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It is challenging to perform path planning tasks in complex marine environments as the unmanned surface vessel approaches the
goal while avoiding obstacles. However, the confict between the two subtarget tasks of obstacle avoidance and goal approaching
makes the path planning difcult. Tus, a path planning method for unmanned surface vessel based on multiobjective rein-
forcement learning is proposed under the complex environment with high randomness and multiple dynamic obstacles. Firstly,
the path planning scene is set as the main scene, and the two subtarget scenes including obstacle avoidance and goal approaching
are divided from it. Te action selection strategy in each subtarget scene is trained through the double deep Q-network with
prioritized experience replay. A multiobjective reinforcement learning framework based on ensemble learning is further designed
for policy integration in the main scene. Finally, by selecting the strategy from subtarget scenes in the designed framework, an
optimized action selection strategy is trained and used for the action decision of the agent in the main scene. Compared with
traditional value-based reinforcement learning methods, the proposed method achieves a 93% success rate in path planning in
simulation scenes. Furthermore, the average length of the paths planned by the proposed method is 3.28% and 1.97% shorter than
that of PER-DDQN and dueling DQN, respectively.

1. Introduction

In ocean exploration, the competition among countries to
protect marine territorial sovereignty and develop marine
resources has become increasingly ferce. Te unmanned
surface vessel (USV), as a kind of vessel with high autonomy,
has broad application prospects in the feld of ocean explo-
ration. As one of the current research hotspots, the path
planning of USV faces many challenges, including unknown
environment, perceptual uncertainty, and dynamic obstacles
[1–3]. Te USV path planning is aimed to obtain a collision-
free path under specifc circumstances. It can be divided into
two subtarget tasks, such as goal approaching and obstacle
avoidance.Te goal approachingmethod helps the USV reach
the destination, focusing on reducing path length and travel
time.Te obstacle avoidance method makes the USV conduct
real-time collision avoidance through a series of decisions [4].

Traditional path planning methods perform well in
simple known static environments and reach a destination
while avoiding obstacles [5–9]. But there are still major
defciencies in the exploration and decision-making capa-
bilities of algorithms in complex environments, failing to
guarantee the success rate and environmental adaptability.
Currently, the deep reinforcement learning (DRL) methods
have advantages in unknown environment exploration and
real-time action decision making in path planning problems
[10, 11]. Terefore, the use of DRLmethods to solve the path
planning problem has become one of the new research
directions [12]. For example, Tai et al. used radar obser-
vations and target positions as inputs and applied DRL
methods to path planning tasks for the frst time [13]. Te
agent uses the discrete control commands generated by the
algorithm to avoid obstacles in the indoor mobile envi-
ronment. Chen et al. proposed an intelligent collision
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avoidance algorithm with DRL improving the path quality
compared with optimal reciprocal collision avoidance
(ORCA) [14]. Chen et al. constructed the interaction model
between the agent and the obstacle, providing the basis for
the reinforcement learning strategy of the agent’s path
planning in complex dynamic environment [15]. Tus, it is
efective to use DRL algorithms for goal approaching and
dynamic obstacle avoidance.

However, the path length inevitably increases in the
obstacle avoidance process, which conficts with the re-
quirement of destination reaching for the goal approaching
subtarget task. Terefore, it is difcult for a single optimi-
zation strategy to simultaneously achieve these subtarget
tasks. Recently, intelligence computing algorithms have been
widely used in related felds [16–19]. A more comprehensive
model can be obtained in ensemble learning by combining
multiple weak learners [20]. Inspired by the idea of inte-
grated learning, a multiobjective reinforcement learning
architecture is designed to trade of these subtarget tasks.
Tere is a need to investigate the USV path planning based
on multiobjective reinforcement learning.

Main contributions in this paper can be summarized as
follows:

(1) Based on the main scene of path planning consid-
ering random goals and multiple dynamic obstacles,
the dynamic obstacle avoidance subtarget scene and
the goal approaching subtarget scene are con-
structed. Te double deep Q-network with priori-
tized experience replay (PER-DDQN) is applied to
the action decision of USV in two scenes,
respectively.

(2) Amultiobjective reinforcement learning architecture
based on ensemble learning is designed, optimizing
the multiobjective policy integration method in the
USV path planning task.

(3) A USV path planning algorithm based on multi-
objective reinforcement learning is proposed, im-
proving the success rate of USV path planning tasks
and shortening the planned path length in the
complex environment.

Te rest of this paper is organized as follows. Te the-
oretical background of the PER-DDQN and the multi-
objective reinforcement learning method is introduced in
Section 2.Te proposed algorithm is introduced in Section 3.
Simulation experiments and results are presented in Section
4. Discussion is given in Section 5, and Section 6 concludes
this paper.

2. Related Work

2.1.Q-Learning. TeQ-learning algorithm is a value-based
reinforcement learning algorithm [21]. A Q-value table is
built and updated in the Q-learning algorithm. Each
action is selected with the greatest beneft based on the Q-
value. Te maximum Q-value of the next state is used to
estimate the Q-value of the current state. Te update
formula is as follows:

Q(s, a) � Q(s, a) + α r + cmaxa′ Q(s, a) − Q(s, a)􏼂 􏼃, (1)

where Q(s, a) denote agent’s expectation of reward for
performing action a in state s. α represents the learning rate
and c represents the discount factor.Te reward obtained by
the agent after performing action a is r, and the state is
changed to s′. Q(s, a) denote agent’s expectation of reward
for performing action a′ in state s′.

2.2.DeepQ-Network. To address the curse of dimensionality
in high-dimensional state spaces, Mnih et al. used a neural
network with θ to approximate the Q-value:
Q(s, a; θ) ≈ Q(s, a) [22]. DQNs are optimized by reducing
and minimizing Li(θi) � Es,a,r,s′[(y

DQN
i − Q(s, a; θi))

2] at
each iteration i, with target y

DQN
i � r + cmaxa′ Q(s, a; θ−

i ).
Here, θ−

i are the parameters of a target network that is frozen
for a number of iterations while updating the online network
Q(s, a; θi) by gradient descent. Te action a is chosen from
Q(s, a; θi) by an action selector, which typically implements
an ε-greedy policy that selects the action that maximizes the
Q-value with a probability of 1-ε and chooses randomly with
a probability of ε.

2.3. Experience Replay. Online reinforcement learning (RL)
agents incrementally update their parameters (of the policy,
value function or model) while they observe a stream of
experience [23]. Because the agent discards experience after
one update in simple reinforcement learning, rare valid
experience is underutilized. At the same time, there is a
substantial correlation between neighbouring experiences,
which is not favourable to model training. By storing ex-
periences in replay memory, experience replay can efec-
tively solve the above problems. It becomes possible to break
the temporal correlations by mixing more and less recent
experience for the updates [24].

2.4. Related Literature. Value function-based DRL algo-
rithm uses deep neural network to approximate value
function or action value function and uses temporal dif-
ference or Q-learning, respectively, to update the value
function or action value function. Many scholars use DRL
methods based on value functions, including DQN algo-
rithm and some improved variant algorithms, to motivate
robots or other agents to obtain optimal paths [25–27].
Additionally, with the introduction of the strategy gradient
method, DRL based on strategy gradient is used in robot
path planning, such as A3C [28], DDPG [29], TRPO [30],
and PPO [31]. When it comes to agent data control and
management, blockchain hyperledger fabric is one of the
practical technologies [32, 33]. We have briefy summarized
some of the recent literature, as shown in Table 1.

3. Methodology

When the USV performs a mission in a complicated marine
environment with various dynamic impediments, it needs to
arrive at its destination without colliding with the obstacles.
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It is necessary to create a model that can select appropriate
actions in diferent states in order to achieve dynamic ob-
stacle avoidance and goal approaching.

3.1. PER-DDQN. Te PER-DDQN improves the learning
efect and the learning speed by introducing the DDQN and
priority experience replay. Two Q-networks are used in
DDQN to eliminate the bias caused by the greedy policy
[34]. Te current Q-network is used to calculate the action
corresponding to the maximum Q-value, and the target Q-
network is used to calculate the target Q-value corre-
sponding to the maximum action. Prioritized experience
replay is a stochastic sampling method that interpolates
between pure greedy prioritization and uniform random
sampling [35]. Te probability of being sampled is mono-
tonic in a transition’s priority, while guaranteeing a nonzero
probability even for the lowest priority transition. Te
probability of sampling transition i is defned as

P(i) �
p
α
i

􏽐kp
α
k

, (2)

where i is the priority of transition. Te exponent α de-
termines how much prioritization is used, with α� 0 cor-
responding to the uniform case. In the actual process, all
samples can be divided into n intervals, and uniform
sampling is performed in each interval. Te PER-DDQN is

used for the action decision of the agent in the constructed
scene. Te fowchart of the algorithm is shown in Figure 1.

3.2. Framework for Multiobjective Reinforcement Learning.
Te path planning task of the USV includes two subtarget
tasks, such as dynamic obstacle avoidance and goal
approaching. Te traditional reinforcement learning ar-
chitecture for a single task is no longer appropriate. A
multiobjective reinforcement learning architecture is built
for policy learning and ensemble in the main scene of path
planning, inspired by ensemble learning.

Te fundamental principle of ensemble learning is to
integrate the learning results of numerous weak models to
produce better overall results, which can be classifed into
bagging, boosting, and stacking. Te sample training set is
sampled with replacement in the bagging method, yielding T
independent sample sampling sets. T weak learners are
trained from T sample sets. Weighted average, voting, and
other strategy integration approaches are employed to
provide fnal decision results [36]. Figure 2 depicts the
fowchart.

Corresponding to weak learners in ensemble learning,
the designed multiobjective reinforcement learning archi-
tecture leverages subagents for training in subtarget scenes.
Diferent from traditional integration methods, the pro-
posed method uses a main agent based on the reinforcement
learning method for policy integration. According to the

Table 1: Related literature.

Study title Approach Merit Limitations Ref

DRL based
on value
function

An improved algorithm of
robot path planning in complex
environment based on double

DQN

Double
DQN

Te problem of lacking experiments is
solved by redefning the initialization
of the robot and the reward function

for the free position

Slow convergence speed of the
algorithm [25]

Te USV path planning of
dueling DQN algorithm based
on tree sampling mechanism

Dueling
DQN

Te algorithm can identify and avoid
static obstacles in the environment

and realize autonomous navigation in
complex environments

Internal connection between
the state-action pairs is not

strong enough
[26]

Tactical UAV path
optimization under radar

threat using deep
reinforcement learning

DQN-PER Alleviates the sparse reward problem Overvaluation of the action-
state value [27]

DRL based
on strategy
gradient

Advanced double layered
multi-agent systems based on
A3C in real-time path planning

A3C

Te correlation between state
distribution samples is eliminated, and
the sample storage mode of experience

playback mechanism is replaced

Convergence to local optimal
strategy [28]

Te path-planning algorithm of
unmanned ship based on

DDPG
DDPG

Te algorithm can be applied to
continuous state space and action

space
Sensitive to hyperparameters [29]

Hindsight trust region policy
optimization TRPO

Te algorithm can choose a more
appropriate step length during

training

Large environments and
policies are prone to large

errors
[30]

PPO-based reinforcement
learning for UAV navigation in

urban environments
PPO Te algorithm has better data

efciency and robustness

Te diference between the old
and new policies cannot be too

large with each update
[31]
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environmental state of themain scene, the main agent selects
the strategy of the subagent in the corresponding state of the
subscene and makes a decision. Te designed multiobjective
reinforcement learning architecture is shown in Figure 3.

3.3. Te Proposed Approach. Te PER-DDQN algorithm is
combined with the designed architecture for the constructed
path planning scene, and a USV path planning algorithm
based on multiobjective reinforcement learning is proposed.
Figure 4 depicts the overall process of the proposed method.

Step 1. Te subagents in each subtarget scene are
trained using the PER-DDQN algorithm, and the
strategies of each subagent are saved.
Step 2. In the constructed path planningmain scene, the
main agent is trained by the PER-DDQN method. Te
main agent selects subagent according to the current
environment state and gives the actions according to
the strategy of the selected subagent in this state.
Step 3. Te main agent executes actions of the selected
subagent, generating and storing experience for the
main agent to learn from.

4. Simulation Experiments

Te main scene, dynamic obstacle avoidance subtarget
scene, and goal approaching subtarget scene are built in
Unity3D to verify the efectiveness of the proposed method.
Te settings for scenario conditions and reinforcement
learning parameters are provided separately. Algorithms
were written by Python 3.8 and processed by a server with a
RAM (64G) and a CPU (Intel Core i9-11900K).

4.1. Scene Building. Te main scene of path planning con-
sidering random goal and multiple dynamic obstacles is
generated on a two-dimensional plane, as illustrated in
Figure 5, to represent the complicated marine environment.

Te dynamic obstacle avoidance subtarget scene is built
on the basis of the main scene, as shown in Figure 6, to focus
on the dynamic obstacle avoidance subtarget.Te agent does
not need to consider the problem of goal approaching and
instead attempts to travel through the obstacle region
without colliding. It is deemed efective obstacle avoidance
when the agent’s ordinate is larger than the ordinate of all

Training
Examples

Sample Set 1

Sample Set 2

Sample Set T

Training

Training

Training

Weak Model 1

Weak Model 2

Weak Model T

Output 1

Output 2

Output T

OutputStrategy
Integration

Figure 2: Flowchart of the bagging algorithm.

Environment

PER

State-action

S

current value
network

target value
network

DQN
error

function

Gradient of the
error function

Next state S’

Copy parameters
every N time steps

(s, a)

(s, a, r, s’)

Q (s, a;θ)

maxa’ Q (s’, a’;θ-)

argmaxaQ (s, a;θ) 

reward r

Figure 1: Strategy iteration and optimization based on PER-DDQN reinforcement learning algorithm.
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obstacles. When a collision occurs, it is regarded as obstacle
avoidance failure.

Te goal approaching subtarget scene is built on the basis
of the main scene, as shown in Figure 7, to focus on the goal
approaching subtarget. Dynamic obstacles are removed, and
the only learning objective is to approach the goal.

4.2. Simulation Setup

4.2.1. Initial Conditions. Te initial conditions of agents,
dynamic obstacles, and goals in the main scene and each
subtarget scene (dynamic obstacle avoidance and goal
approaching) are set to random values to ensure that the

training model generalizes and meets the actual application
requirements.

(1) Dynamic Obstacle Avoidance Subtarget Scene. For dy-
namic obstacles, set its radius to 0.5m, the maximum speed
to 1m/s, and the quantity to 3. Te states of three obstacles
are set using the A∗ path planning algorithm and the ORCA
dynamic obstacle avoidance algorithm to avoid mutual
collision. Te coordinates of dynamic obstacles’ starting
points are randomly selected in square areas centered on
(0m, 6m), (5m, 5m), and (−5m, 5m), respectively. Also,
the coordinates of dynamic obstacles’ end points are ran-
domly selected in square areas centered on (0m, −6m),
(−5m, −5m), and (5m, 5m). Te area of each area is 4m2.

Construction and division of scenes

Training of main agent

Main scene for path palnning

Main scene for path palnning

Training of sub-agents

Sub-target
scene 1

Sub-target
scene 1

Sub-target
scene 2

Sub-agent 1 Sub-agent 2Sub-target
scene 2

Main scene Policy of sub-agent

a1 s1, r1
a2 s2, r2

Action corresponding to the policy
of the selected sub-agent a’ Strategy set of sub-

agent π1 (s1), π2 (s2)

Environment state of
the main scene s

Environment sta
te of

the main scene s 1
, s 2

Main agent

Action for
policy

selection a

Reward r

GoalAgent Obstacle

GoalAgent Obstacle

Figure 4: Te overall process of the path planning algorithm for USV based on multiobjective reinforcement learning.
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Figure 3: Proposed framework for multiobjective reinforcement learning.
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For the agent, set its radius to 0.5m and the maximum speed
to 1m/s. Te agent’s initial abscissa and ordinate are chosen
randomly from the range [−2m, 2m], [−4m, −8m].

(2) Goal Approaching Subtarget Scene. Te goal is a rectangle
with a length of 5m and a width of 1m.Te initial abscissa of
the target is randomly selected within the range of [−5m,
5m].Te initial abscissa and ordinate of the agent are chosen
randomly from the range [−6m, 6m], [−8m, 4m].

(3) Main Scene. Te initial condition of the goal is consistent
with the goal in the goal approaching subtarget scene, and
the motion parameters of the dynamic obstacle are

consistent with dynamic obstacles in the dynamic obstacle
avoidance subtarget scene. Te agent’s initial abscissa is
chosen randomly from the range [−2m, 2m], [−4m, −8m],
and the initial ordinate is set to −8m.

4.2.2. Reinforcement Learning Parameter. Te reinforce-
ment learning settings for the agent in each scene, such as the
action space, state, and rewards, are set as follows.

(1) Action Space Setting. Te agent’s action space is set to
5 directions divided evenly into in the main scene and
each subscene, as shown in Figure 8, to reduce the
training cost.

(2) State Settings. Te states of the agent (s1,t and s2,t) are set
as equations (3) and (4) in two subtarget scenes (dynamic
obstacle avoidance and goal approaching):

s1,t � sself1, sobs1, sobs2, sobs3( 􏼁, (3)

s2,t � sself2, stgt􏼐 􏼑, (4)

where Sself1 and Sself2 are the states of the agent in two
subtarget scenes, represented by agent’s positions, respec-
tively, at t− 2, t− 1, t. Sobs1, Sobs2, and Sobs3 are the states of the
obstacles in dynamic obstacle avoidance subtarget scene,
represented by obstacles’ positions, respectively, at t− 2,
t− 1, t. Stgt is the state of the goal in goal approaching
subtarget scene, represented by goal’s position, respectively,
at t.

Te state of agent st is set as equation (5) in the main
scene:

st � sself′ , sobs1′ , sobs2′ , sobs3′ , stgt
′􏼐 􏼑, (5)

Goal
Agent (USV)
Dynamic Obstacle

Figure 5: Main scene for USV path planning.

Agent (USV)
Dynamic Obstacles

Figure 6: Dynamic obstacle avoidance subtarget scene.

Goal
Agent (USV)

Figure 7: Goal approaching subtarget scene.
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where sobs1′ , sobs2′ , sobs3′ , and sself′ are the states of the obstacles
and the agent in the main scene, represented by their po-
sitions, respectively, at t− 2, t− 1, t. stgt

′ is the state of the goal
in the main scene, represented by goal’s position, respec-
tively, at t. In dynamic obstacle avoidance subtarget scene,
the dimensions of action space and observation space are 5
and 8, respectively. In goal approaching subtarget scene, the
dimensions of action space and observation space are 5 and
3, respectively. In dynamic obstacle avoidance subtarget
scene, the dimensions of action space and observation space
are 5 and 9, respectively.

(3) Reward Setting.Te rewards of the agent (r1,t, r2,t, and rt) are
set as equations (6)–(8) in two subtarget scenes and the main
scene:

r1,t �

−0.5 if : 1< obs di st< 1.05,

−2 obs di st � 1,

1.5 yt >yi,t,∀i � 1, 2, 3,

0.3∗ yt − yt−1( 􏼁 − 0.015 else,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

r2,t �
1.5 if : targetcollide d,

0.2∗ (pre di st) − 0.005 else,
􏼨

(7)

rt �

−0.5 if : 1< obs di st< 1.05,

−1.5 obs di st � 1,

1.5 yt >yi,t,∀i � 1, 2, 3,

0.5∗ (pre di st − di st) −0.005,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

where obs_dist represents the distance between the agent and
the dynamic obstacle at time t. yt and yt−1 are the ordinates of
the agent at time t and time t− 1, respectively. target_collided
indicates whether the agent is in contact with the goal, and
dist and pre_dist are the distances between the agent and the
goal at time t and time t− 1, respectively. Te training pa-
rameters of the reinforcement learning algorithm in each
scene are shown in Table 2.

4.3. Result Analysis. After 800 times of training in the dy-
namic obstacle avoidance subtarget scene, the two samples
are shown in Figure 9. Te agent’s obstacle avoidance
strategy is slightly diferent in diferent scenes. Te dynamic
obstacles are evenly dispersed in front of the agent, as in-
dicated in Figure 9(a), and the collision risk is substantial.

Te agent chooses to move to the right, avoiding the range
where obstacles might congregate. Te dynamic obstacles
are concentrated at the agent’s front right, as shown in
Figure 9(b), and the agent chooses to go straight at the start.
When there is a risk of collision, the agent turns left to avoid
obstacles urgently.

After 800 times of training in the goal approaching
subtarget scene, the two samples are shown in Figure 10.
When the goal is in front of the agent, as shown in
Figure 10(a), the agent continues to adjust at the beginning
and end of the path while moving forward in the middle.
When the goal is far from the front of the agent, as shown in
Figure 10(b), the agent remains adjusted throughout. Te
results show that the agent can rapidly approach the goal
under various initial conditions without the interference of
dynamic obstacles.

After 800 times of training in the main scene, the two
samples are shown in Figure 11. As shown in Figure 11(a),
the obstacles are distributed in front of the agent. At the
same time, the target is far from the front of the agent. Te
agent chooses to move sideways quickly after going straight
through the obstacle area in the initial stage to approach the
goal. As shown in Figure 11(b), the obstacles are evenly
distributed in front of the agent. At the same time, the target
is near the front of the agent.Te agent chooses to go straight
and dynamically avoid collision in the obstacle area.

Te experimental results show that by dynamically
selecting the strategy of subagents, the main agent can avoid
obstacles and approach the goal in various scenes to ac-
complish the path planning task well. Terefore, the efec-
tiveness of the proposed method has been verifed.

5. Discussion

To verify the efectiveness of the proposed framework on
strategy integration, a comparison is made between rein-
forcement learning methods that use integration methods such
as linear voting method and rank voting method and our
method. At the same time, the proposed method is compared
with A∗+ORCA and the path planning algorithm based on
single-objective reinforcement learning to demonstrate the
advantages of the proposed method in path planning tasks.

5.1. Comparison with Other Ensemble Learning Algorithms.
In the linear votingmethod, theQ-value of each action in the
main scene is the normalized sum of the Q-values in the
corresponding states of each subscene. In the rank voting
method, the rank of each action in the main scene is the sum
of the ranks of the corresponding states of each subscene. In
these methods, the subagents and their strategies are con-
sistent with the proposed method. Te performance indi-
cators of these methods in the results of 100 random
experiments are shown in Table 3.

Te rank voting method has the worst integration efect
and the lowest success rate. Compared with the rank voting
method, the linear voting method considerably enhances the
success rate by keeping the path length from increasing. Te
path length of the proposed method is slightly longer than

a1

a2

a3

a4

a5

Figure 8: Action space of agent.
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that of the other two methods, but the success rate of goal
approaching and dynamic obstacles avoidance are higher.
Te proposed method has the best overall performance.

Tree random samples of the path planning results of the
threemethods in the same environment are shown in Figure 12.
“CA” represents the main agent to choose the strategy in the
dynamic obstacle avoidance subtarget scene. “TA” represents
the main agent to choose the strategy in the goal approaching
subtarget scene. Each agent makes better decision in low-
complexity environments to avoid obstacles and approach the
goal. In a more complicated context, however, the agents using
the traditional ensemble method face the issue of disordered
decisionmaking.Te decision strategy of the obstacle avoidance
agent is selected in the initial stage of the path to maximize the
success rate of obstacle avoidance. When approaching the goal,
the decision strategy of the goal approaching agent is selected to
maximize the success rate of goal approaching. Te proposed
method has a greater success rate of path planning in varied
situations than the other two ensemblemethods, demonstrating
the superiority of the proposed ensemble learning architecture
over the traditional ensemble methods.

5.2. Comparison with Other Path Planning Algorithms.
Te training times of PER-DDQN are 2400 times, and other
hyperparameters are consistent with themethod’s parameter

setting in the main scene. Te performance indicators of
these methods in the results of 100 random experiments are
shown in Table 4.

Te assumptions of the ORCA in the decision-making
process are inconsistent with the requirements of dynamic
obstacle avoidance in practical applications. Terefore, the
success rate of agent using the A∗+ORCA is low. DDQN
algorithm solved the problem of overestimation of action
value function in Q-learning. On this basis, PER-DDQN
uses priority sampling to accelerate the convergence speed of
the algorithm, and dueling DQN uses the competitive ar-
chitecture to estimate the value function more precisely.
Tey perform well in the constructed scenes. Our approach
combines the strengths of reinforcement learning with
ensemble learning. Te experimental results show that the
method proposed in this paper has the best overall per-
formance when considering path length and success rate.

Four random samples of the path planning results of the
four methods in the same environment are shown in Fig-
ure 13. Te policies provided by the A∗+ORCA method are
not sufcient for the agent to always avoid obstacles. Te
policies provided by dueling DQN are conservative, and
there may be detours. Te policies provided by the PER-
DDQN are not mature enough in dealing with conficts
between subtarget tasks. Many problems still exist such as
long planning path, failure to avoid obstacles, and

Table 2: Training parameters for reinforcement learning.

Scene Learning rate Batch_size Discount factor FC structure
Dynamic obstacle avoidance 0.0005 256 0.99 [64, 64, 32]
Goal approaching 0.001 256 0.99 [32, 32, 16]
Main scene 0.0005 256 0.99 [32, 32, 16]
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Figure 9: Experimental results of the agent’s dynamic obstacle avoidance subscene.
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Figure 10: Experimental results of the agent’s target approach subscene.
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Figure 11: Experiment results of the main scene of agent path planning.
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Table 3: Performance of various ensemble learning methods.

Method of policy
integration

Success rate of path
planning (%)

Success rate of goal
approaching (%)

Success rate of dynamic obstacle
avoidance (%)

Length of the
path (m)

Rank voting 52 55 91 17.68
Linear voting 57 63 94 16.98
Proposed method 93 96 97 17.96
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Figure 12: Continued.
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Figure 12: Path planning results of various ensemble learning methods in the same environment: (a) rank voting, (b) linear voting, and
(c) proposed method.

Table 4: Performance of various path planning methods.

Method of path
planning

Success rate of path
planning (%)

Success rate of goal
approaching (%)

Success rate of dynamic obstacle
avoidance (%)

Length of the path
(m)

A ∗+ORCA 42 100 42 16.43
Dueling DQN 82 97 85 18.32
PER-DDQN 80 98 81 18.57
Proposed method 93 96 97 17.96
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Figure 13: Continued.
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Figure 13: Path planning results of various path planning methods in the same environment: (a) A∗+ORCA, (b) dueling DQN, (c) PER-
DDQN, and (d) proposed method.
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approaching the goal.Te experimental results show that the
method proposed in this paper is generally safe and per-
forms well in various environments.

6. Conclusion

In this paper, a path planning algorithm for USVs in
complex marine environments based on multiobjective
reinforcement learning is proposed. To simulate complex
ocean environment, a complex scene including dynamic
obstacles and random goal is built. On this basis, two
subtarget scenes with goal approaching and dynamic ob-
stacle avoidance are established, respectively. Te PER-
DDQN algorithm is used to train the action decision of the
agent in the two subtarget scenes. A multiobjective rein-
forcement learning architecture is designed to optimize the
agent’s policy integration method in path planning. Te
simulation results show that the proposed method achieves a
higher path planning success rate and a shorter path length
than the traditional path planning methods.

Although the proposed method realizes the decision
making of the agents in the constructed scenes, the com-
plexity of the scene is still insufcient. Te computational
efciency and path planning success rate of the algorithm
will be reduced in complex environments. Modelling more
actual scenes and building more realistic training scenes can
efectively improve the adaptability of the algorithm. In
addition, the action space in the established model is dis-
crete, which is somewhat diferent from the real world.
Agents cannot output continuous action decisions in the
scenario of discrete action strategy only. Te assumption
that the next time step after the action can reach the target
position is also idealized, and inertial factors need to be
taken into account to optimize the model. In future work,
hostile ships with tracking capabilities will be added to the
scene to train the model better. Te dimension of the action
space will be increased to enhance the USV’s mobility. In
addition, changing the scene from 2-dimensional space to 3-
dimensional space is our follow-up research direction.
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