
Research Article
A Multiphase Semistatic Training Method for Swarm
Confrontation Using Multiagent Deep Reinforcement Learning

He Cai , Yaoguo Luo , Huanli Gao , Jiale Chi , and Shuozhe Wang

School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China

Correspondence should be addressed to Huanli Gao; hlgao@scut.edu.cn

Received 13 August 2022; Revised 29 September 2022; Accepted 5 October 2022; Published 7 July 2023

Academic Editor: Jun Ye

Copyright © 2023 He Cai et al. Tis is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we propose a multiphase semistatic training method for swarm confrontation using multi-agent deep reinforcement
learning. In particular, we build a swarm confrontation game, the 3V3 tank fght, based on the Unity platform and train the agents
by aMDRL algorithm calledMA-POCA, coming with theML-Agent toolkit. Bymultiphase learning, we split the traditional single
training phase into multiple consecutive training phases, where the performance level of the strong team for each phase increases
in an incremental way. On the other hand, by semistatic learning, the strong team in all phases will stop learning when fghting
against the weak team, which reduces the possibility that the weak team keeps being defeated and learns nothing at all.
Comprehensive experiments prove that, in contrast to the traditional single-phase training method, the multiphase semistatic
training method proposed in this paper can signifcantly increase the training efciency, shedding lights on how the weak could
learn from the strong with less time and computational cost.

1. Introduction

Inspired by behavioral psychology, reinforcement learning
(RL) is an important machine learning method by mimicking
the learning patterns of humans and animals from the per-
spective of reward and punishment [1]. As shown in Figure 1,
in reinforcement learning, the agent perceives information
about the surrounding environment and takes actions it
deems appropriate, which will in turn bring back rewards or
punishments from the environment that will afect the agent’s
future decisions [2]. Te ultimate goal of the agent is to fnd
the policy that maximizes the reward value [3].

Te concepts and terms of reinforcement and rein-
forcement learning were frst proposed byMinsky [4] in 1954.
Years later, Waltz and Fu brought this concept to the control
community [5] and made it clear that the core mechanism of
reinforcement learning is trial and error by means of reward
and punishment. In 1957, Bellman solved the Markov de-
cision process with the idea of reinforcement learning [6],
making the Markov decision process the most common form
of defning reinforcement learning problems. Q-learning
proposed by Watkins further expanded the application of

reinforcement learning, which has become the most widely
used reinforcement learning method today [7]. However, the
development of reinforcement learning technology became
slow in the 90s, obscured by the light of supervised learning.
Te guidance with external supervision and preparatory
knowledge of supervised learning is completely diferent with
the philosophy of reinforcement learning. Reinforcement
learning has thrived again since 2013 marked by the historical
DeepMind’s paper which adopted reinforcement learning to
play Atari games. From then on, with the rapid development
of high-performance computing, big data, and deep learning
technologies, deep reinforcement learning (DRL), which
integrates deep learning with reinforcement learning, began
to emerge, especially in the feld of games. Te agents trained
by Mnih et al. [8] are able to successfully learn from visual
perception consisting of thousands of pixels, and the agents
obtained by this method performed at a level comparable to
that of experienced players in Atari 2600 games. As is known
to all, the AlphaGo robot developed by Deepmind defeated
the world Go champion Lee Sedol [9]. Furthermore, the
AlphaGo Zero, based on deep reinforcement learning, easily
defeated AlphaGo after a short period of training with

Hindawi
Computational Intelligence and Neuroscience
Volume 2023, Article ID 2955442, 10 pages
https://doi.org/10.1155/2023/2955442

mailto:hlgao@scut.edu.cn
https://orcid.org/0000-0002-0411-1774
https://orcid.org/0000-0003-2232-9950
https://orcid.org/0000-0002-7468-7349
https://orcid.org/0000-0002-3010-8878
https://orcid.org/0000-0003-3204-8407
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2955442


complete self-learning [10]. In 2017, the agent created by
Brown and Sandholm defeated the world’s top players at the
game of Poker [11]. Besides the feld of games, deep rein-
forcement learning has also made remarkable achievements
in other areas such as autonomous driving [12] and robot
control [13].

Te great success of deep reinforcement learning has
encouraged researchers to explore more complex multiagent
systems (MAS). Multiagent system refers to a distributed
intelligent system composed of multiple agents which is
expected to achieve some global goals [14]. By taking the
MAS as system models, the structure, function and behavior
characteristics of the system are expressed through the
communication, coordination, distributed scheduling,
management and cooperative control among the agents.
MAS has many advantages, such as autonomy, distribution,
coordination, self-organization, cooperative learning, and
reasoning [15], which makes it a promising solution to
practical application problems with high robustness, reli-
ability, and efciency. A MAS endowed with reinforcement
learning algorithms can independently explore and fnd the
optimal solution for the team through the interactions be-
tween agents as well as the interactions between agents and
the environment. In this way, no human intervention is
required to program an agent with complex strategies to
accomplish the specifc goals. Te ability of MAS to seek
optimal solutions in the face of complex environments is
unmatched by other methods, which can provide a unifed
model for various practical situations for most cases. In
order to solve problems under more complex multi-agent
environments, researchers applied DRL to the MAS, which
gave birth to Multiagent Deep Reinforcement Learning
(MDRL). In the early stage, Tampuu applied the famous
DRL algorithm, i.e., the DQN algorithm to the Atrai game
[16] and successfully realized cooperation and competition
between agents by adopting self-play learning [17] and two
diferent reward strategies. However, this method does not
consider the communication between agents and each agent
regards other agents as part of the environment, thus leading
to the problem of a nonstationary environment which makes
the learning efciency rather low. In recent years, with more
eforts devoted to the MAS environment, several novel

MDRL algorithms have been proposed. In [18], Sukhbaatar
and Fergus proposed a MARL algorithm called CommNet,
which realizes real-time communication between agents and
shows better performance in contrast to the algorithms
without communication. In [19], Lowe proposed the
MADDPG algorithm, which is a policy gradient algorithm
based on the actor-critic framework and has efectively
solved the nonstationary environment problem. In [20],
Sunehag et al. proposed the VDN algorithm, which adopted
the idea of value function decomposition and successfully
solved the problem of multi-agent credit assignment [21].
Later, Son proposed an improved VDN algorithm named
QTRAN [22], which used a nonlinear matrix decomposition
method for the Q function and further improved the
learning performance. Nowadays, through the most ad-
vanced MARL algorithm, agents has exhibited a high degree
of swarm intelligence and can even beat human masters. In
2019, MDRL based OpenAI Five, launched by the OpenAI
team, defeated the world champion OG team in the 5v5
mode of the DOTA2 game [23]. Tough human players
could still beat OpenAI Five under certain constraints, the
triumph of OpenAI Five proves to the world the great
prospects of MDRL.

In this paper, we propose a multiphase semistatic
training method for swarm confrontation using MDRL. In
particular, we build a swarm confrontation game, the 3V3
tank fght, based on the Unity platform and train the agents
by an MDRL algorithm called MA-POCA, coming with the
ML-Agent toolkit. In the training process, for the scenario
where a weak team is fghting against a strong team, the
traditional single-phase training method for the weak team
does not perform well. Specifcally, the weak team some-
times learns nothing from the strong team and keeps being
defeated, and for the cases that the weak team managed
learning from the strong team, the train process would be
extreme time-consuming with low training efciency.
Motivated by this observation, in this paper, a novel training
method is proposed featuring multi-phase learning and
semistatic learning. By multiphase learning, we split the
traditional single training phase into multiple consecutive
training phases, where the performance level of the strong
team for each phase increases in an incremental way. On the
other hand, by semistatic learning, the strong team in all
phases will stop learning when fghting against the weak
team, which reduces the possibility that the weak team keeps
being defeated and learns nothing at all. Comprehensive
experiments prove that, in contrast to the traditional single-
phase training method, the multiphase semistatic training
method proposed in this paper can signifcantly increase the
training efciency, shedding lights on how the weak could
learn from the strong with less time and computational cost.

2. Preliminary

Te ML-Agent Toolkit is a reinforcement learning toolkit
developed by Unity Technology. Based on the Unity plat-
form, ML-Agent Toolkit enables the game scene to be used
as a training environment for reinforcement learning, which
considerably facilitates the work of researchers.

Agent

States

Observation

Environment

Change the 
environment

Action

Reward

Figure 1: How agents learn by reinforcement learning.

2 Computational Intelligence and Neuroscience



Te most important component in ML-Agent Toolkit is
the learning environment, which consists of two parts: the
agent and the behavior.

(i) Agent: the agent can be any object in the game scene.
Tey collect observations from the environment at
all times and take actions accordingly. Tey may get
a positive or negative scalar reward value after taking
actions. In addition, each agent is endowed with
behaviors.

(ii) Behavior: behaviors are the characteristics which
describe the agent. Each behavior is marked by a
unique Behavior Name. Te role of the behavior is
to return the desired action based on the obser-
vation and reward of the agent. Behavior include
three types: Learning, Heuristics, or Inference. By
default, behavior is assumed to be of the type of
Learning.

In addition, the ML-Agent Toolkit also includes some
other important components, such as the python low-level
API, external communicator, python trainers, and Gym
wrapper [24].

For now, the main reinforcement learning algorithms
supported by ML-Agent Toolkit are SAC, PPO, and MA-
POCA algorithm. Besides, theML-Agent toolkit also supports
online/ofine learning and behavioral cloning techniques.
Tese algorithms and techniques can be applied to symmetric
and asymmetric self-play. SAC and PPO algorithms support
options Module and Long-Short-Term Cell to extend algo-
rithms and strategies by Intrinsic Curiosity [25].

MA-POCA is the latest reinforcement learning algo-
rithm released by Unity Technology, which is devoted to
multiagent reinforcement learning. Tis algorithm learns a
centralized value function to estimate the expected dis-
counted return of the group and a centralized agent-
centric counterfactual baseline to achieve credit assign-
ment in the manner of COMA [26]. Interestingly, MA-
POCA algorithm does not directly train the agent, but
trains an “instructor,” which is a centralized critic. Te
instructor teaches the whole team, rather than any indi-
vidual [27]. Rewards can be given to the entire team, and
the team will help the individuals to reach their goals.
Furthermore, MA-POCA uses self-attention over active
agents in the critic network [28], thus solving the problem
of posthumous credit assignment without the need for
absorption states [29]. Trough the MA-POCA algorithm,
even if the agents died in the confrontation, they can still
know whether their actions are benefcial to the team’s
victory, and in this way they can learn and take actions that
are more benefcial to the team in the next confrontation.
Sometimes they even resort to self-sacrifce to help the
team win.

3. Experiment and Results Analysis

In this section, we will introduce the environment setting,
conduct experiments and analyze the associated results. Te
basic idea is to compare the learning performance of the

single-phase training method and multiphase training
methods subject to diferent “turning steps.” Te team to
train is a model fnishing 10M (For ease of expression. Te
authors will abbreviate “million” as “M” in the following
text; for example, 100 millions is expressed as 100M.) steps
of self-training. In the training process, the strong team stops
learning, and that explains why the training method is called
semistatic. Winning rate is adopted as the main index to
examine the learning performance. Figure 2 shows a typical
complete game process.

3.1. Environment Setting. In this paper, the simulation en-
vironment is built based on the Unity platform. Unity not
only has a powerful graphics rendering function but also has
the characteristics of fast distributed simulation features,
which can signifcantly improve the learning efciency.

Te experiment scenario is designed as a fat rectangular
area. In order to prevent the tanks from driving out of the
area, walls are set around the area. Tanks are divided into red
and green teams, each of which has three members. Te
positions of tanks are random when games begin, as shown
in Figure 3.

In our experiment scenario, tanks can only move on the
X-Z plane. Te goal for the tanks is to eliminate as many
enemy tanks as possible and retain their vitality by moving
and fring shells. Te rules of the game are described as
Algorithm 1.

It is necessary to set reasonable attributes for tanks. Te
basic attributes include health, speed, shell damage, and
vision. Te attributes of a tank are summarized in Table 1,
and all the tanks have the same attributes. It should be noted
here that the actual initial velocity of the shell is the su-
perposition of the tank speed and the fring speed, so the
maximum can reach 30m/s without failing to catch up with
the enemy.

In addition, we adopt a sensor called ray perception
sensor to help the tank perceive other tanks and walls. When
a tank is equipped with this sensor, a number of rays will be
generated starting from the origin of the coordinate system
of the tank, and these rays will be emitted outward at a
uniform angle, which can occluded by entities. As shown by
Figure 3(b), when these rays hit an entity, the tank can get
the entity’s tag, say, teammate, enemy or wall. Te relevant
parameters of the ray perception sensor are given by: rays
per direction: 15; sphere cast radius: 0.5m; ray length: 70m;
stacked raycasts: 5; start vertical ofset: 1m; end vertical
ofset: 1m.

3.2. Experiment Models. In this paper, semistatic training
means in the training process between a strong team and a
weak team, the weak team will keep learning, while the
strong team will not. Now, we introduce the following
models.

(i) Model Z: trained for 100M steps in self-play mode
in the frst stage. In the second stage, increase the
Maximum HP of the current model from 15 to 20.

Computational Intelligence and Neuroscience 3



Let this strengthened model be the strong team, and
the original model be the weak team. Train the weak
team against the strong team in the semi-static way
for another 80M steps;

(ii) Model 0: trained for 10M steps in self-play mode,
not converge;

(iii) Model 1: on the basis of model 0, trained for 96M
steps in self-play mode;

(iv) Model 2: select model 1 as the weak team and model
Z as the strong team for semi-static training. We get
model 2 after 24M steps.

(v) Model 3: select model 1 as the weak team and model
Z as the strong team for semi-static training. We get
model 3 after 119M steps.

All these models are trained by theMA-POCA algorithm
as aforementioned. In the self-play mode, the tanks will fght
against themselves and update the model at regular intervals.
Model 0 is trained only for 10M steps, and at this stage the
reward curve for Model 0 has not yet converged as Model Z
does. In other words, Model 0 is a beginner with some basic
knowledge about the game, which makes it a suitable model
to be further trained by the method proposed in this paper.

(a) (b)

(c) (d)

(e) (f )

Figure 2: A typical complete game process. (a) Game kicks of. (b) Tanks start to confront. (c) A green tank is destroyed frst. (d) Both teams
lose one tank at the same time. (e) Another red tank is destroyed. (f ) Te red team fnally wins.

4 Computational Intelligence and Neuroscience



In the following experiments, we choose Model 0 as the
week team, and choose Model 1, 2, and 3 as the strong team.
Te initial confrontation information of the three strong
teams vs. the weak team is given in Table 2. Te criteria for
the selection of the weak team is as follows. On one hand, the
weak team cannot be too strong since it will deviate from the
concern of this paper which studies how to learn quickly
between twomodels with huge gap. On the other hand, if the
pretraining is overinsufcient, the model will just be too
weak to learn anything from any other model. In the training
process, the models can sometime exhibit intelligent be-
haviors. For example, tanks will enclose the enemy to
achieve favorable position. Tey also know that it is better to
attack from behind. In some cases, one tank will lure the

enemy, while other teammates attack in a sneaky way. Some
typical intelligent scenes are shown in Figure 4.

3.3. Reward Strategies. For multiagent reinforcement
learning algorithms MA-POCA, the behaviors of each agent
are mutually infuenced. We need to set rewards not only for
a single agent, but also for the whole team. Without any
doubt, reward setting greatly afects the training perfor-
mance, including both the design of the reward items and
their associated values. In our case, since group winning is
the ultimate goal for the game, it is endowed with a relatively
large reward in comparison with the rewards gained by
intermediate and individual behaviors of the agents.

(a) (b)

Figure 3: Environment setting. (a) Te experiment scenario. (b) Ray perception.

Input: Begin (Bool value)
Output: Winner (if timeout or both teams are eliminated, return NULL)

(1) Loop
(2) Set MaxEnvironmentSteps � 8000
(3) for CurrentSteps≤MaxEnvironmentSteps and Begin � True do
(4) if NumRed � 0, NumGreen � 0 then
(5) Break
(6) else if NumberRed � 0 then
(7) Return Green

(8) else if NumberGreen � 0 then
(9) Return Red

(10) end if
(11) end for
(12) Return NULL

ALGORITHM 1: Game rules.

Table 1: Te attributes of a tank.

Maximum HP 15 points Te angular velocity of the tank rotation 10°/s
Te maximum speed of the tank 15m/s Te feld of view distance of the tank 70m
Te angle of view of the tank 360° Cooling time for fring shells 1.6 s
Maximum damage of shell 10 points Te blast radius of the shell 2 m
Maximum fre speed 15m/s Minimum fre speed 10m/s

Computational Intelligence and Neuroscience 5



Moreover, in addition to the fnal result of winning or losing,
the group damage and battling time are also taken into
consideration for reward calculation. Specifcally, small
group damage and short battling time will bring extra re-
wards to the winning team. It is worth mentioning that the
absolute reward values are immaterial in training, but the
relative reward values assigned for diferent individual and
group behaviors matter. In the ofcial example, the reward
value is usually set less than 1. Tables 3 and 4 present our
main reward strategies, where the terminologies HP,
FullHP, ResetTimer, MaxEnvironmentSteps, and
GroupHP denote the current health of each tank, the
maximum health of each tank, the current game steps, the
maximum game steps, and the sum of HP of all teammates,
respectively.

3.4. Parameters Confguration. All reinforcement learning
training in the experiment is confgured using the same
confguration fle to make the obtained data convincible.
Since the experimental scene in this paper is much more
complex than the case for a single agent, it is important to set

Table 2: Te initial confrontation information of diferent strong teams vs. the weak team.

Label Training steps (millions) Game statistics (win/lose) Winning percentage
1 106 1373/726 65.4%
2 130 1214/282 81.1%
3 225 1087/132 89.2%

(a) (b)

(c) (d)

Figure 4: Intelligent behaviors of tanks in the confrontation. (a) Front and rear double-team (b) Go around behind the enemy and
attack. (c) Besiege the minority by the majority (d) Luring the enemy to create attack opportunities for teammates.

Table 3: Individual reward.

Win (alive) 0.6 + 0.6∗(HP/FullHP) −0.2∗
ResetTimer/MaxEnvironmentSteps

Win (deceased) 0.3
Dead −0.3
Destroy an enemy 0.15
Collision with tank −0.05
Collision with wall −0.5

6 Computational Intelligence and Neuroscience



suitable training parameters such as higher Num layers and
smaller Time horizon, where the specifc parameters con-
fguration are shown in Table 5. Te training parameters of
Table 5 are explained as follows.

3.4.1. Hyperparameters

Batch size refers to the amount of data required in each
gradient descent iteration, which should always be
multiple times smaller than Buffer size. In general,
the more complex the actions are, the larger the batch
size should be. In reinforcement learning, batch size
should be large (on the order of 1000 s) for continuous
actions, and small (on the order of 10 s) for discrete
actions.
Bufer size (default� 10240) refers to the amount of
data required before each policy model update, which
should always be multiple times smaller than
Batch size. Typically, large bufer size corresponds to
more stable training updates, yet slower training speed.
Learning rate (default� 3e− 4) represents the initial
learning rate for gradient descent, which corresponds
to the strength of each gradient descent update step.
Learning rate should be reduced if the training is
unstable.
Beta (default� 5.0e− 3) represents the strength of the
entropy regularization, which makes the policy more
random, ensuring that agents properly explore the
action space during training. Increasing beta will result
in more random actions, but too many random actions
may not lead to a good result. Beta should be adjusted
such that the entropy (measurable from TensorBoard)
slowly decreases along the increase in reward. If en-
tropy drops too fast, beta should be increased, and vice
versa.
Epsilon (default� 0.2) is a factor that afects how fast a
policy develops during training, which corresponds to
the acceptable diference threshold between old and
new policies during gradient descent updates. A large
epsilon can increase training speed but reduce stability.
Lambda (default� 0.95) is a regularization parameter
that afects how much the agent relies on the current
value estimate when computing the updated value
estimate. Low lambda makes the agent more dependent
on the current value estimate, while high lambda makes
the agent more dependent on the actual reward value

obtained from the environment. A suitable lambda can
make the training process more stable by balancing the
two.
Num Epoch (default� 3) refers to the number of passes
through the experience bufer when performing gra-
dient descent. Large batch size allows for large Num
Epoch. Decreasing Num Epoch can make the training
process more stable, but reduce the training speed.
Time horizon (default � 64) corresponds to the ex-
perience steps collected before each agent is added to
the experience bufer. When the step limit is reached,
the total reward value obtained by the current agent
will be predicted. Small time horizon means that the
agent frequently calculates the current year’s reward
value and adjusts the strategy accordingly, which is
more suitable for scenarios with frequent rewards.
Large time horizon should be set to ensure that all
important actions of the agent in the episode are
collected.

3.4.2. Network Settings

Hidden units (default� 128) are the number of units in
the hidden layer of the neural network. Its size depends
on the complexity of the problem, and should be set
larger when there is a complex relationship between
agent actions and observed variables.
Num layers (default� 2) are the number of hidden
layers in the neural network, which corresponds to how
many hidden layers exist after observing the input or
after the encoding of visual observations. Fewer layers
can achieve better training efciency, but for complex
training environments, more layers are necessary.

3.4.3. Reward Signals

Gamma (default� 0.99) corresponds to the discount
coefcient of future rewards, which afects how much
the agent pays attention to possible future rewards. A
larger gamma will make the agent more “visionary.”
Gamma is between 0 and 1.
Strength (default� 1.0) is the factor multiplied by the
reward value given by the environment, usually set by
the default value.

3.5. Experiment and Analysis. In experiments, we let Model
0 fght against Model 3 directly by using single-phase
training approach and multi-phase training approach, re-
spectively. Te idea of using the multiphase training method
here is frstly let Model 0 fght against Model 2 to 50M (we
call this step the “turning step”), and then let it fght against
Model 3. It is worth mentioning that the reward of Model 0
rises quickly before 50M steps during training, and it starts
to converge at around 47M steps, and thus we choose 50M
as the turning step.

By using single-phase and multiphase training from
10M to 100M steps, the individual reward and group

Table 4: Group reward.

Win
0.6 + 0.2∗(1-2∗

ResetTimer/MaxEnvironmentSteps)
+0.4∗GroupHP/45

Fail −1.0 +ResetTimer/MaxEnvironmentSteps
Destroy an enemy 0.1
Tie (die at the same
time) −0.2

Timeout −0.2

Computational Intelligence and Neuroscience 7



reward curves are shown in Figure 5. Due to temporary out-
of-memory, the training process may stop accidently. In
such cases, the training data would be lost for a few steps.
However, tensorboard can only draw continuous simulation
curves, and it will automatically fll up some invalid data to
make the curves continuous for the case of data missing,
which explains why the lines in Figures 5(b) and 5(d)
seemingly go back at some points. We have marked in
Figures 5(b) and 5(d) the true values of the training data by
red circles. In addition, multiagent reinforcement learning is
diferent from single-agent reinforcement learning. In the
MA-POCA algorithm, by the attention mechanism, the
observations and rewards of all team members will be used
as input, and the models will be updated together. Since all
three individuals share the same model, their individual
rewards are the same.

By comparing Figures 5(a) and 5(b), we fnd that when
steps are between 60M and 80M, the multiphase and single-
phase individual rewards are similar, but the diference
between the winning percentage of them is large. However,
by comparing Figures 5(c) and 5(d), we also notice that the
group reward of multiphase is bigger than single-phase
training. Te underlying reason is that the individual de-
cision-making of the multiphase trained team are more
inclined to sacrifce individual interests to achieve team
goals.Tis fact might also indicate that the individual reward
may not as important as group rewards in multi-agent re-
inforcement learning since the ultimate goal of agents is to
achieve group win.

In Figure 6, it can be observed that the performance of
training through multiphase has better performance at each
stage. Moreover, we can also fnd that when at 60M step, the

Cumulative Reward
tag: Environment/Cumulative Reward

0.45

0.35

0.25

0.15

0.05

0 20 M 40 M 60 M 80 M 100 M 120 M

(a)

Cumulative Reward
tag: Environment/Cumulative Reward

0 20 M 40 M 60 M 80 M 100 M

0.9

0.7

0.5

0.3

(b)
Group Cumulative Reward
tag: Environment/Group Cumulative Reward

0 20 M 40 M 60 M 80 M 100 M

0.3

0.1

-0.1

0.3

(c)

Group Cumulative Reward
tag: Environment/Group Cumulative Reward

0.9

0.7

0.5

0.3

0.1

0 20 M 40 M 60 M 80 M 100 M

(d)

Figure 5: Individual and group reward. (a) Individual reward of single-phase training. (b) Individual reward of multi-phase training.
(c) Group reward of single-phase training. (d) Group reward of multi-phase training.

Table 5: Te main parameters of training.

Hyperparameters
Batch size 2048 Bufer size 20480 Learning rate 3.0e− 05 Beta 0.01
Epsilon 0.2 Lambda 0.95 Num epoch 3 Time horizon 128

Network setting Reward signals
Hidden units 512 Num layers 3 Gamma 0.99 Strength 1

8 Computational Intelligence and Neuroscience



winning percentage of multiphase training(turning step-
s� 50M) reaches 45%, which can be considered to be close
to the level of Model 3, but the single-phase training only
reaches 45% at 100M (in fact, the winning percentage at
95M is only 44.2%). Terefore, multiphase training might
reduce the time by 41%–46% compared with single training,
which greatly improves the training efciency. Furthermore,
if the trained model is expected to achieve a winning per-
centage of 47%, multiphase training only needs 70M steps
but single-phase training takes 90M, which means that
single-phase training still needs 28.6% more time.

In addition, we also conduct multiagent training with
turning steps of 25M and 40M. As expected, they do not
perform as well as the case with turning steps of 50M. As
shown by Figure 6, the “25M” model is much weaker than
“50M” model in the way that it can only break 45% winning
percentage at 90M. By comparison, the “40M” model is
better than “25M” model on average but still need to be
trained to 90M to reach 45% winning percentage.

From these experiments, it seems that the frst-phase
training is of great importance as it dramatically inferences

the performance of trained model, and a model with poor
turning steps may result in bigger impact on the model
performance than the impact by inappropriate strategies or
parameter confgurations. By results of the “25M” model,
the “40M” model and the “50M,” it is probably that
choosing at the point where the model converges as the
turning steps might lead to the best performance.

4. Conclusion

In this paper, we build a 3V3 tank confrontation game and
the corresponding reinforcement learning environment
based on the Unity platform and the ML-Agents rein-
forcement learning toolkit. Te algorithm adopted is MA-
POCA which trains tanks to cooperate with teammates and
destroy their enemies. We propose a multiphase semistatic
reinforcement learning training method, which frstly fxes
several strong team without learning and then let the weak
team fght against these strong teams to train the weak team.
Experiments show that by setting the “turning steps” at the
convergence step of the model, the multiphase semistatic
method can greatly shorten the training time compared with
the traditional single-stage algorithm. Since our study is
based on the confrontation of tank groups, which is a typical
group confrontation environment, we believe the multi-
phase semistatic method proposed in this paper might be
applicable to other similar group confrontation tasks, such
as ball games and MOBA (Multiplayer Online Battle Arena)
games. Trough further experiments, this training method
may prove to be an efective way to address the issues of
training efciency and efectiveness for swarm confrontation
tasks.

Abbreviations

ML-Agent: Machine learning-agents
MAS: Multiagent system
RL: Reinforcement learning
DRL: Deep reinforcement learning
MDRL: Multiagent deep reinforcement learning
DQN: Deep Q-network
MA-POCA: Multiagent posthumous credit assignment.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis research was funded in part by the National Natural
Science Foundation of China under Grant nos. 62173149
and 62276104, and in part by the Guangdong Natural Sci-
ence Foundation under Grant nos. 2021A1515012584 and
2022A1515011262.

10 20 30 40 50 60
Steps (million)

70 80 90 100
10

15

20

25

30

35

40

45

50

55

W
in

ni
ng

 P
er

ce
nt

ag
e (

%
)

Single-phase
Multi-phase
(turning steps = 25 M)

Multi-phase
(turning steps = 40 M)
Multi-phase
(turning steps = 50 M)

Figure 6: Comparisons between the winning percentages of the
single-phase trainingmethod and themulti-phase trainingmethod.

Computational Intelligence and Neuroscience 9



References

[1] A. Nowé and T. Brys, “A gentle introduction to reinforcement
learning,” in Proceedings of the 10th International Conference
on Scalable Uncertainty Management, pp. 18–32, Springer,
Nice, France, 2016.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, MIT press, Cambridge, Massachusetts, 2018.

[3] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Rein-
forcement learning: a survey,” Journal of Artifcial Intelligence
Research, vol. 4, pp. 237–285, 1996.

[4] M. L. Minsky,Teory of Neural-Analog Reinforcement Systems
and its Application to the Brain-Model Problem, Ph.D. dis-
sertation, Princeton University, Princeton, New Jersey, 1954.

[5] M. Waltz and K. Fu, “A heuristic approach to reinforcement
learning control systems,” IEEE Transactions on Automatic
Control, vol. 10, no. 4, pp. 390–398, 1965.

[6] R. Bellman, “A Markovian decision process,” Indiana Uni-
versity Mathematics Journal, vol. 6, no. 4, pp. 679–684, 1957.

[7] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3/4, pp. 279–292, 1992.

[8] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level
control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[9] D. Silver, A. Huang, C. J. Maddison et al., “Mastering the game
of go with deep neural networks and tree search,” Nature,
vol. 529, no. 7587, pp. 484–489, 2016.

[10] D. Silver, T. Hubert, J. Schrittwieser et al., “Mastering chess
and shogi by self-play with a general reinforcement learning
algorithm,” arXiv preprint arXiv:1712.01815, 2017.

[11] N. Brown, T. Sandholm, and S. Machine, “Libratus: the su-
perhuman ai for no-limit poker,” in Proceedings of the IJCAI,
pp. 5226–5228, 2017.

[12] D. Li, D. Zhao, Q. Zhang, and Y. Chen, “Reinforcement
learning and deep learning based lateral control for auton-
omous driving [application notes],” IEEE Computational
Intelligence Magazine, vol. 14, no. 2, pp. 83–98, 2019.

[13] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep rein-
forcement learning for robotic manipulation with asyn-
chronous of-policy updates,” in Proceedings of the 2017 IEEE
international conference on robotics and automation (ICRA),
pp. 3389–3396, IEEE, Singapore, 2017.

[14] L. Buşoniu, R. Babuška, and B. D. Schutter, “Multi-agent
reinforcement learning: an overview,” Innovations in Multi-
Agent Systems and Applications-1, pp. 183–221, 2010.

[15] B. Chaib-Draa, B. Moulin, R. Mandiau, and P. Millot, “Trends
in distributed artifcial intelligence,” Artifcial Intelligence
Review, vol. 6, no. 1, pp. 35–66, 1992.

[16] A. Tampuu, T. Matiisen, D. Kodelja et al., “Multiagent co-
operation and competition with deep reinforcement learn-
ing,” PLoS One, vol. 12, no. 4, p. e0172395, 2017.

[17] E. A. Heinz, “Self-play, deep search and diminishing returns,”
ICGA Journal, vol. 24, no. 2, pp. 75–79, 2001.

[18] S. Sukhbaatar and R. Fergus, “Learning multiagent commu-
nication with backpropagation,” Advances in Neural Infor-
mation Processing Systems, vol. 29, 2016.

[19] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and
I. Mordatch, “Multi-agent actor-critic for mixed cooperative-
competitive environments,” Advances in Neural Information
Processing Systems, vol. 30, 2017.

[20] P. Sunehag, G. Lever, A. Gruslys et al., “Value-decomposition
networks for cooperative multi-agent learning,” arXiv pre-
print arXiv:1706.05296, 2017.

[21] A. Harati, M. N. Ahmadabadi, and B. N. Araabi, “Knowledge-
based multiagent credit assignment: a study on task type and
critic information,” IEEE Systems Journal, vol. 1, no. 1,
pp. 55–67, 2007.

[22] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi,
“Qtran: learning to factorize with transformation for coop-
erative multi-agent reinforcement learning,” in International
Conference on Machine Learning, pp. 5887–5896, PMLR,
Long Beach, Los Angeles, USA, 2019.

[23] C. Berner, G. Brockman, B. Chan et al., “Dota 2 with large
scale deep reinforcement learning,” arXiv preprint arXiv:
1912.06680, 2019.

[24] A. Majumder, “Setting up ml agents toolkit,” in Deep Rein-
forcement Learning in Unity, pp. 155–207, Springer, Berlin,
Germany, 2021.

[25] A. Juliani, V.-P. Berges, E. Teng et al., “Unity: a general
platform for intelligent agents,” arXiv preprint arXiv:
1809.02627, 2018.

[26] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and
S. Whiteson, “Counterfactual multi-agent policy gradients,”
Proceedings of the AAAI Conference on Artifcial Intelligence,
vol. 32, no. 1, 2018.

[27] A. Cohen, E. Teng, V.-P. Berges et al., “On the use and misuse
of absorbing states in multi-agent reinforcement learning,”
arXiv preprint arXiv:2111.05992, 2021.

[28] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you
need,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

[29] M. Kanupriya, A Multi-Agent Reinforcement Learning Ap-
proach for Flight Speed Control Systems, Ph.D. dissertation,
Nanyang Technological University, Singapore, 2022.

10 Computational Intelligence and Neuroscience




