Mean 2.83E+ 02 2.70E+ 02 2.59E+ 02 2.92E+ 02 2.72E+ 02 2.62E+ 02 2.75E+ 02
Std 4.58E+ 00 7.87E+ 00 4.13E+ 01 4.23E+ 00 2.04E+ 01 8.13E+ 00 6.45E+ 00

F26 Mean 2.16E+ 02 2.00E+ 02 2.00E+ 02 2.01E+ 02 2.12E+ 02 2.11E+ 02 2.00E+ 02
Std 4.49E+ 01 4.20E− 03 1.66E− 02 1.54E− 01 3.79E+ 01 3.56E+ 01 1.57E− 04

F27 Mean 1.08E+ 03 7.65E+ 02 5.49E+ 02 4.02E+ 02 6.41E+ 02 6.07E+ 02 8.57E+ 02
Std 3.50E+ 01 5.78E+ 01 1.93E+ 02 1.44E+ 00 1.18E+ 02 1.75E+ 02 1.42E+ 02

F28 Mean 3.00E+ 02 5.21E+ 02 3.00E+ 02 2.83E+ 02 4.12E+ 02 3.00E+ 02 3.00E+ 02
Std 1.52E− 13 4.93E+ 02 2.48E− 13 5.69E+ 01 3.55E+ 02 2.14E− 13 0.00E+ 00

Average ranking 5.07 4.79 3.71 4.25 3.43 3.03 3.00
+/ − / ≈ 21/2/5 20/2/6 14/3/11 18/1/9 16/1/11 12/4/12

In the table, bold letters indicate the best results, “Mean” and “Std” represent the mean and standard error values, respectively.
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Figure 7: System-stacked histogram of ranking for DE, FA, NABC, ABCX, CUDE, MSBSO, and GFCS on CEC2013 (D� 30).

Table 6: Te test result of CEC2013 of GA, ACO, ABC, BSO, and GFCS on CEC2013 (D� 30).

Function Mean/
std GA PSO ACO ABC BSO GFCS

F1 Mean
Std

1.55E− 07
1.14E− 07

4.00E− 05
6.05E− 05

1.40E− 02
1.77E− 03

5.23E− 13
1.53E− 13

1.32E− 02
1.23E+ 00

0.00E+ 00
0.00E+ 00

F2 Mean
Std

4.08E+ 06
3.18E+ 06

1.64E+ 06
9.48E+ 05

1.61E+ 06
7.01E+ 05

1.12E+ 08
1.43E+ 07

8.92E+ 05
3.66E+ 05

1.96E+ 03
2.48E+ 03

F3 Mean
Std

8.21E+ 09
4.11E+ 09

4.04E+ 08
5.77E+ 08

3.68E+ 08
4.76E+ 08

9.40E+ 01
6.61E+ 01

1.29E+ 08
2.38E+ 08

1.00E+ 10
0.00E+ 00

F4 Mean
Std

8.10E+ 04
2.52E+ 04

4.38E+ 00
2.61E+ 00

1.07E+ 03
3.42E+ 02

6.52E+ 04
1.31E+ 04

1.10E+ 03
9.76E+ 02

3.97E− 01
4.98E− 01

F5 Mean
Std

3.20E+ 02
2.25E+ 02

2.00E− 05
6.12E− 05

5.71E+ 04
1.43E+ 04

1.09E− 03
2.96E− 04

5.33E− 02
1.38E− 02

0.00E+ 00
0.00E+ 00

F6 Mean
Std

8.36E+ 01
2.04E+ 01

5.72E+ 01
2.73E+ 01

5.05E+ 00
2.66E+ 00

1.39E+ 01
6.96E− 02

3.12E+ 01
2.63E+ 01

1.36E− 13
4.37E− 13

F7 Mean
Std

3.28E+ 04
5.29E+ 04

1.01E+ 02
1.52E+ 01

1.15E+ 02
1.80E+ 01

7.09E+ 01
3.05E+ 00

1.06E+ 02
5.27E+ 01

3.53E+ 01
7.09E+ 00

F8 Mean
Std

2.10E+ 01
6.37E− 02

2.09E+ 01
5.51E− 02

2.09E+ 01
6.08E− 02

2.09E+ 01
3.08E− 02

2.09E+ 01
1.48E− 01

2.09E+ 01
5.64E− 02

F9 Mean
Std

3.63E+ 01
4.05E+ 00

2.76E+ 01
2.31E+ 00

2.31E+ 01
1.07E+ 00

3.85E+ 01
9.03E− 01

3.89E+ 01
2.45E+ 00

2.16E+ 01
2.68E+ 00

F10 Mean
Std

5.93E+ 00
5.65E+ 00

2.63E+ 00
2.61E+ 00

2.42E− 01
3.00E− 02

1.50E− 03
3.11E− 03

1.03E+ 00
1.14E− 01

1.63E− 02
1.49E− 02

F11 Mean
Std

3.90E+ 02
1.07E+ 02

1.18E+ 02
3.02E+ 01

2.88E+ 02
8.09E+ 01

1.87E+ 02
1.13E+ 01

5.53E+ 02
1.62E+ 02

1.21E+ 01
3.20E+ 00

F12 Mean
Std

3.07E+ 02
4.81E+ 01

1.71E+ 02
5.48E+ 01

2.51E+ 02
6.52E+ 01

1.98E+ 02
1.47E+ 01

6.62E+ 02
9.10E+ 01

5.38E+ 01
1.12E+ 01

F13 Mean
Std

4.02E+ 02
3.67E+ 01

2.62E+ 02
6.05E+ 01

3.96E+ 02
8.17E+ 01

2.01E+ 02
1.32E+ 01

6.80E+ 02
8.30E+ 01

1.00E+ 02
2.62E+ 01

F14 Mean
Std

3.98E+ 03
3.46E+ 02

3.32E+ 03
7.04E+ 02

2.76E+ 03
5.81E+ 02

6.50E+ 03
2.86E+ 02

4.41E+ 03
6.74E+ 02

1.02E+ 03
2.68E+ 02

F15 Mean
Std

4.49E+ 03
6.58E+ 02

4.39E+ 03
8.03E+ 02

2.94E+ 03
3.62E+ 02

7.25E+ 03
3.03E+ 02

4.17E+ 03
7.30E+ 02

3.46E+ 03
7.47E+ 02

F16 Mean
Std

3.11E+ 00
9.06E− 01

1.16E+ 00
5.13E− 01

1.84E− 01
4.21E− 02

2.18E+ 00
2.95E− 01

3.42E− 01
1.40E− 01

1.38E+ 00
3.41E− 01

F17 Mean
Std

4.70E+ 02
1.11E+ 02

1.29E+ 02
3.94E+ 01

4.98E+ 02
9.58E+ 01

2.32E+ 02
1.46E+ 01

5.36E+ 02
9.61E+ 00

5.29E+ 01
7.81E+ 00

F18 Mean
Std

4.14E+ 02
1.20E+ 02

1.37E+ 02
4.63E+ 01

4.13E+ 02
4.94E+ 01

2.43E+ 02
1.60E+ 01

4.95E+ 02
7.94E+ 01

8.25E+ 01
1.89E+ 01

F19 Mean
Std

3.65E+ 02
6.07E+ 01

4.97E+ 00
2.09E+ 00

1.91E+ 01
6.13E+ 00

1.88E+ 01
6.31E− 01

1.14E+ 01
2.75E+ 00

2.29E+ 00
4.77E− 01

F20 Mean
Std

1.46E+ 01
2.22E− 01

1.44E+ 01
5.77E− 01

1.45E+ 01
5.33E− 03

1.28E+ 01
1.46E− 01

1.44E+ 01
3.88E− 02

1.11E+ 01
4.84E− 01

F21 Mean
Std

2.80E+ 02
4.47E+ 01

3.42E+ 02
1.23E+ 02

3.02E+ 02
7.98E− 02

2.80E+ 02
4.22E+ 01

3.74E+ 02
1.08E+ 02

2.47E+ 02
5.16E+ 01

F22 Mean
Std

4.84E+ 03
1.13E+ 03

4.10E+ 03
7.08E+ 02

3.84E+ 03
4.11E+ 02

7.08E+ 03
2.48E+ 02

5.17E+ 03
1.07E+ 03

1.04E+ 03
3.16E+ 02
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6. Conclusion

Tis article proposes a global feedback-based cuckoo search
algorithm (GFCS). In GFCS, we introduce the concept of
global feedback and the “re-fy” mechanism. In addition, we
set new parameter formulas that change with the number of
iteration rounds and are controlled by the dynamic global
variables. To evaluate the performance of the GFCS algo-
rithm, GFCS is compared with the other eight variants of the
CS algorithm and several classical evolutionary algorithms
and their variants. Based on the experimental results, the
following conclusions can be drawn:

(i) GFCS algorithm adopts a global feedback strategy
and the “re-fy” mechanism in the optimization
search process. According to the evolution of the
current generation, GFCS adjusts the parameters of

the algorithm globally during the evolution process,
efectively accelerates the algorithm’s convergence
speed, and enriches the population and the diversity
of learning.

(ii) Compared with CS, some CS variants, and several SI
algorithms in the experiment, the GFCS algorithm
has faster convergence speed and better conver-
gence accuracy.

(iii) As we compare in Sections 4.4 and 5.5, the time and
space complexity of GFCS is comparable to that of
the traditional CS algorithm, which means that the
GFCS algorithm does not improve the complexity of
the algorithm.

In the future, we intend to extend our current work in
the following directions. Firstly, for the switching parame-
ters, we will try to adjust the adaptive adjustment

Table 6: Continued.

Function Mean/
std GA PSO ACO ABC BSO GFCS

F23 Mean
Std

5.62E+ 03
9.48E+ 02

5.25E+ 03
1.01E+ 03

3.74E+ 03
6.66E+ 02

7.36E+ 03
3.11E+ 02

5.11E+ 03
7.41E+ 02

3.68E+ 03
5.32E+ 02

F24 Mean
Std

3.47E+ 02
1.29E+ 01

2.75E+ 02
1.22E+ 01

2.82E+ 02
3.07E+ 00

2.93E+ 02
3.24E+ 00

3.61E+ 02
2.17E+ 02

2.59E+ 02
7.22E+ 00

F25 Mean
Std

3.78E+ 02
1.43E+ 01

3.00E+ 02
1.30E+ 01

3.05E+ 02
5.82E+ 00

3.02E+ 02
1.92E+ 00

3.54E+ 02
2.21E+ 01

2.73E+ 02
6.45E+ 00

F26 Mean
Std

3.92E+ 02
7.58E+ 00

3.29E+ 02
6.79E+ 01

2.00E+ 02
7.68E− 03

2.21E+ 02
3.45E+ 00

2.20E+ 02
5.13E+ 01

2.00E+ 02
1.57E− 04

F27 Mean
Std

1.32E+ 03
6.71E+ 01

1.03E+ 03
8.74E+ 01

8.93E+ 02
6.50E+ 01

1.26E+ 03
2.06E+ 01

1.32E+ 03
8.20E+ 01

8.57E+ 02
1.42E+ 02

F28 Mean
Std

3.76E+ 03
5.71E+ 02

4.04E+ 02
3.94E+ 02

9.15E+ 02
6.98E+ 02

3.00E+ 02
7.90E− 06

4.70E+ 03
6.40E+ 02

3.00E+ 02
0.00E+ 00

Average ranking 5.14 3.14 3.25 3.46 4.14 1.39
+/ − / ≈ 27/0/1 25/1/2 23/1/4 25/1/2 25/1/2

In the tables, bold letters indicate the best results, “Mean” and “Std” represent the mean and standard error values, respectively.
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Figure 8: System-stacked histogram of ranking for GA, PSO, ACO, ABC, BSO, and GFCS on CEC2013 (D� 30).

Table 7: Te runtime of CS and GFCS on CEC2013 (unit: seconds).

Dimension/algorithm CS GFCS
D� 30 5.483E+ 03 5.443E+ 03
D� 50 8.645E+ 03 8.652E+ 03

18 Computational Intelligence and Neuroscience



mechanism or introduce a multistrategy mechanism to
further improve the search ability. Secondly, we will consider
the application of GFCS to some other scientifc problems,
such as applying the algorithm to the feld of machine
learning or deep learning. Tirdly, we will discuss the ap-
plication of the algorithm to some practical problems.
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