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Te corrosion of steel bars in concrete has a signifcant impact on the durability of constructed structures. Based on the gray
relational analysis (GRA) of the accelerated corrosion data and practical engineering data using MATLAB, a back propagation
neural network (BPNN) model, a multivariable gray prediction model (GM (1, N)), and an optimization multivariable gray
prediction model (OGM (1, N)) of steel corrosion were established by using a sequence of the key afecting factors. By comparing
the prediction results of the three models, it is found that the GM (1, N) model has larger ftting and prediction errors for steel
corrosion, while the OGM (1, N) model has smaller prediction errors in the accelerated corrosion data; the BPNN model ofers
more accurate predictions of the practical engineering data. Te results show that the BPNN and OGM (1, N) models are all
suitable for the prediction of steel bar corrosion in concrete structures.

1. Introduction

Te corrosion of steel bars induces corrosion cracks in
concrete structures.Te appearance of cracks makes it easier
for the corrosive media (H2O and O2) to reach the surface of
the steel bars, which accelerates the corrosion rate of the steel
bars. Corrosion reduces the cross section of steel bars and
severely afects the bond strength between the steel bars and
the concrete, resulting in structural failure.Te reduced load
capacity has a great impact on the durability and reliability of
the structure [1]. It is difcult to measure the corrosion of
steel bars in practice, especially those that are in service. In
recent years, theoretical and empirical models have been
proposed to estimate the extent of corrosion of steel bars
after rust swelling and cracking of concrete structures.
Bazant [2] and Zhang and Cheung [3] proposed a prediction
model for the extent of steel corrosion according to its
physical and chemical processes. Isgor and Razaqpur [4],
Zhang et al. [5], Zheng et al. [6], and Xu et al. [7] conducted
simulation tests in the laboratory to establish an empirical
model of the corrosion rate of steel bars changing with

environmental temperature, humidity, and other parame-
ters. Based on a long-term exposure test and actual engi-
neering durability test data, Guo et al. [8] proposed a
formula for predicting the loss rate of steel bars. Te the-
oretical model can refect the physical and chemical pro-
cesses of steel corrosion in concrete structures, and the
infuencing factors are comprehensive. However, many
parameters in the model are difcult to determine. Te
empirical model can be closely linked with reality, but there
are many complex factors in the model, which cannot be
fully considered, resulting in certain inconsistencies with
reality. Terefore, other methods are needed to predict the
amount of steel corrosion.

As a method to determine whether or not variables are
correlated and to determine the degree of their correlation,
GRA provides a comprehensive assessment model. It was also
applied to analyze the efects of the infuencing factors on the
steel corrosion which involves multiple variables with com-
prehensive correlations. Artifcial neural network has been
applied in the research of reinforcement corrosion [9, 10]. An
et al. [11] combined the GRA and BPNN methods to predict
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the corrosion of steel bars; the results proved that this method
can predict well. Luo et al. [12, 13] developed a hybrid en-
hanced Monte Carlo simulation and a dynamical adaptive
enhanced simulation method coupled with support vector
regression, which showed strong capability for application in
the fatigue assessment of turbine bladed disks and structural
reliability. Muiga et al. [14] adopted a gray prediction model
(GM (1, 1)) to evaluate the carbonization of long-span
reinforced concrete bridges. Te accuracy of the prediction
model was within a reasonable range and met the require-
ments of mathematical modeling. However, because of the
complex corrosion mechanism of steel bars in concrete
structures and the coupling relationship with crack width,
protective layer thickness, and steel bar diameter, the GM (1,
1) model has a poor prediction efect sometimes, and the
accuracy of its prediction is debatable [15]. In this study, a
BPNNmodel, a multivariable graymodel (GM (1, N)), and an
optimized multivariable gray prediction model (OGM (1, N))
of steel corrosion are established by using the sequence of the
key afecting factors after the gray relational analysis of the
accelerated corrosion data. By comparing the calculation
results of the three models with the practical engineering data,
the applicability of the models is verifed. Te calculation
results show that the BPNN and OGM (1, N) models perform
well in terms of the prediction of the corrosion of steel bars in
concrete structures and can provide some reference values for
the evaluation of structural durability.

2. Prediction Methods

2.1. Gray Relational Analysis. Gray relational analysis refers
to the degree of similarity between the curve geometry
formed by the studied sequence and the change analysis of
the infuence factor sequence in the development process of
the system. It helps to determine whether the connection is
close by indicating the degree of connection between the
curves. If changes in the trend of the two factors are con-
sistent, the correlation between them will be greater; if the
change in trend is inconsistent, the correlation will be lower
[16, 17]. Te gray correlation between sequences is refected
by the gray relational degree, which refers to the

measurement of the correlation between the dependent
variables over time or diferent objects, considering the
relevancy between the factors so as to distinguish each factor.
Te greater the correlation between each infuencing factor
for the system, the closer relationship between them.

For a given system, assume that there are N variables:

X � X1, X2, . . . , XN . (1)

With one out put X1 and N − 1 inputs
Xi(i � 2, 3, . . . , N). Tese two kinds of sequences have
strong correlations with each other. For each variable Xi(i �

1, 2, . . . , N), we assume that the sequence length is n, that is,

Xi � xi(1), xi(2), . . . xi(n) , i � 1, 2, · · · , N. (2)

Data standardization is used to deal with the problems of
inconsistent units among various sequence factors and in-
consistent physical meanings. Te mean and variance of
each impact factor sequence are calculated as follows:

xi �
1
n



n

k�1
xi(k),

σi �

�����������������

1
n − 1



n

k�1
xi(k) − xi( 




, (i � 2, 3, · · · , N),

(3)

where xi is the mean of each inputs sequence, and σi is the
variance of each inputs sequence.

Ten, we obtain

yi(k) �
xi(k) − xi( 

σi

, i � 2, 3, · · · , N, (4)

where yi(k) is the i-th input sequence after normalization.
Te diference sequences of the relevant factors are

found as follows:

∆yi(k) � y1(k) − yi(k)


, i � 2, 3, · · · , N. (5)

Te correlation coefcient is calculated between the
sequences as follows:

λ x1(k), xi(k)(  �

τmax
i

max
k

x1(k) − xi(k)


 + min
i

min
k

x1(k) − xi(k)




τmax
i

max
k

x1(k) − xi(k)


 + Δyi(k)
, 0≺ τ ≺ 1, (6)

where i � 2, 3, · · · , N and k � 1, 2, · · · , n and τ is the reso-
lution coefcient.

Te gray relational degree was calculated as follows:

λ X1, Xi(  �
1
n



n

k�1
λ x1(k), xi(k)( . (7)

Te gray relational degrees of all the infuencing factors
were calculated and ranked the λi (i � 2, 3, · · · , N) from high
to low, as λi2 > λi3 > · · · > λiN, and the gray relational coef-
fcient is between 0 and 1. Te greater the relational degree,

the stronger the relation, the correlation order is
λi2, λi3, · · · , λiN . According to the correlation order, the
standby schemes can be sorted and scientifc foundations for
decision-making are ofered.

2.2. BP Neural Network. Te back propagation neural net-
work (BPNN) can learn and store vast amounts of data
because it is inspired by the structure of neurons, as illus-
trated in Figure 1 [18].Te BPNN is a feedforwardmultilevel
neural network, which uses the network’s adaptive mapping
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ability to carry out back propagation and is able to realize
any non-linear operation from input to output [19, 20].
From the analysis of the network structure, the BPNN in-
cludes an input layer, an output layer, and a hidden layer
(which can also be multiple layers). Variables are read from
the input layer through the network’s adaptive learning
ability, and weights are calculated to determine the network
output. Te output result is compared with the target value,
and the error is calculated. Trough feedback and calcula-
tion for many iterations, the result can be output until the
overall error of the network meets the requirements of the
project.

Te key to using the BPNN algorithm for ftting the
amount of steel corrosion is to select the corrosion data set
as the training set and to construct the mapping rela-
tionship between each corrosion value in the corrosion
data set and the data of infuential factors to allow efective
training. Due to approximating ability to arbitrary non-
linear mapping, the BPNN has broad application in ftting
steel corrosion.

2.2.1. BP Neuron. Assuming that x1, x2, · · · , xn represents
the input of the neurons 1, 2, · · · , n, respectively;
wj1, wj2, · · · , wjn represent the connection weights of
1, 2, · · · , n and the j-th neuron, respectively; and bj is the
threshold.

Suppose the net input value Sj of the jth neuron is as
follows:

Sj � 
n

i�1
wjixi + bj � WjX + bj, (8)

where X � [x1, x2, · · · , xn]T, Wj � [wj1, wj2, · · · , wjn]

If x0 � 1 and wj0 � bj we obtain
X � [x0, x1, x2, · · · , xn]T, Wj � [wj0, wj1, wj2, · · · , wjn]

Ten,

Sj � 
n

i�0
wjixi � WjX. (9)

After the net input Sj passes through the transfer
function f(•) (this function is a monotonic rising function;
there must be a maximum value), the output value yj of the
j-th neuron is obtained:

yj � f sj  � f 
n

i�0
wji · xi

⎛⎝ ⎞⎠ � F WjX . (10)

2.2.2. BP Network. Assuming that the input layer, hidden
layer, and output layer of the BP network have n, q, and m
nodes, respectively, the weight values between the input
layer and hidden layer and that between the hidden layer and
output layer are vki and wjk, respectively. Te transfer
function of the hidden layer is f1(•), then,

zk � f1 

n

i�0
vkixi

⎛⎝ ⎞⎠, k � 1, 2, · · · , q. (11)

Te transfer function of the output layer is f2(•), and an
output value is obtained in accordance with the group of
weights and thresholds.

yj � f2 

q

k�0
wjkzk

⎛⎝ ⎞⎠, j � 1, 2, · · · , m. (12)

2.2.3. Error Back Propagation. In error back propagation,
the output error of each layer of neurons is calculated
through the output layer, the weight and bias value of the
hidden layer of the grid are adjusted according to the error
gradient descent method, and the parameters are continu-
ously modifed to reduce the error during the training
process. Te fnal error objective function is as follows:

E �
1
2



n

j�1


m

i�1
di − yi( 

2
, (13)

where di is the expected output value, and E is the error
objective function.

2.3. Gray Model GM (1, N)

2.3.1. Traditional GrayModel GM (1, N). For a given system,
assume that there are N variables:

X
(0)

� X
(0)
1 , X

(0)
2 , . . . , X

(0)
N . (14)

With one out put X
(0)
1 and N − 1 inputs

X
(0)
i (i � 2, 3, . . . , N). Tese two kinds of sequences have

strong correlations with each other. For each variable
X

(0)
i (i � 1, 2, . . . , N),we assume that the sequence length is

n, that is,

X
(0)
i � x

(0)
i (1), x

(0)
i (2), . . . x

(0)
i (n) , i � 1, 2, · · · , N. (15)

Te 1-AGO sequences of X
(0)
i are defned as follows:

X
(1)
i � x

(1)
i (1), x

(1)
i (2), . . . , x

(1)
i (n) , i � 1, 2, · · · , N. (16)

Temean sequences generated by consecutive neighbors
of X

(1)
i are defned as follows:

Hidden layer

Treshold βj Treshold αo 

Output layer

Weight ωji

Input layer

Weight ωoj

yt–n

yt–2

yt–1

yt

Figure 1: Structure of a BPNN with a single hidden layer [18].
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Z
(1)
i (k) � 0.5 x

(1)
i (k − 1) + x

(1)
i (k) , k � 2, 3, · · · , n, i � 1, 2, · · · , N.

(17)

Te expression of the GM (1, N) model is as follows
[21]:

dx
(1)
1 (t)

dt
+ ax

(1)
1 (t) � 

N

i�2
bix

(1)
i (t), (18)

where a is the development coefcient of the sequence,


N
i�2 bix

(1)
i (t) is the deriving term, and bi is the driving

coefcient.
Te equation (18) can be regarded as a system of linear

equations with respect to the parameters p � [a, b2, ..., bm]T,
that is,

Bp � Y, (19)

where

B �

x
(1)
2 (2) · · · x

(1)
m (2) −z

(1)
1 (2)

x
(1)
2 (3) · · · x

(1)
m (3) −z

(1)
1 (3)

· · ·

x
(1)
2 (n) · · · x

(1)
m (n) −z

(1)
1 (n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Y �

x
(0)
1 (2)

x
(0)
1 (3)

⋮

x
(0)
1 (m)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

Using the ordinary least-squares estimate (OLSE)
method, the parameters P can be obtained as follows:

p � a, b2, · · · , bm 
T

� B
T
B 

− 1
B

T
Y. (21)

Tus, the time response function of the GM(1,N) model
can be derived as:

x
(1)
1 (t + 1) � x

(0)
1 (1) −

1
a


m

i�2
bix

(1)
i (t + 1)⎡⎣ ⎤⎦e

− at
+
1
a


N

i�2
bix

(1)
i (t + 1). (22)

It can get the predicted value as follows:

x
(0)
1 (t + 1) � x

(1)
1 (t + 1) − x

(1)
1 (t). (23)

From the above discussion, we can see that the GM (1, N)
model has some obvious defects, such as themean coefcient
of the sequence in equation (18) and the driving term


N
i�1 bix

(1)
i (t) in equation (18) are all constants, which may

lead to poor predictive precision.

2.3.2. OGM (1, N) Model. Zhai et al. [21] and Kaki et al. [22]
proposed an optimized multivariable gray prediction model
OGM (1, N), which is diferent from the traditional gray
model GM (1, N). Te calculation steps are as follows:

Let the two variable sequences X
(0)
1 and

X
(0)
i (i � 2, 3, . . . , N) be defned as in equations (15) and

(16). Whereas the 1-AGO sequences be defned as:

Z
(1)
i (k) � (c − 1) x

(1)
i (k − 1)  − c x

(1)
i (k) , k � 2, 3, · · · , n, i � 1, 2, · · · , N,

(24)

where, the parameter c can be adjusted according to the
simulation accuracy.

Assume that the X
(1)
1 sequence approximates the ex-

ponential change law, and its infuence factor sequence is
X

(1)
2 , X

(1)
3 , · · · , X(1)

m ; then, the X
(1)
i sequence should satisfy

the following frst-order linear diferential equation:

dX
(1)
1

dt
� ax

(1)
1 + ρ2x

(1)
2 + ρ3x

(1)
3 + · · · + ρmx

(1)
m . (25)

Te above formula is discretized, and a linear correction
term c(k − 1) is added; then, the relationship between data
points changes in the dependent variable sequence ϕi.
Subsequently, the diferential equation expression of
OGM(1, N) is obtained as follows:

x
(0)
1 (k) + az

(1)
1 (k) � 

n

i�2
ρix

(1)
i (k) + c(k − 1) + ϕ. (26)

Upon discretizing it, we obtain

x
(0)
1 (k) + ca x

(1)
1 (k − 1) + x

(1)
1 (k) 

� ρ2x
(1)
2 (k) + ρ3x

(1)
3 (k) + · · ·

+ ρmx
(1)
m (k) + c(k − 1) + ϕ,

(27)

where k � 1, 2, · · · , n, and c(k − 1) refects the linear rela-
tionship between the dependent variable and the indepen-
dent variable.

Compared with the traditional gray model GM (1, N), an
additional linear correction term c(k − 1) is introduced in
(27) to improve the structure of the OGM (1, N) model.

In the new OGM (1, N) model (27), N + 2 parameters,
i.e., P � [a, ρ2, · · · , ρn, c, ϕ]T need to be estimated. Tese
parameters can be estimated by solving the system of linear
equations:

Bp � Y, (28)

where:

B �

x
(1)
2 (2) · · · x

(1)
m (2) −z

(1)
1 (2) 2 1

x
(1)
2 (3) · · · x

(1)
m (3) −z

(1)
1 (3) 3 1

· · ·

x
(1)
2 (n) · · · x

(1)
m (n) −z

(1)
1 (n) n 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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, Y �

x
(0)
1 (2)

x
(0)
1 (3)

⋮

x
(0)
1 (m)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (29)

P � aρ2 · · · ρncϕ 
T

� B
T
B 

− 1
B

T
Y. (30)

Substituting (30) into (27), the time response function of
the GM (1, N) model can be derived as follows:

x
(1)
1 (k) � 

k−1

t�1
η1 

n

i�2
ηt−1
2 ρix

(1)
i (k − t + 1)⎡⎣ ⎤⎦ + ηk−1

2 x
(1)
1 (1) + 

k−2

j�0
ηj
2 (k − j)η3 + η4 , k � 1, 2, · · · , n, (31)
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Table 1: Results of indoor accelerated corrosion test of reinforced concrete.

Data group ξ (mm/a) t (min) D (mm) c (mm) ω (mm) i (mm) d (mm)
1 0.012 2185 90.4 24.9 0.08 0.078 12.06
2 0.014 2985 90.4 24.9 0.13 0.078 12.12
3 0.027 4185 90.4 24.9 0.15 0.078 12.31
4 0.028 4985 90.4 24.9 0.21 0.078 12.33
5 0.032 5885 90.4 24.9 0.45 0.078 12.36
6 0.041 6655 90.4 24.9 0.62 0.078 12.39
7 0.011 6655 88 44 0.06 0.018 12.1
8 0.042 7815 90.4 24.9 0.71 0.078 12.4
9 0.015 7815 88 44 0.07 0.018 12.15
10 0.026 9134 88 44 0.08 0.018 12.3
11 0.052 9185 90.4 24.9 0.83 0.078 12.43
12 0.041 11254 88 44 0.14 0.018 12.39
13 0.101 11295 90.4 24.9 0.93 0.078 12.5
14 0.118 21735 90.4 24.9 0.98 0.078 12.63
15 0.13 21735 88 44 1.42 0.018 12.76
16 0.133 32300 88 44 1.61 0.018 12.87
17 0.122 32925 90.4 24.9 1.01 0.078 12.65
18 0.141 38131 88 44 1.62 0.018 13.01
19 0.128 38135 90.4 24.9 1.13 0.078 12.68
20 0.142 61385 90.4 24.9 1.62 0.078 13.08
21 0.148 61385 88 44 2.91 0.018 13.25
22 0.163 87645 90.4 24.9 3.69 0.078 13.65
23 0.173 87645 88 44 3.24 0.018 13.71

Table 2: Te practical engineering data (Liaoning Benxi and Shanxi steel plant).

Data group η (mm) ω (mm) fcu (MPa) c (mm) d (mm)
1 6.84 0.18 21.21 15 22
2 14.51 0.25 21.63 17 20
3 24.53 0.333 26.58 30 18
4 35.64 0.667 29.86 30 22
5 15.7 0.5 22.34 55 30
6 4 0.75 31.76 14 30
7 35.3 0.667 21.21 30 25
8 14.8 1.1 25.68 15 20
9 18.6 0.667 20.31 12 25
10 21.1 0.667 23.88 16 25
11 7.04 0.85 18 17.3 12
12 9.6 2 18 15.4 12
13 4.2 1.8 18 12.1 12
14 10.92 0.5 18 14.8 12
15 9.7 0.5 20 20 8
16 14.45 0.225 20 20 8
17 7.33 0.3 20 40 12
18 8.52 0.35 10 20 12
19 6.37 0.25 20 10 12
20 6.72 1.15 18 15.7 12
21 4.88 0.3 20 20 12
22 21.2 0.7 28.21 30 25
23 13.1 0.5 22.31 33.5 30
24 7.44 0.2 21.21 20 20
25 20.6 1 21.64 30 28
26 14.05 0.6 30.54 18 12
27 7.68 0.9 18 13.1 12
28 8.32 1.5 18 11.7 12
29 5.85 0.3 20 20 16
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where

η1 �
1

1 + ca
,

η2 �
1 − a

1 + ca
,

η3 �
c

1 + ca
,

η4 �
ϕ

1 + ca
,

x
(1)
1 (1) � x

(0)
1 (1).

(32)

Which is referred to as the OGM(1, N) model.
It can get the predicted value as follows:

x
(0)
1 (k) � x

(1)
1 (k) − x

(1)
1 (k − 1), k � 1, 2, · · · , n. (33)

3. Results

3.1. Calculation of GrayRelationalDegree. Te calculation of
the gray relational degrees is based on the corrosion test data
of steel bars presented in Tables 1 and 2.Te data in Table 1 is
the accelerated corrosion data of reinforced concrete indoors
collected by Liu and Wan [23]; and the data in Table 2 is the
practical engineering data collected by Chen et al. [9].

In Table 1, the steel bar corrosion rate ξ and the steel bar
corrosion extent η are included in the main sequence. Te
crack width ω, corrosion time t, corrosion current i, pro-
tective layer thickness c, steel bar diameter d, and steel bar
spacing D are included in the reference sequence for cal-
culating steel bar corrosion rate. Te gray relational analysis
of all infuencing factors is carried out, and the gray rela-
tional degrees is obtained as follows:

λi � λω, λt, λi, λc, λd, λD(  � (0.7704, 0.7516, 0.6268, 0.6224, 0.6021, 0.5928). (34)

Table 2 shows the crack width ω, concrete strength grade
fcu, and steel bar diameter d. Te thickness of the protective
layer c serves as the reference sequence for the amount of
steel corrosion. Te gray correlation analysis of all infu-
encing factors is carried out, and the gray relational degrees
is obtained as follows:

λi � λd, λfcu
, λc, λω  � (0.7943, 0.7648, 0.7604, 0.6783).

(35)

3.2. Establishment of Prediction Models Based on BPNN, GM
(1, N), and OGM (1, N) Models. Using the accelerated cor-
rosion data in Table 1, according to the results of the cor-
relation analysis, the BPNN model selects the crack width,
corrosion time, corrosion current, and protective layer

thickness to form the input vector; the steel corrosion rate
forms the output vector. A BPNN with four nodes in the
input layer and one node in the output layer is established.
Based onmultiple ftting trials, the hidden layer is set to eight
layers, and the learning rate is 0.035. In order to prevent the
network from over-ftting, the noise intensity is set as 0.01.
Te target error value is specifed as 0.65×10−3.

In GM (1, N) and OGM (1, N) modeling, crack width,
corrosion time, and corrosion current with a greater cor-
relation were included in the correlation sequences, and GM
(1, 3) and OGM (1,3) models were established.Te GM (1, 3)
model predicted the parameters to be G � [a, ρ2, · · · , ρn]T �

[−0.1001, 1.2176e− 6, 0.0272, 0.0298]T. After repeated trials,
when c � 0.05, the ftting and prediction results of the OGM
(1, 3) model were ideal, and the calculated prediction pa-
rameters are as follows:

G � a, ρ2, · · · , ρn, c, ϕ 
T

� [0.0513, 0, 0.0332, 0.0103, 0.001, 0.0037]
T
,

η1 � 1.0026,

η2 � 1.0515,

η3 � 0.001,

η4 � 0.0037.

(36)

According to practical engineering data presented in Ta-
ble 2, gray relational degrees is relatively high; therefore, both
the BPNN and gray multivariable model choose all infuencing
factors for modeling. Te BPNN modeling process is the same
as that using Table 1. Te predicted parameters obtained by

calculation using the GM (1, 4) model are G � [aρ2 · · · ρn]T �

[0.0643, −8.3266, 0.5578, −0.2714, 0.0427]T. After repeated
trials, when c � 0.75, the simulation and prediction results of
the OGM (1, 4) model were satisfactory. Te calculated pre-
diction parameters are as follows:
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G � a, ρ2, · · · , ρn, c, ϕ 
T

� [−4.0305, 0.1797, −0.0306, −0.0849, −0.0112, 0.6459, 15.7473]
T

η1 � 1.0085,

η2 � 1.0113,

η3 � 0.6514,

η4 � 15.8810.

(37)

3.3. Comparison of Calculation Results. Te above three
models are all modeled and ftted with N-3 groups of data,
and the remaining 3 groups of data are predicted. Te

ftting results are shown in Figures 2–5. And the pre-
diction results and errors of the diferent models are listed
in Tables 3 and 4.
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Figure 2: Results of the diferent models for rapid corrosion test.

0 10 15 20 25 30
Data group

0

5

10

15

20

25

30

35

40

Th
e s

te
el

 co
rr

os
io

n 
ra

te

5

Measured value
Fitting value with OGM
Fitting value with BP

Figure 3: Results of the BPNN and OGM (1, N) models for rapid corrosion test.
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4. Discussion

It can be observed from Figure 2, for the corrosion data of
the accelerated corrosion data, among those of the three
calculation methods, the ftting error of the GM (1, N) model
is relatively large, while the other two models have relatively
small errors.

It can be seen from Figure 3 that the ftting error of the
BPNN is much smaller than that of OGM (1, N). Because
steel corrosion is afected by many factors, there is a
highly nonlinear relationship between steel corrosion and
each infuencing factor, and the available data is limited.
It is especially suitable for BPNN ftting; however, the
BPNN may also exhibit over-ftting, resulting in

regularity distortion and the predicted value error being
relatively large.

It can be seen from Figures 4 and 5, for the measured
corrosion data of practical engineering buildings, due to
the large discretization of the measured values, the ftting
and prediction errors obtained using the GM (1, N) and
OGM (1, N) models are both large, while the predicted
results obtained using the BPNN model are close to the
real values.

It can be seen from the comparative analysis of the
prediction results in Tables 3 and 4, the average ftting
errors of the OGM (1, N) model for both the fast test and
the engineering scatter data are larger than those of the
BPNNmodel, whereas the predicted value of the OGM (1,
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Figure 4: Results of the diferent models for project data.
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Figure 5: Results of the BPNN and OGM (1, N) models for project data.
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N) for the accelerated corrosion data is closer to the real
value with minimal error. However, the BPNN model has
good prediction precision for practical engineering data.

5. Conclusions

Te corrosion of steel bars has a great infuence on the
safety and durability of reinforced concrete structures.
Tere are many factors that infuence the corrosion of
steel bars in practical engineering, such as the crack width
of the concrete structure, strength grade of concrete,
diameter of steel bar, thickness of the concrete protective
layer, and environmental factors of the project. In this
paper, the BPNN, GM (1, N), and OGM (1, N) are used to
ft and predict the accelerated corrosion data and prac-
tical engineering data of the concrete structure, and the
following conclusions are drawn:

(1) Compared with the traditional gray model GM (1, N),
the OGM (1, N) model exhibits a higher ftting and
predicting accuracy.

(2) Compared with the GM (1, N) and OGM (1, N)
models, the BPNN model exhibits a higher ftting
accuracy for the two kinds of data (the accelerated
corrosion data and practical engineering data

(3) Te BPNN has a higher prediction accuracy for the
practical engineering data, while the OGM (1, N)
model has a higher prediction accuracy than the
BPNN for the accelerated corrosion data.

(4) In the practical engineering data, there are several
infuencing factors for the corrosion of steel bars.
In this study, we only analyze a few infuencing
factors that cause greater correlation and do not
consider the atmospheric parameters of the ser-
vice environment of the actual engineering
structure. More relevant data can be collected for
model forecasting in actual engineering applica-
tions [23].
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