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Te deployment of photovoltaic (PV) cells as a renewable energy resource has been boosted recently, which enhanced the need to
develop an automatic and swift fault detection system for PV cells. Prior to isolation for repair or replacement, it is critical to judge
the level of the fault that occurred in the PV cell.Te aim of this research study is the fault-level grading of PV cells employing deep
neural network models. Te experiment is carried out using a publically available dataset of 2,624 electroluminescence images of
PV cells, which are labeled with four distinct defect probabilities defned as the defect levels.Te deep architectures of the classical
artifcial neural networks are developed while employing hand-crafted texture features extracted from the EL image data.
Moreover, optimized architectures of the convolutional neural network are developed with a specifc emphasis on lightweight
models for real-time processing. Te experiments are performed for two-way binary classifcation and multiclass classifcation.
For the frst binary categorization, the proposed CNNmodel outperformed the state-of-the-art solution with a margin of 1.3% in
accuracy with a signifcant 50% less computational complexity. In the second binary classifcation task, the CPU-based proposed
model outperformed the GPU-based solution with a margin of 0.9% accuracy with an 8× lighter architecture. Finally, the
multiclass categorization of PV cells is performed and the state-of-the-art results with 83.5% accuracy are achieved. Te proposed
models ofer a lightweight, efcient, and computationally cheaper CPU-based solution for the real-time fault-level categorization
of PV cells.

1. Introduction

With the beginning of 21st century, stimulation of im-
proving energy-efcient policies increased the public
interest towards renewable energy, especially the solar
energy, since it is noiseless and pollution-free. Tis in-
terest opened the gates for research studies in achieving
optimal performance for solar energy systems. Energy
systems, in general, are of two types: active systems and
passive systems [1]. Passive systems do not consume
energy; rather they convert energy from one form to
another. Photovoltaic (PV) systems are purely passive

systems as the electrical energy is generated directly from
semiconductors by the photovoltaic efect. With the
passage of time, diferent kinds of faults may occur de-
creasing the PV cells efciency such as hotspot fault, diode
fault, junction box fault, ground fault, arc fault, and line-
line fault [2]. Such faults may rise due to glass breaking,
oxidization, delamination of cells, and bubbling [2]. Apart
from reducing efciency, there is a risk of fre as well. For
detection and diagnosis of such faults, there are several
methods in practice including signal processing, statistical
approaches, current-voltage curve analysis, power loss
analysis, and machine learning-based techniques [3]. For
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detection of fault, a comparison between reference and
observed measurement is made. To maintain the PV
system’s efciency, the faults must be detected in the frst
place followed by isolation or maintenance of the faulty
cell. To detect the faults such as microcracks in PV sys-
tems, several techniques can be found in the literature [4].
One among them is Laser Beam Induced Current (LBIC).
It is an optical way to observe microcracks in PV cells
[5, 6]. An AC laser beam of wavelength ranging from
638 nm to 850 nm is produced by modulating the electric
current through the laser diode and directed on the
photosensitive device. Tis causes direct current (DC) to
fow through the semiconductor. Large current variation
by changing PV cell position indicates the presence of the
defect [7–9]. Another technique, Electron beam induced
current (EBIC) is the semiconductor-based analysis
technique in which the current is induced in the sample
and used as a triggering signal for image generation. Te
image highlights the local defects of the PV cell. Most of
the electronic beam techniques are performed using
scanning electron microscope (SEM) [10]. Photo-
luminescence (PL) imaging is another method where
electrons get excited in the conduction band after the
photon is absorbed. It causes recombination of the
electron hole pair. Te image is captured through CCD
camera. Te electroluminescence (EL) imaging method is
also used for detection of microcracks of the wafers and
solar cells by employing luminescence imaging. EL is a
form of luminescence in which electrons get excited in the
conduction band when electric current in forward bias
mode is passed through it. Te excitation of electrons
emits infrared radiation at wavelength ranging
950–1250 nm. Te image of solar cell is then captured
through charge-coupled device (CCD) cameras [10]. Te
defective or disconnected PV cell appears darker [11]. Te
defect can be conveniently located through visualization.
Te EL imaging phenomenon is shown in Figure 1. Te
diference between EL and PL is that, the PL technique
involves the excitation of electrons using laser light in-
stead of electric current [12]. Te EL imaging technique
works for fnished PV cells, whereas the PL imaging
technique is used for both wafers and solar cells.

Te convolutional neural networks (CNNs) have been
successfully employed for pattern recognition tasks.
However, in literature, only a few studies exist involving
CNN for EL image data classifcation, particularly the
defect-level classifcation. Most of them focused on the
binary classifcation problem where the GPU-based
computationally expensive solutions were proposed. In
fact, merely a couple of studies proposed CPU-based
cheaper and real-time solutions. In this paper, we aim to
develop the lightweight CNN-based models suitable for
CPU machines for real time processing. Te contributions
of this paper are summarized as follows:

(i) Te deep learning capability of fully connected
neural network is experimented with hand-crafted
features for fault-level classifcation of PV cells. Data
augmentation is performed to balance the class

representation and both preaugmentation and
postaugmentation results are presented.

(ii) Te two-way binary classifcation is performed by
segregating the data in two separate ways; hence, the
two independent results of binary classifcation are
presented.

(iii) A customized, simpler, and computationally ef-
cient CNN architecture is developed ensuring real-
time classifcation of EL image data. Te proposed
CNNmodel has 50% less parameters than the state-
of-the-art CNN-based solution.

(iv) Te proposed CNN model achieved state-of-the-art
results with a 23× shorter training time. Moreover,
the state-of-the-art result of multiclassifcation of
the EL image data is presented.

Te rest of the paper is organized as follows: Section 2
presents the related work, the detail of dataset is provided in
Section 3, the methodology is explained in Section 4, per-
formance evaluation strategy and the metrics are presented
in Section 5, Section 6 includes results and discussion,
Section 7 presents a detailed comparative analysis, and f-
nally, conclusion is added in Section 8.

2. Related Work

One of the basic approaches for fault detection is the
comparison of observed output power with the reference
power. Te diference higher than the defned threshold
indicates the presence of fault [13, 14]. A study presented the
application of Kalman flter for the prediction of power
output [15]. Te noisy measurements were taken as input
and given to the physical underlying model, which produced
an output value with the highest probability. Te output was
then used to locate the faults within the measurements of
voltage, current, and the power. Artifcial intelligence (AI)-
based techniques have also been used for fault detection.
Bayesian and fuzzy logic algorithms were tested to determine
the PV cell output [16]. Both supervised and unsupervised
machine learning techniques have been employed for PV
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Figure 1: Fault detection in PV cells via electroluminescence
imaging.
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system fault diagnosis such as k-nearest neighbor, decision
tree, and support vector machine (SVM) [17]. In a study, an
artifcial neural network (ANN) model was developed to
locate the short circuit (SC) in PV cell [18]. In another study,
Bayesian network (BN) was used to describe the causes of the
detected faults [19]. Another research claimed the error rate
of 0.35–0.55 by combining two approaches: SVM and k-
nearest neighbor for the detection of PV faults [20].
Mohamed and Nassar presented an ANN-based solution for
the diagnosis and repairing of PV systems [21]. Te
abovementioned studies involved machine learning tech-
niques for fault detection and diagnosis. However, the
features used in those studies were the measured readings of
current, voltage, and power, which involve the tedious
manual inspection and record.

Considering the physical inspection scenario, in most of
the cases, PV systems are placed at elevated places making it
difcult to locate the fault and isolate the faulty cell [22]. An
unmanned arial vehicle (UAV) equipped with thermal
camera may be a solution for fault detection in such a
scenario [23]. Te images captured with thermal camera
unveil the location of the fault in solar cells very conve-
niently. Recent literature shows the usage of thermography
for the detection as well as classifcation of PV faults.
However, it has its own limitations [24–26]. Te infrared
(IR) imaging has also been carried out for fault detection in
solar cells [9, 27]. However, it is challenging to locate the
exact location of the fault and identify microcracks in the
infrared images due to its relatively low resolution. Te
author concluded that a hot region in IR images may result
as a false positive. Te EL imaging, as mentioned earlier, is
the technique to identify the faults in PV cells, which in-
volves capturing the infrared energy emitted from the cell in
the form of gray-scale image. Te resultant EL image pro-
vides better resolution than an IR image [28, 29]. Various
studies have been carried out for fault detection in PV cells,
but a few considered EL imaging. A study presented Fourier
image reconstruction technique for fault detection in EL
images [30]. However, the authors considered limited de-
fects including fnger interruptions, small cracks, and breaks.
Moreover, it was a complex detection method due to shape
assumptions. Another study [31] used independent com-
ponent analysis (ICA) for defect detection; however, fnger
interruption and cracks were considered equal defects. In
another study, Stromer presented vesselness algorithm for
crack segmentation. However, the cracks larger than 20mm
in size were considered [32]. Recently, deep learning and
convolutional neural networks (CNNs) have been employed
for defect detection in PV modules. In a study [33], auto-
matic inspection of PV module was presented using deep
learning, however, only visible defects were considered.
Similarly, multispectral CNN was proposed for visible fault
detection [34]. A recent study presented the fault classif-
cation in electroluminescence images including the cate-
gories as defect-free, microcrack, break, and fnger-
interruption [35]. Te dataset was collected from a private
company as well as from public domain. Te general
adversarial network (GAN) was used for data augmentation
and pretrained CNN models were used for defect

classifcation, originally trained for ImageNet challenge [36].
Another study used CNN model for defect categorization in
PV cells [37]. However, the IR image data was utilized for
this purpose.

Apart from defect detection or categorization, recently,
studies have been conducted on detection of the level of the
defect. A study presented deep learning approach for defect-
level classifcation in PV cells using EL images [38]. For this
purpose, a public dataset of EL images labeled with four
distinct defect levels as classes was used [39]. Te author
used VGG-19 pretrained CNN model and tuned it via
transfer learning. Te model produced 88.4% accuracy for
binary classifcation; however, the experiment was per-
formed on the graphics processing unit (GPU)-based ma-
chine, making it a computationally expensive solution. Te
authors also performed SVM-based classifcation for real-
time processing and achieved 82.4% accuracy. Another
recent study proposed light CNN architecture for defect
level binary classifcation of the same EL image data [40].
Te authors considered the VGG-11 as the initial CNN
architecture and further simplifed it to obtain the optimal
and light architecture for the classifcation task. Te authors
claimed 93.02% classifcation accuracy; however, it was not
mentioned how the original four target classes ended up into
two classes to perform binary classifcation. Te data aug-
mentation was also performed but there is no mention of the
total samples, as well as the evidence of balancing the classes
after performing the augmentation.

Concretely, the analysis and classifcation of defects as
well as fault-level classifcation in PV images in real time still
demand further research in many aspects such as increasing
data volume via efcient data augmentation methods; the
estimation of simpler and optimized machine learning al-
gorithm to enhance robustness; and to estimate a lighter
network for achieving real-time processing. In addition,
being four-labeled categories of the publicly available EL
image data [39], there is no evidence of multiclass classi-
fcation in the literature.Terefore, there is a need to develop
a system for multilevel categorization as well.

3. The Data Set

For this research, a publicly available dataset of EL images is
used [39]. It consists of 2,624 image samples of healthy as
well as faulty PV cells. Each sample is an 8-bit gray-scale
image with a resolution of 300× 300 pixels. Tese image
samples were originally extracted at cell level frommono and
poly-crystalline PV modules, and were normalized with
respect to perspective and size. Te details of the dataset are
summarized in Table 1.

Te original images were initially analyzed by the human
experts based on working condition of the cell, and labels
were assigned in terms of defect probability. Tere are four
distinct classes labeled with defect probability 0.0, 0.33, 0.66,
and 1.0, where defect probability 0.0 represents the full
healthy cell; defect probability 0.33 characterizes less faulty
cell; 0.66 represents medium faulty and defect probability,
and 1.0 denotes full faulty cell. Concretely, the defect
probability represents the defect-level of the PV cell.
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Few samples from the dataset belonging to individual
categories are shown in Figure 2. Tere are diferent types of
labeled defects including microcracks, material defect, fnger
interruptions, and fracture interconnect which afected the
PV cell efciency. Although, the EL image dataset consists of
image samples with four class labels; however, the number of
images belonging to each class are not the same. Te
maximum number of samples belongs to healthy class
(defect probability 0.0), whereas the least representation is of
the class with defect probability 0.66. Te count of original
classwise samples in the dataset is given in Table 2.

4. Methodology

4.1.ArtifcialNeuralNetworkModel. Among the data-driven
approaches for pattern recognition and classifcation ap-
plications, ANN has been successfully used in the last couple
of decades. Customized architectures of feed-forward neural
network can be estimated to accommodate the complex
nature of the input-output relationship of the data. In this
work, deep ANN architectures are employed. For the
classifcation of EL image data, the ANN architectures are
estimated starting with single hidden layer and then ex-
tended up to multiple hidden layers until optimized.Te size
of each hidden layer is also estimated in the process by
observing the cross-validation error. Te Lev-
enberg–Marquardt (LM) algorithm is used for training the
network with zero mean square error (MSE) as the con-
vergence criteria. Te description of the fnal estimated
architectures is added in the results section.

4.2. Hand-Crafted Features. Te ANN requires features to
be fed with. Tere are several kinds of features which may be
considered, including polynomial features [41–43]. How-
ever, we opted for two kinds of popular and widely used
hand-crafted features: gray-level co-occurrence matrix
(GLCM) features and local binary pattern (LBP) features.

4.2.1. Gray Level Co-Occurrence Matrix. A GLCM repre-
sents spatially joint probabilities of pixel intensities in the
image. Te features computed from GLCM are classic yet
efective and provide the texture analysis of the image,
originally proposed by Haralick et al. [44]. A total of the
following 22 features from each of four GLCMs computed at
angles 0, 45, 90, and 135 degrees are computed [45]: au-
tocorrelation 1, contrast, autocorrelation 2, cross-correla-
tion, cluster prominence, cluster shade, dissimilarity, energy,
entropy, homogeneity, maximum probability, sum of

squares, sum average, sum variance, sum entropy, diference
variance, diference entropy, information measure of cor-
relation 1, information measure of correlation 2, inverse
diference, inverse diference normalized, and inverse dif-
ference moment normalized. A total of 88 features were
extracted from each image.

4.2.2. Local Binary Patterns. Local binary patterns (LBP) as
features have also been widely used for the applications of
pattern recognition and computer vision. Te simplest LBP
feature vector is generated as per the following steps:

(i) Dividing the window to be examined into cells of
9× 9 pixels per cell.

(ii) Comparing each neighboring pixel with the central
pixel

(iii) Assigning it value 0 if it is less than the central pixel
value, otherwise 1. Tis provides an 8-bit binary
number.

(iv) Computing the histogram of the cell for the fre-
quency of every number occurring.

(v) Normalizing the histogram.
(vi) Concatenating the normalized histograms of all the

cells.

From each of the image, a 59-dimensional LBP feature
vector was computed.

4.3. Customized Convolutional Neural Network. CNNs have
been used successfully in recent past for several applications
from simple visual recognition tasks up to vehicle’s au-
tonomous driving systems. A CNN consists of convolutional
layers, pooling layers, activation functions, and fully con-
nected (FC) layers. Te convolutional layer plays a vital role
since it extracts the features from the images. Te frst
convolutional layer is connected to the raw pixels, extracting
low-level features like edges, where the next layer gets
medium-level information, and subsequently the next layers
extract high-level features. Te pooling layer is employed to
reduce the size of the learned features by ignoring less
important information. Te FC layer is similar to the one in
ANN, where each neuron from the previous layer is con-
nected to every neuron in the current layer. Te number of
neurons in the output layer is kept equal to the number of
output labels. By customized, it means that the network is
built from scratch. Te architecture is selected by increasing
the size and recording the classifcation results on training

Table 1: Details of the dataset used in the proposed work.

Dataset detail
Number of images 2624 images
Image size 300× 300
Image type Gray scale
Bits/image 8-bit
Number of solar modules 44 modules (18 monocrystalline + 26 polycrystalline)
Target classes 4 (defect probability: 0, 0.33, 0.66, 1)
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data. Te details of the architectures and the classifcation
tasks are described in the results section.

4.4. Data Augmentation. Te EL image dataset has four
distinct classes. It can be observed from Table 3 that the
representation of full faulty class (defect probability 1.0) is
almost 50% of that of representation of healthy class (defect
probability 0.0). It can also be seen that there is signifcantly
a small representation of the medium faulty class (defect
probability 0.33). Te least representation among all is of
medium faulty class (defect probability 0.66). Since the
machine learning techniques are data-driven approaches,
therefore, for any dataset, the classifer is inherently biased
towards the target class having the largest number of
samples. Terefore, to assure the unbiased learning of the
classifer, it is important to balance the target classes before
the model training. Tis is normally done using data aug-
mentation when the acquisition of new data is not an easy
process. It is also extremely important that the augmentation
to be applied to the training data only, while the test data be
separated beforehand. In other words, the classifer should
be trained with the training data where it may have aug-
mented samples to balance all the target classes; however, the
test data should be original without any augmented sample.

Initially, the original data is randomized and divided into
training, validation, and testing at 70%, 15%, and 15%,
respectively. At this stage, both validation data and test

datasets have each 226, 45, 16, and 107 images for healthy,
less faulty, medium faulty, and full faulty classes, where these
sets were separated for later use. Next, the training data is
used for augmentation to balance the classes so that the
unbiased training of the classifer can be made sure. For
augmentation, afne transformation is performed, including
horizontal and vertical translation with ±10 pixels, image
rotation at ±90°, horizontal and vertical fip, and the in-
tensity transformation with a variation of ±5% in the original
pixel intensity. Te number of samples in the training data
before augmentation, belonging to healthy, less faulty,
medium faulty, and full faulty classes were 1056, 205, 74, and
501, respectively. Te postaugmentation training data size is
limited to 6,000 samples in total, with 1,500 samples per
category. Te augmented samples have an equal distribution
of four types of transformations. Since the class represen-
tation is kept equal after augmentation, the postaugmented
training data has the maximum number of augmented
samples (1500− 74�1426 augmented samples) for the

Prob. 0.0 Prob. 0.33 Prob. 0.66 Prob. 1.0

Sample 1

Sample 2

Sample 3

Figure 2: Few samples from the EL image dataset with distinct defect probabilities shown with diferent kinds of defects.

Table 2: Size of electroluminescence image data: classwise.

Class Label Defect probability Number of images
1 Healthy 0.00 1508
2 Less faulty 0.33 295
3 Medium faulty 0.66 106
4 Faulty 1.00 715

Table 3: Binary classifcation results of deep ANN using original
data: (a) GLCM features and (b) LBP features.

Actual class
Healthy Full faulty

(a) GLCM features

Predicted class Healthy 178 32
Full faulty 48 75

Classwise accuracy 78.7% 70.1%
Overall accuracy 75.9%

(b) LBP features

Predicted class Healthy 178 32
Full faulty 48 75

Class-wise accuracy 78.7% 70.1%
Overall accuracy 75.9%
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medium faulty class, as it had the least number of training
samples (74 samples) before augmentation. Consequently,
the healthy class has the least augmented samples
(1500−1056� 444 augmented samples), and the medium
faulty class has the most augmented samples (1, 426) in the
postaugmented training data. For evaluation of results, both
preaugmented (the original data) and postaugmented data
are used separately, and individual classifers are trained.

5. Evaluation Strategy and Metrics

As mentioned previously in the data augmentation section,
the data is divided into training, validation, and test sets at
70%, 15%, and 15% respectively. For ANN classifer, training
data is used for training the model, validation data to op-
timize it, and the test data for results evaluation. Terefore,
only test data containing 15% of unseen original samples is
used to evaluate the results of the deep ANN classifer. For
CNN model, training data is used for training, and the test
data is used for result evaluation. Te classifcation of PV
cells is performed three-way: two separate results are
recorded for binary classifcation, and one for multiclass
classifcation. Te classifcations tasks are defned as follows:

(i) Binary Classifcation. In this classifcation task, the
data of two classes are considered only: healthy class
and full faulty class. Te data of the remaining two
classes are not used in this case.

(ii) Binary Classifcation with 0.5 as Treshold. In this
classifcation task, the data of all classes are used but
represented with two labels only: healthy and full
faulty. For this purpose, samples of healthy class and
less faulty class are combined and labeled as healthy
class. Te samples of medium faulty and full faulty
class are combined and labeled as full faulty class. In
other words, defect probability of 0.5 is used as
threshold to convert four classes into two categories,
which is why this task is defned as binary classi-
fcation with 0.5 as threshold.

(iii) Multiclass Classifcation. In this task, the data are
classifed as per their original class label being
healthy, less faulty, medium faulty, or full faulty.
Concretely, all four classes are considered for
multiclass classifcation.

Te block diagram of the overall methodology is shown
in Figure 3. For each of the classifcation tasks, the estimated
optimal network architecture, the choice of hyper param-
eters, and the corresponding results are discussed in the
following section. As described earlier, the results are cal-
culated separately on preaugmented (original) data as well as
postaugmented data.

5.1. Hardware Details. Te experiment is performed on a
laptop system with the following hardware specifcations:
Intel core i3 CPU with 2.4GHz clock speed and 2GB RAM.
Te software used was MATLAB 2018b in Windows 10
environment.

For the evaluation of results, the confusion matrices with
true positives, false positives, true negatives, and false
negatives are shown. Te results of classwise accuracy and
the overall classifcation accuracy are also presented.
Moreover, the receiver operative characteristic (ROC)
curves along with the area under the curve (AUC) are
presented.

6. Results and Discussion

6.1. Deep Feed-Forward Neural Network Results. In this
section, the test data results for binary as well as multiclass
classifcation using deep architectures of feed-forward
artifcial neural network are presented. Hand-crafted fea-
tures i.e., GLCM and LBP are used for data representation,
and therefore, fed to the ANN architectures as features. It is
worthy to mention that for each task, a number of network
architectures were tested; however, the architectures of
only the best models are described in the following
subsections.

6.1.1. Binary Classifcation Using Original Data. For binary
classifcation with original (preaugment) data employing
GLCM and LBP features, the network architecture is opti-
mized by varying the number of hidden layers as well as the
size of hidden layers. Te input layer is fed with features,
while the output layer has two neurons. For GLCM features,
the fnal optimized network architecture has fve hidden
layers with [30-30-20-20-10] neurons, respectively. Similarly
for LBP features, the optimized network consists of three
hidden layers with 30 neurons in each hidden layer. Te test
data classifcation results using the GLCM and the LBP
features are presented in Table 3 (a) and (b), respectively. It
can be observed that the network with LBP features achieved
8.5% higher accuracy overall than the network fed with
GLCM features. A similar pattern can be seen in the case of
individual class accuracy.

6.1.2. Binary Classifcation Using Augmented Data. After
augmentation, the network is trained using 1,500 images
from each class. Te estimated optimized architecture for
this set of data is composed of three hidden layers both for
the GLCM and LBF cases with 30 and 10 neurons in each
layer, respectively. It is evident that the architectures using
augmented data are shallower as compared to the ones
estimated previously for preaugmented data. Tis is because
of improved learning of the network due to its large and
balanced representation of classes. Te accuracy is improved
by 10% for GLCM features, and 7.8% for LBP features with
augmented data, as shown in Table 4. Te maximum overall
accuracy for binary classifcation achieved is 92.2% by ANN
fed with LBP features. Overall, the LBP features combined
with the optimized architecture of deep ANN produce the
best accuracy among the four cases (original data with LBP
and GLCM; augmented data with LBP and GLCM) of binary
classifcation. Figure 4 presents the ROC curves for binary
classifcation results obtained in the discussed four cases.Te
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AUC value for each case is also shown.Te highest AUC can
be observed for ANN classifer fed with LBP features when
augmented data are used.

6.1.3. Binary Classifcation with 0.5 as Treshold Using
Original Data. For this second kind of binary classifcation
with original data, the optimized network architecture has
fve hidden layers with sizes [30-30-20-20-10] and three
hidden layers with sizes [30-30-30] for GLCM and LBP
features, respectively. Te test data classifcation results are
shown in Table 5. On comparing these results with the
results of binary classifcation in Section 6.1.1 (where only

two classes were used: healthy and full faulty of the original
data) in context of features’ signifcance, the current results
are contrarily better for GLCM features and worse for LBP
features. Te reason is the merger of four classes into two
classes, which increases the complexity of the problem and
afected the classifer’s performance. After data division
using a 0.5 defect probability, the GLCMs proved to have
better hand-crafted features than LBPs.

6.1.4. Binary Classifcation with 0.5 as Treshold Using
Augmented Data. After augmentation, the optimized ar-
chitectures ended up having three hidden layers with sizes
[30-20-10] and [30-30-30] for GLCM and LBP features,
respectively. It can be observed once again (as discussed in
Section 6.1.2) that after augmentation, the results are im-
proved for both feature kinds, where the GLCM produced
better results than the LBP, as shown in Table 6. By com-
paring the previous similar scenario in Section 6.1.2
(postaugmentation binary classifcation results shown in
Table 4), the current results are inferior due to the fact of
merging the four classes into two.

Among all four cases discussed above in subsections 5.1,
the best results are obtained using augmented data with
GLCM features, where the overall achieved accuracy is
recorded at 84.8%. Among the GLCM and LBP feature
choices, the accuracy for the defective class is the same;
however, the accuracy using GLCM features has increased

Binary Classifcation Multi ClassifcationBinary Classifcation with 0.5 Treshold

Binary Classifcation

Binary
Classifcation

Multi Classifcation

Multi
Classifcation

Binary Classifcation with 0.5 Treshold

Binary
Classifcation

with 0.5
Treshold

DEEP ANN

DEEP ANN DEEP ANN

DEEP ANN

GLCM Features

GLCM Features

LBP Features

LBP Features

Original Data

EL Image Data of PV Cells

Augmented Data Customized
CNN

Figure 3: Block diagram of overall methodology of the PV dataset classifcation.

Table 4: Binary classifcation results of deep ANN using aug-
mented data: (a) GLCM features and (b) LBP features.

Actual class
Healthy Full faulty

(a) GLCM features

Predicted class Healthy 203 24
Full faulty 23 83

Classwise accuracy 89.8% 77.6%
Overall accuracy 85.9%

(b) LBP features

Predicted class Healthy 216 16
Full faulty 10 91

Classwise accuracy 95.6% 85%
Overall accuracy 92.2%
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for the healthy class, leading to an increase in overall ac-
curacy in the case of GLCM features, as shown in Table 6.
Te results of LBP features are improved after augmentation.
Figure 5 presents the ROC curves for binary classifcation
results with 0.5 threshold obtained in the above discussed
four cases. It can be noted that the value for AUC for all four
cases is similar; however, the best performance can be ob-
served for GLCM features using augmented data.

6.1.5. Multiclass Classifcation Using Original Data. Here the
results of multiclass classifcation for four classes using the
original data with deep ANN are presented. Te optimized
architecture ended up having fve hidden layers with [30-30-
20-20-10] hidden neurons and three hidden layers with 30
neurons per hidden layer for GLCM and LBP features,
respectively. Te LBP features showed 7.8% higher accuracy

than the GLCM features, as shown in Table 7. If we look at
the results, it can be observed that the network fed with LBP
features was able to predict 46.7% of samples from the less
faulty class correctly, while the network fed with GLCM
features misclassifed all the samples from this category. In
addition, both the networks (fed with GLCM and LBP
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Figure 4: Receiver operative characteristic curve analysis of binary classifcation results employing ANN with hand-crafted features for
preaugmentation and postaugmentation data.

Table 5: Binary classifcation results of deep ANN with 0.5 as
threshold using original data: (a) GLCM features and (b) LBP
features.

Actual class
Healthy Full faulty

(a) GLCM features

Predicted class Healthy 223 33
Full faulty 48 90

Classwise accuracy 82.3% 73.2%
Overall accuracy 79.4%

(b) LBP features

Predicted class Healthy 230 29
Full faulty 41 94

Classwise accuracy 84.9% 76.4%
Overall accuracy 82.2%
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Figure 5: Receiver operative characteristic curve analysis of binary
classifcation results with 0.5 as threshold employing ANN with
hand-crafted features for preaugmentation and postaugmentation
data.
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features) failed to predict any sample correctly frommedium
faulty class. It happensdue to less representation of this class
for training and similarly less in the test data (16 to be exact).

6.1.6. Multiclass Classifcation Using Augmented Data.
After augmentation, both networks are able to predict a few
samples from each class, as shown in Table 8. LBP features
achieved 3.8% higher accuracy as compared to their previous
preaugmented data case, while the prediction accuracy as-
sociated with GLCM features dropped by 1.8% overall after
augmentation.Tis drop in accuracy is due to comparatively
high generalization error for the healthy class after aug-
mentation. Te optimized ANN architecture for post-
augmented multiclass classifcation ended up having three
hidden layers with [30-20-10] hidden neurons and [30-20-
20] hidden neurons for GLCM and LBP features, respec-
tively. Overall, the LBP features obtained superior classif-
cation accuracy and proved to be a better hand-crafted
feature choice with ANN, both for binary and the multiclass
classifcation tasks. Moreover, the optimized ANN archi-
tectures fed with LBP features ended up having fewer hidden
layers as compared to the optimized architectures for GLCM
features’ case. Concluding, the LBP features outperformed
the GLCM features with respect to both accuracy and the
network computational complexity.

6.2. Convolutional Neural Network Results. In this section,
binary and multiclass classifcation is presented using cus-
tomized CNN architectures. Considering the ANN results
presented in the previous section, it is clear that the clas-
sifer’s performance both for binary and multiclass classi-
fcation was improved after data augmentation. Tis is
because the original data have limited as well as an im-
balanced representation of target classes; hence, the network
shows better performance with the augmented data. Based
on that, we consider only postaugmented data for CNN
training. Tis section will explain the design of task-specifc
optimized CNN architectures and the obtained results.

To estimate the CNN architecture for a specifc task like
binary classifcation, it is started from scratch with a single
convolutional layer with a pooling and a fully connected

layer. Te complexity is increased progressively until con-
vergence is achieved for the specifc task based on the
training data results. Te minimum flter size for con-
volutional layer is chosen 3× 3 to start with and increased to
be 5× 5 and up to 7× 7 maximum. All the flters are applied
with stride 1. Te combinations of diferent flter sizes are
tested in the convolutional layer. To estimate the number of
flters to be used per convolutional layer, initially 8 flters
were chosen and further increased by a multiple of 2.
Similarly, the number of convolutional layers is increased to
achieve the improved results. Te optimized number of
convolutional layers is estimated based on best training data
results. In the pooling layer, max-pool scheme is opted for to
reduce the size with stride 2. After pooling layer, the fully
connected layer is added with the Softmax activation
function. In estimating the optimal CNN architecture, a
large number of architectures were tested with diferent
choices of convolutional layers, convolutional flter size, and
the number of pooling layers. During the process, both the
accuracy of the network as well as the computational cost is
observed. Terefore, by observing the trade-of between
accuracy and computational complexity, the best CNN
architecture is selected. Since three separate classifcation
tasks are performed in this research, three independent,
task-specifc, and customized CNN models are estimated.

We develop the customized CNN model for each of the
classifcation problems: binary classifcation, binary classi-
fcation with 0.5 as threshold, and multiclassifcation. A total
of 25 diferent architectures of CNN are tested with a suitable
selection of hyperparameters to fnd the optimized network
for the three classifcation tasks. Te fnal, customized ar-
chitecture for each of the classifcation tasks is presented in
Figure 6. Te optimized CNN architecture for binary
classifcation has the following specifcations: three con-
volutional layers with ReLU (Rectifed Linear Unit) acti-
vation function; the optimum flter size is 5× 5 in all layers;
the frst and second convolutional layers have 64 flters,
while the third layer has 32 flters. Te convolutional layers
are followed by a single pooling layer with max pooling
criteria applied with stride 2. Next, two fully connected (FC)
layers are added, and fnally the softmax function is used for
prediction. For the task of binary classifcation with 0.5 as
threshold, the optimized CNN architecture has Conv-Pool-
Conv-Pool-FC layers arrangement, where the frst con-
volutional layer has 64 and second layer has 32 flters, both
with flter size of 5× 5. Te CNN estimated for multiclass
classifcation has Conv-Conv-Pool-FC layer architecture
with 32 and 16 flters in the frst and second convolutional
layers, respectively. In all the estimated CNN architectures,
the size of the FC layer is kept at 32 neurons, since it is
observed as a suitable minimum size for the FC layer. Te
training options and the hyperparameters for customized
CNNs are summarized in Table 9.

Now we present the classifcation results of the estimated
CNN models on the test data shown in Table 10. Te CNN
developed for binary classifcation achieved 94.3% accuracy.
On comparing with the binary classifcation case, the CNN
showed 2.1% higher accuracy than the best ANN model-
based results, achieved with LBP features (shown in Table 4).

Table 6: Binary classifcation results of deep ANN with 0.5 as
threshold using augmented data: (a) GLCM features and (b) LBP
features.

Actual class
Healthy Full faulty

(a) GLCM features

Predicted class Healthy 249 38
Full faulty 22 85

Classwise accuracy 91.9% 69.1%
Overall accuracy 84.8%

(b) LBP features

Predicted class Healthy 247 38
Full faulty 24 85

Classwise accuracy 91.1% 69.1%
Overall accuracy 84.3%
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Considering the classwise accuracy, the CNN achieved 0.4%
and 5.6% higher accuracy for the healthy and faulty classes,
respectively. Concluding, to detect a faulty PV cell, the CNN
is 5.6% more accurate than the ANN-based model.

In the second task, binary classifcation with 0.5 as the
threshold, the developed CNN achieved 89.3% accuracy,
which is 4.5% higher than the deep ANNmodel for the same
task. Similarly, looking at the classwise results, there is a
marginal improvement of 1.4% in accuracy for the healthy
class. However, the CNN outperforms the ANN with a
margin of 11.4% for the faulty class. Since the detection of a
faulty cell is more important than that of the healthy cell, the
CNN does the job with signifcantly improved accuracy.

Finally, there is an improvement of 7.4% overall for
multiclass classifcation with customized CNN than that of
the ANN model (see Table 8 (b)). By carefully observing the
Table 10 (c), it is evident that the CNN confused the majority
of misclassifed samples with the nearest class. For instance,
19 samples of the healthy class were confused with less faulty
class. Hence, most of the misclassifed samples were con-
fused with the nearest class. Tis happened for each of the

target class. In contrast, the ANN confused majority of the
samples with the far class, e.g., 30 healthy samples were
misclassifed as full faulty samples, as shown in Table 8 (b).
Terefore, it can be concluded that the CNN not only ob-
tained better results quantitatively but also qualitatively.

Figure 7 shows the classifcation results of a few random
samples from test data with a confdence percentage, for the
diferent classifcation tasks. It is worth mentioning that the
confdence percentage does not refect the defect probability
predicted by CNN. For instance, in Figure 7(a), the CNN
correctly predicted a healthy sample (top left) with a con-
fdence percentage of 91.3%. Tis means the network fnds
that 91.3% of the content of the image matches to the foot
print, which it has learned for the healthy class, and it is
represented as confdence in its decision. However, the high
confdence does not necessarily mean that the prediction is
correct.Tis is equally possible that the network misclassifes
even with a higher percentage. Tis is also the case in the
CNN results, as the faulty sample in bottom left of
Figure 7(a) is misclassifed as healthy. Similarly, the samples
shown in the bottom row of Figure 7(b) are both

Table 7: Multiclass classifcation results of the deep ANN using original data: (a) GLCM features and (b) LBP features.

Actual class
Healthy Less faulty Medium faulty Full faulty

(a) GLCM features

Predicted class

Healthy 194 39 12 47
Less faulty 0 0 0 0

Medium faulty 0 0 0 0
Full faulty 32 6 4 60

Classwise accuracy 85.8% 0% 0% 56.1%
Overall accuracy 64.5%

(b) LBP features

Predicted class

Healthy 196 18 6 34
Less faulty 0 21 8 5

Medium faulty 0 0 0 0
Full faulty 30 6 2 68

Classwise accuracy 86.7% 46.7% 0% 63.5%
Overall accuracy 72.3%

Table 8: Multiclass classifcation results of the deep ANN using augmented data: (a) GLCM features and (b) LBP features.

Actual class
Healthy Prob. 0.33 Medium faulty Full faulty

(a) GLCM features

Predicted class

Healthy 148 13 3 20
Prob. 0.33 27 27 02 9

Medium faulty 12 2 9 15
Full faulty 39 3 2 63

Classwise accuracy 65.5% 60% 56.2% 58.9%
Overall accuracy 62.7%

(b) LBP features

Predicted class

Healthy 182 7 2 25
Less faulty 7 34 3 2

Medium faulty 7 2 10 6
Full faulty 30 2 1 74

Classwise accuracy 80.5% 75.5% 62.5% 69.1%
Overall accuracy 76.1%
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Figure 6: Estimated architectures of customized CNN for diferent classifcation tasks. (a) Binary classifcation. (b) Binary classifcation with
0.5 as threshold. (c) Multiclass classifcation.

Table 9: Training options selected for the training of customized CNN for all three types of classifcations of the PV dataset.

Training options Binary classifcation Binary classifcation with 0.5 as threshold Multi-classifcation
Min batch size 10 5 15
Number of epochs 3 3 3
Validation frequency 3 iterations 3 iterations 3 iterations
Validation patience ∞ ∞ ∞
Initial learning rate 0.0001 0.0001 0.0001
Number of iterations 75 90 90
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Faulty, 66%Healthy, 83.6%

Faulty, 100%Healthy, 91.3%

(a)

Faulty, 94.8%Healthy, 82.5%

Faulty, 96.3%Healthy, 99.9%

(b)

Full Faulty, 45%Medium Faulty, 88.6%Less Faulty, 40.4%Healthy, 73%

Full Faulty, 99.2%Medium Faulty, 99.5%Less Faulty, 80.7%Healthy, 99.6%

(c)

Figure 7: Qualitative results of proposed customized CNN on random test data samples with confdence percentage. (a) Binary clas-
sifcation. (b) Binary classifcation with 0.5 as threshold. (c) Multiclass classifcation.

Table 10: Te customized CNN classifcation results: (a) binary classifcation, (b) binary classifcation with 0.5 as threshold, and
(c) multiclass classifcation.

Actual class
Healthy Full faulty

(a) Binary classifcation

Predicted class Healthy 249 38
Full faulty 22 85

Classwise accuracy 91.9% 69.1%
Overall accuracy 84.8%

(b) Binary classifcation with 0.5 as threshold

Predicted class Healthy 247 38
Full faulty 24 85

Classwise accuracy 91.1% 69.1%
Overall accuracy 84.3%

(c) Multi-class classifcation
Healthy Less faulty Medium faulty Full faulty

Predicted class

Healthy 194 4 1 4
Less faulty 19 38 1 7

Medium faulty 6 1 12 11
Full faulty 7 2 2 85

Classwise accuracy 85.8% 84.4% 75% 79.4%
Overall accuracy 83.5%
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misclassifed by the network. For multi-classifcation pre-
diction, the CNN confused the less faulty class and the
medium faulty class with each other and therefore, both
samples from these classes in the bottom row of Figure 7(c)
were misclassifed.

Overall, the CNN model outperformed all the ANN
models for each of the classifcation tasks. In addition to
achieving the best classifcation accuracy, the developed
CNN models also confrm the real-time classifcation of EL
image data. Tis is because the developed CNN models are
lighter and computationally less expensive. Te models are
developed from scratch adopting the bottom-up approach
for estimating the architectural depth while considering the
complexity-accuracy tradeof, in contrast to choosing a
pretrained CNN and progressively reducing the size of the
classifcation task in hand like in few existing studies. Te
deep learning approach proved to be a good approach since
the deep ANN models with hand-crafted features also
achieved comparative accuracy for binary classifcation task.

7. Comparison with Existing Studies

In this section, a comparative analysis with existing studies
which specifcally used the same EL image database is
presented.

7.1. Binary Classifcation

7.1.1. Classifcation Accuracy. Te authors in the study [38]
performed data augmentation and presented the two-way
binary classifcation, similar to the two strategies for binary
classifcation employed in this study. In this subsection, a
comparison of results for binary classifcation (using data of
two classes: healthy prob. 0.0 and full faulty) is presented,
while the comparison for binary classifcation with 0.5
threshold is discussed later in the subsection 5.2. For binary
classifcation, the author [38] claimed 82.44% accuracy using
SVM classifer, while the best results using the proposed
methods are achieved at 92.2% and 94.3% accuracy with
ANN and CNN, respectively. Hence, the proposed tech-
niques produced 11.86% higher accuracy in comparison to
[38]. In the other study [40], the authors presented a VGG
structure-based CNN classifer for binary classifcation of EL
image data and achieved the best accuracy of 93.5%, while
the four-fold average accuracy of 93.02%. In contrast, the
accuracy achieved using the proposed method is recorded of
94.3%, which is 0.8% (slightly) higher. Concretely, the
proposed CNN-based customized model outperforms the
state-of-the-art results for binary classifcation of the EL
image data in terms of accuracy.

7.1.2. Signifcance of Hand-Crafted Features. Te authors of
the study [38] extracted scale-invariant feature transform
(SIFT), speed up robust features (SURF), KAZE, and his-
togram of oriented gradients (HOG) features from images as
well as combinational features using dense sampling. In
general, such features are suitable and primarily used for
object detection and classifcation tasks where the nature of

complexity as well as the number of classes is much higher.
In comparison, a less computationally expensive features:
GLCM and LBP are proposed in this study, and yet obtained
better classifcation results.

7.1.3. Classifer’s Computational Complexity. Te VGG
structure-based 6-layered CNN architecture, including four
convolutional layers, was presented in the study [40] for
binary classifcation of EL image data. Te author split the
data into 80 : 20 ratios for training and testing purposes,
respectively, and achieved the best accuracy as 93.5%, while
the four-fold average accuracy was 93.02%. In comparison, a
customized yet lighter CNN architecture having three
convolutional layers is proposed which achieves 94.3% ac-
curacy. Considering the computational cost, the CNN
presented model in the study [40] had 2,410,208 parameters,
whereas the proposed model has 1,331,264 parameters,
which was almost half.

7.1.4. Data Augmentation. Te original dataset contains a
total of 2,624 EL images. Te authors of the study [38]
performed data augmentation to increase the image samples
and obtained a total of 196,800 samples after augmentation.
In comparison, in this research a total of 6000 samples are
prepared after augmentation, which is almost 39× less in size
than [38]. In the study [40], the author performed data
augmentation to balance the classes; however, no infor-
mation was provided regarding data size after augmentation.

7.1.5. Processing Time for Training and Testing.
Considering the processing time, the proposed ANN-based
classifer elapsed 296 sec for training (using 6,000 samples)
and 7.4 sec to classify the test data (using 394 image samples)
with an accuracy of 92.12%. Hence, 18.78msec of time to
classify individual test images, refects the real-time pro-
cessing speed. Moreover, the proposed CNN-based classifer
elapsed 34min 52 sec for training and 37.2 sec for prediction
of test data, making 94.4msec to classify the individual test
data sample.Te authors in the study [40] claimed 8.07msec
to predict the individual test image sample; however, the
comparison for prediction time is not straight forward.

Firstly, the hardware used in this research has the fol-
lowing specifcations: Intel core i3 with 2.4GHz processor
and 2GB RAM, which are low as compared to the hardware
specifcation (Intel core i5 with 3.2GHz processor, RAM not
specifed) reported in the study [40]. Another reason for the
higher accumulated processing time in this research is the
size of the image. In the proposed work, the original size of
the image sample is used, i.e., 300× 300 pixels, while the
author in the study [40] resized (down sampled) the image to
100×100 pixels before use, which makes the image size 9×

smaller than the original size and therefore reduces the
processing time. Although the processing time to predict the
health of a test sample in this study is larger under the
described hardware constraint, it still ensures the real-time
grading of PV cells with higher accuracy. Comparing the
convergence time, the training time for the CNN used in the
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study [40] is reported 13 hr 45min, whereas the proposed
model took only 35min for training, which is 23× less time
for convergence.

7.2. Binary Classifcation with 0.5 as Treshold. For the case
of binary classifcation with 0.5 as the threshold, the author
of the study [38] employed CNN with transfer learning and
achieved an accuracy of 88.4%, whereas the proposed CNN
model achieved an accuracy of 89.3%. Te improvement in
accuracy is minor; however, the architectural complexity of
the proposed model is much lower.Te VGG-19 model with
14 convolutional layers and a large number of flters used in
[38] made it much more computationally complex than the
proposed CNN model, which has only two convolutional
layers, one pooling and one fully connected layer. Moreover,
the training data after augmentation is much smaller which
makes the proposed customized CNN architecture much
more efcient. In addition, the study [38] employs GPU for
the experiment, making it a hardware-demanding solution.
In contrast, the proposed CNN-based classifer works in
real-time on a CPU machine and yet achieves better ac-
curacy. Te training time elapsed by the proposed CNN-
based model for this particular task of binary classifcation is
47min 6 sec, and the test time is 31.6 sec. Terefore, the
prediction for a single test data sample is carried out in
80.2msec making the proposed classifer suitable for real-
time classifcation of PV cells.

7.3.Multiclass Classifcation. In addition to the two kinds of
binary classifcations, the multiclass classifcation of EL
image data is presented.Te best overall accuracy of 76.1% is
achieved by the proposed deep feed-forward neural network
with LBP features, while the customized CNN-based clas-
sifer achieves 83.5% accuracy overall. Te testing time for
multi-classifcation using the proposed customized CNN is
recorded as 28.7 sec for 394 samples. In other words, it took
72.84msec to predict the health of a single image sample of a
PV cell, making the proposed classifer a real-time suitable
solution to perform multi-classifcation on a CPU machine.
Te multiclassifcation of EL image data has not been
presented in existing literature yet; therefore, the state-of-
the-art results are presented in this category.

Te summary of comparative analysis is presented in
Table 11. Te results show the signifcance of the proposed
methods over the existing studies both quantitatively and
computationally.

 . Conclusions

In this study, the fault-level binary and multiclassifcation of
EL image data are presented. Te deep ANN models with a
minimum suitable size are estimated and optimized, where
hand-crafted features are extracted from the image data. Te
estimated deep architectures of ANN show best performance
when fed with LBP hand-crafted features, achieving 92.1%
and 76.1% accuracy for binary and multiclass classifcation,
respectively. In addition to ANN, customized, task-oriented,
and light-weight models of CNN are developed. Te pro-
posed CNN-based customized model achieved the state-of-
the-art 94.3% classifcation accuracy for the binary classi-
fcation. Te proposed model achieved 83.5% state-of-the-
art accuracy for multiclass classifcation as well as employing
a CNN-based model. In comparison, the proposed models
achieved enhanced performance than the existing solutions,
both quantitatively and computationally. Te proposed
solution may be used for real-time health assessment of PV
solar cells using EL imaging. Te results also support the
efectiveness of CNN-based approach for real time image-
based PV cell health classifcation. Considering the limita-
tion, the data was balanced to equalize the number of
samples by augmentation and while this procedure, the
number of augmented images were at a diferent scale with
respect to number. In future, the advance methods for image
augmentation may be used such as the general adversarial
network (GAN) to produce high-quality augmented samples
for better data representation and improved network
learning.
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Te datasets are available from the corresponding author
upon request (https://github.com/zae-bayern/elpv-dataset).
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Table 11: Comparative analysis for electroluminescence image database classifcation.

Comparison parameters
Study

[38] [40] Proposed method
Database (original) 2,624 2,624 2,624
Data division (%) 75–25 (train-test) 80–20 (train-test) 70-15-15 (train-val-test)
Training samples after augmentation 196,800 Not mentioned 6,000

Features
SIFT, SURT,
KAZE, HOG,

PHOW
× GLCM, LBP ×

Classifer SVM CNN VGG-based CNN Deep ANN Customized CNN
Binary classifcation accuracy 82.44% × 93.02% 92.1% 94.3%
Binary classifcation accuracy with 0.5 as threshold × 88.42% × 84.8% 89.3%
Multiclassifcation accuracy × × × 76.1% 83.5%
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