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Due to the increasing use of information technologies by biomedical experts, researchers, public health agencies, and healthcare
professionals, a large number of scientifc literatures, clinical notes, and other structured and unstructured text resources are
rapidly increasing and being stored in various data sources like PubMed. Tese massive text resources can be leveraged to extract
valuable knowledge and insights using machine learning techniques. Recent advancement in neural network-based classifcation
models has gained popularity which takes numeric vectors (aka word representation) of training data as the input to train
classifcation models. Better the input vectors, more accurate would be the classifcation. Word representations are learned as the
distribution of words in an embedding space, wherein each word has its vector and the semantically similar words based on the
contexts appear nearby each other. However, such distributional word representations are incapable of encapsulating relational
semantics between distant words. In the biomedical domain, relation mining is a well-studied problem which aims to extract
relational words, which associates distant entities generally representing the subject and object of a sentence. Our goal is to capture
the relational semantics information between distant words from a large corpus to learn enhanced word representation and
employ the learned word representation for various natural language processing tasks such as text classifcation. In this article, we
have proposed an application of biomedical relation triplets to learn word representation through incorporating relational
semantic information within the distributional representation of words. In other words, the proposed approach aims to capture
both distributional and relational contexts of the words to learn their numeric vectors from text corpus.We have also proposed an
application of the learned word representations for text classifcation. Te proposed approach is evaluated over multiple
benchmark datasets, and the efcacy of the learned word representations is tested in terms of word similarity and concept
categorization tasks. Our proposed approach provides better performance in comparison to the state-of-the-art GloVe model.
Furthermore, we have applied the learned word representations to classify biomedical texts using four neural network-based
classifcation models, and the classifcation accuracy further confrms the efectiveness of the learned word representations by our
proposed approach.

1. Introduction

Biomedical literature, medical records, clinical notes, and
online databases such as PubMed are the treasury of valuable
information that is rapidly increasing in volume and size.

Biomedical professionals and researchers are exploring and
analyzing these large volumes of structured and unstruc-
tured texts to extract and curate valuable information using
diferent knowledge discovery and data mining techniques.
In this line, automated text classifcation using machine
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learning techniques has always been considered as a key
technique to categorize, flter, search, manage, or process a
large volume of text documents. Text classifcation is a key
natural language processing (NLP) task wherein texts are
labeled with specifc classes based on their contents. Such
labeling helps to extract valuable information for various
applications, such as disease surveillance, information ex-
traction, named-entity recognition, topic labeling, and social
media monitoring.

In the biomedical domain, the existing literature is a
valuable source of a large number of named entities, con-
cepts, features, and their associations. In this domain, text
classifcation has many applications including allocating
medical subject headings (MeSH terms) to the biomedical
articles [1, 2], identifying reportable disease cases from the
clinical and pathological reports, and categorizing bio-
medical documents based on their content. Furthermore,
classifying biomedical texts could help to improve the
performance of gene-disease association extraction, protein-
protein interaction extraction, understanding the func-
tioning of genes, or discovering any other kind of knowl-
edge.Te efciency and accuracy of any classifcation system
depend on the classifcation algorithm (or the classifer) used
and the input feature on which it operates. Since a classifer
learns a model from the training data in the form of feature
vectors, the role of feature vectors or feature representation
is very important in classifcation performance. In NLP
tasks, word representation (aka word embedding) has a
notable infuence on the performance of deep learning-based
classifcation models.

1.1. Traditional Word Representation and Its Limitations.
In traditional word representation techniques, words are
encoded as vectors of binary, tf (term frequency), or tf-idf
values, where tf-idf stands for “term frequency inverse-
document frequency” that have yielded promising results for
the classifcation task. Tese vectors consider lexical features
such as uni-gram, bi-gram, or n-grams (n> 2) to represent
text documents as feature vectors, with each entry of the
vector consisting of either a Boolean value or frequency
count to indicate the presence of lexical features. However,
such vectors are unable to capture the semantic information
because they ignore the context and the order of the words in
the documents. Besides the problems of ignoring word order
and contextual information, these feature vectors also sufer
from data sparsity issues. Such issues have been addressed
using neural network models to learn word representation as
low-dimensional dense vectors.

1.2. Modern Word Representation and Its Limitations.
Recently, the distributional representation of words as
feature vectors (aka words embedding) has opened a new
horizon in NLP applications because of its nature to capture
contextual information and, hence, the semantics of words
mentioned within the textual contents. Learning such word
representations as low-dimensional dense vectors in an
embedding space from a large corpus has gained popularity
since the pioneering work of Mikolov et al. [3]. Such word

vectors aim to capture the distributional features of words in
a large corpus. Many NLP problems such as classifcation,
clustering, and sentiment analysis have been solved by
employing these word representations. Furthermore, the
resurgence in the neural network-based machine learning
algorithms has shown their capability to accomplish high
accuracy even with less engineered features.

Towards this direction, Word2Vec [3] and GloVe [4] are
two important algorithms that are widely used to learn
distributional representation of words as low-dimensional
dense vectors, which can be employed to enhance the
performance of neural network-based classifcation systems.
Tese algorithms consider the neighboring context words on
either side of a target word within a fxed context window to
preserve the distributional similarity of words. However,
these distributional word representations have two major
shortcomings: (i) Tey are inept in capturing relational
semantics of words because of their dependence on fxed
context window, and (ii) the rare co-occurrence of word
pairs might be further problematic as a large corpus may not
have a sufcient co-occurrence count of the rare word pairs.
To eliminate these shortcomings, researchers tried to in-
corporate relational knowledge from third-party knowledge
bases (KBs) such as WordNet [5] and Freebase [6] into the
distributional representation of words. Semantic relations
such as synonymy, hypernymy, and meronymy from the
KBs have been incorporated into the distributional repre-
sentation of words to learn better word representations
[7, 8]. Te relations from KBs, though rich in terms of
semantic information, may have inadequate entries and also
lack the contextual information. Furthermore, KBs are
generally manually curated and maintained due to which
they may not be comprehensive.

In addition, the existing works consider only linear
contexts to derive contextual information of a target word,
wherein context words are the surrounding words within the
window of k tokens that precede and follow the target word.
For example, in the sentence “Whipple disease is a rare
systemic illness characterized by arthralgias, chronic diar-
rhea, weight loss, fever, and abdominal pain,” the words in
the pair (Whipple, fever) or (Whipple, pain) have long-range
association representing their relational semantics. Both
fever and pain are semantically related toWhipple as they are
symptoms of Whipple disease. Tese distant relationships
will not be captured by a fxed context window of k � 5 or 10.
Te smaller context window, say, k � 2 may fail to capture
important context, while a very large context window may
capture weak and irrelevant contexts, resulting in an adverse
impact on the embedding representation. In the existing
literature, to capture the distributional context of words, the
most commonly used context window size is k � 5. Addi-
tionally, if we aspire to learn word embeddings from do-
main-specifc corpus, say, biomedical text corpus, then the
semantic associations between Whipple disease and fever or
Whipple disease and painwould be of extreme importance as
fever and abdominal pain are symptoms of Whipple disease.
Furthermore, the rare co-occurrence of such semantically
associated words may have little or no weightage during
their distributed representation, and it may fail to capture

2 Computational Intelligence and Neuroscience



the semantics of such associations. Terefore, the inclusion
of such relational information into the distributional rep-
resentation will enrich and enhance the quality of word
representation.

In addition to linear window-based bag-of-word con-
texts, the syntactic contexts have also been used to generate
dependency-based word embeddings [9]. Te syntactic
contexts are the words that are linked with a target word
through syntactic dependency relationships generated by a
parser. Tese syntactic contexts can capture the functional
similarity of words [9]. For example, the dependency graph
of an example sentence produced by the Stanford parser is
shown in Figure 1, which depicts the dependency relations
on the edge labels of the graphs. Levy and Goldberg [9] used
direct and inverse dependency relations for the target word
to generate its dependency-based contexts to learn syntactic
dependency-based word embedding. However, these de-
pendency-based contexts with direct and inverse relations at
one hop distance in the dependency graphs are unable to
capture the semantics of words, which are at multihop
(distant) dependency relations in the graph.

In biomedical literature, many traditional approaches for
text classifcation exist; however, the recent popularity of
deep learning models such as convolutional neural networks
(CNNs) and long-short term memory (LSTM) has drawn
the attention of researchers in the biomedical domain to
achieve better performance in various NLP and text clas-
sifcation tasks. Tese deep learning models together with
the word embeddings have shown remarkable performance
in biomedical text classifcations.

1.3. Our Contributions. Tis article has its contributions in
two folds: First, learning efective word representations
based on distributional, syntactic, and relational contexts;
and second, employing the learned word representations for
the classifcation of biomedical texts using deep learning-
based classifcation models. It is a major extension of one of
our conference papers, [11], by considering larger datasets,
more benchmark evaluation datasets, efective application of
the learned word representation for text classifcation using
deep learning models, and the comparative evaluation of the
classifcation performance with the vectors learned by one of
the existing state-of-the-art methods, GloVe.

1.3.1. Learning Word Representation. Tis article presents
an approach of learning word representation using distri-
butional, syntactic, and relational contexts. Te relational
contexts take into account how words are in relation to
other words. In other words, how a target word is se-
mantically related with context words in a sentence. We say
such semantically associated information between the target
and context words in a sentence as relational semantic
information. Te proposed approach incorporates rela-
tional semantic information distilled from a large corpus
using dependency-based syntactic patterns [10] to augment
the distributional representation of words from the same
corpus through the neural network-based learning and
updating process. We employ dependency-based syntactic

patterns to extract long-range and multihop dependencies
between a target word, say, Whipple and semantically re-
lated words such as arthralgias, chronic diarrhea,weight loss,
fever, and abdominal pain, representing symptoms of
Whipple disease. We extract these semantically related
words in the form of semantic triples using the syntactic
structures of the dependency tree and further use these
triples to augment the distributional representation of the
words. Te repository of the extracted triples is called the
relational semantic repository, which is used to augment the
distributional information of the words from the given
corpus. To start the learning process, we frst obtain the
initial vectors by singular value decomposition (SVD) of a
positive pointwise mutual information (PPMI) matrix
produced from the corpus and the relational semantic re-
pository separately. Te initial vectors are merged and
updated to minimize the loss such that the PPMI value
between co-occurring words from the corpus can be cor-
rectly predicted. To optimize the least-square minimization
objective, we implement a similar objective function as used
in the GloVe [4] model. Te initial vectors are augmented
such that if any of the co-occurring words from the corpus
have their word representation in the relational semantic
repository, we merge the vectors from the corpus and the
relational semantic repository and jointly optimize them
using the gradient descent-based adaptive optimization. As
a result, we get enhanced word representations that could be
used for various NLP applications.

1.3.2. Biomedical Text Classifcation. We evaluate the ef-
cacy of the learned word representation using four diferent
neural network-based classifcation models over two bio-
medical datasets. Neural network models, in particular, the
CNN-basedmodels, have shown exceptional performance in
many NLP and text classifcation tasks compared to tradi-
tional ML algorithms. A CNN model performs high-level
feature extraction using convolution flters to capture im-
portant features during the training process that helps to
improve the classifcation performance. Te other neural
networks including LSTM have shown remarkable perfor-
mance for text classifcation. To evaluate the versatility of the
word representation for the classifcation task, we employ
CNN, LSTM, CNN-LSTM, and the bidirectional LSTM
(BiLSTM) models.

In brief, the contributions of this article can be sum-
marized as follows.

(i) It proposes an approach to learn and augment word
representation from a corpus using the relational
semantic repository extracted from the corpus to
handle both long- and short-range dependencies
among semantically similar words

(ii) It incorporates the strength of pointwise mutual
information, singular value decomposition, and
neural network-based updation to learn efcient
word representations

(iii) It employs the learned word representations to train
four deep learning-based classifcation models,
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namely, CNN, LSTM, BiLSTM, and CNN-LSTM to
classify biomedical texts

(iv) It compares the efcacy of the learned word rep-
resentations and their classifcation performance
with the word representation learned by one of the
state-of-the-art methods, GloVe.

Te remaining part of the article is organized as follows.
Section 2 presents a brief review of the existing works on text
classifcation and word representation learning. Section 3
presents preliminary information about various concepts
used in the article. Section 4 provides detailed description
about the proposed approach of learning word represen-
tation and biomedical text classifcation. Section 5 presents
the experimental details, and Section 6 presents theevalu-
ation results. Finally, Section 7 concludes the article and
presents future directions of the research.

2. Related Works

Te text classifcation problem has been extensively studied
in felds such as text analytics, information retrieval, and
data mining by means of machine learning techniques in a
wide range of applications including text document clus-
tering, sentiment analysis, language identifcation, and topic
labeling [12]. Tere are diferent approaches for text clas-
sifcation, and they follow certain processes such as docu-
ment representation, feature selection or transformation,
vector representation, and the application of statistical or
machine learning techniques to achieve the desired per-
formance. Te popular traditional machine learning (ML)
techniques explored by researchers include support vector
machine, k-nearest neighbor, naive Bayes, decision tree, and
their variants [13, 14]. Biomedical and clinical texts classi-
fcation has received much attention of researchers using
these machine learning techniques [2, 15–17]. However, in
the recent years, there has been a drastic shift from tradi-
tional ML techniques to modern neural network-based ML
classifcation techniques because of their potential for
adaptive learning and generalized prediction. To this end,
deep learning models have been widely used in felds such as
computer vision, image analysis, and natural language

processing, and they have shown outstanding performance
in many biomedical applications because of their ability to
model the nonlinear and complex patterns and relationships
present within the data [18–21]. Te deep learning methods
use several layers to extract important features from the raw
inputs through various learning and transformations at
diferent layers. Raw inputs to deep learning models are
presented as their vector representations whose quality af-
fects the performance of NLP tasks such as text classifcation.
Te initial vectors are nowadays taken as distributional
representation of words in an embedding space which has
shown remarkable performance with the deep learning
models.

In the recent years, there has been a growing interest in
learning distributional word representation from large un-
structured corpora [3, 4]. Te advancement of various word
representation learning techniques to learn a low-dimen-
sional dense representation of words as vectors, commonly
known as word embedding, has efciently solved many NLP
problems such as named entity recognition [22], sentiment
analysis [23], and sentence classifcation [24]. In this di-
rection, two renowned neural network-based learning
models commonly known as continuous bag of words
(CBOWs) and skip-gram (SG) models [25], have been
widely used to learn a distributional representation of words.
Tese models exploit the neighboring context words that co-
occur on either side of a target word within a fxed context
window. CBOW uses surrounding context words to predict
a target word while SG uses a current word to predict the
surrounding context words. Likewise, GloVe [4] is another
familiar model based on the global co-occurrence matrix
that minimizes least square loss while predicting global co-
occurrence between the target and context words using
initial random vectors of desired dimensions. Tese models
learn distributional word representations from the corpus
without incorporating any external knowledge. To enhance
the quality of word representations and to incorporate some
domain knowledge, several studies [7, 26–29] have used
external KBs. Yu and Dredze [26] proposed a joint objective
of the relation constraint model and CBOW to learn word
representation from a corpus and a similarity lexicon
(synonymy) by assigning high probabilities to words that
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Figure 1: Dependency relation graph of the example sentence produced by the Stanford NLP parser using the visualization tool
DependenSee 3.7.0. Te image is adopted from one of our previous works [10].
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appear in the similarity lexicon. Likewise, Xu et al. [27] use
the SG training objective function with additional regula-
rization parameters to incorporate relational and categorical
information to learn better word representation. In [30],
Ghosh et al. applied the vocabulary-driven skip-gram with
negative sampling (SGNS) model to learn word represen-
tations that are exclusively associated with diseases from a
health-related news corpus by incorporating domain
knowledge as a vocabulary of terms associated with diseases,
symptoms, and their transmission methods. Most of these
approaches use either CBOW or SG and its variants like
SGNS to jointly optimize them with the linear combination
of some additional objective function or some regularizers.
Contrary to this, Alsuhaibani et al. [7], in their joint em-
bedding learning, used a linear combination of GloVe and
KB-based objective functions to incorporate relations such
as synonymy, antonymy, hypernymy, and meronymy from
WordNet. All the discussed and other existing approaches
use the third-party knowledge base to enhance distributional
word representations without extracting entities and their
associations directly from the corpus, and hence ignore the
relational semantics between words outside of the range of
the context window. Furthermore, these models use linear
window-based bag-of-word contexts to capture the con-
textual features from the corpus. Besides this, there is an-
other approach of learning word representation that uses the
syntactic contexts produced by the dependency parse tree
generated by the parser rather than window-based contexts.
To this end, Levy and Goldberg [9] have used dependency-
based syntactic contexts and shown that dependency-based
embeddings exhibit better functional similarity than the
original SG embeddings. Likewise, Komninos and Mana-
ndhar [31] have also shown that the dependency-based word
embeddings capture better functional properties and im-
proved classifcation performance. Moreover, recent ad-
vancements in NLP have led to a focus on domain-specifc
tasks by fne-tuning the sizeable pretrained neural language
models such as bidirectional encoder representations from
transformers (BERTs) [32] for NLP tasks such as named-
entity recognition and question answering. Researchers have
demonstrated the adaptability of Word2Vec and BERT in
the feld of biomedical domain to develop models such as
BioWordVec [33] and BioBERT [34], as well as other do-
main-specifc models such as SciBERT [35] trained on
various scientifc and biomedical corpuses, ClinicalBERT
[36] trained on clinical notes for various NLP tasks, and
MatSciBERT [37] trained on material science publications.
Deep learning models that take such trained word repre-
sentations as input have been employed by researchers to
classify unstructured texts documents [38], medical notes
[39], health-related social media texts [40], and biomedical
text mining tasks [41]. Besides these, handwritten script
recognition [42], detection of diseases [43–45], and
healthcare solutions [46] involve the potential application of
deep learning models.

Word representations learned through the aforemen-
tioned algorithms are being used and accordingly evaluated
for various NLP applications as they capture contextual
features of words. Tese semantically rich word

representation or word vectors are fed as the input to neural
networks like CNN and LSTM for performing tasks such as
sentiment analysis [47–49] and text classifcation [24, 50]. As
the proposed approach has learned word representation
related to the biomedical domain, we evaluate the quality of
trained word vectors through a text classifcation task over
biomedical datasets.

3. Preliminaries

Tis section describes the background details of the essential
concepts used in the proposed approach. Assume that a
corpusC consists of n documents d1, d2, . . ., dn, and D is the
collection of target and context words pairs (w, c) extracted
from C such that for any target word wi, the context words
are the neighboring words wi−l, . . . , wi−1, wi+1, . . . , wi+l of
wi within a fxed context window l. Additionally, Vw and Vc

represent the word and context vocabularies of D, respec-
tively. Troughout the article, bold letters represent vectors.
Table 1 presents a list of notations and their brief descrip-
tions used in this article.

3.1. GloVe. GloVe (https://nlp.stanford.edu/projects/
glove/) is a neural network-based method to learn the
distributional representation of words in an embedding
space, exploiting the global statistical information of words
from a text corpus in an unsupervised manner. Given a
fxed context window, the algorithm frst creates a co-
occurrence matrix M from the corpus considering the
context words (columns of M ) within a fxed window
surrounding a target word (rows of M ) and then uses the
matrix M to obtain efcient word representation through
the neural network-based learning and updating process.
Matrix entries Mi,j represent the sum of the reciprocal
distances of the co-occurring context words from the target
word. Te algorithm minimizes the weighted least-square
regression loss Jg, as shown in equation (1), where f(Mw,c)

represents the weight function defned in equation (2) to
assign weights between the target word w and the context
word c, and bw and bc represent their corresponding bias
terms [4]. Te hyperparameter α and xmax in equation (2)
are assigned 0.75 and 100 values, respectively, to control the
overweighting of rare and frequent co-occurrences [4].

Jg �
1
2


w∈Vw


c∈Vc

f Mw,c  wT
· c + bw + bc − log Mi,j  

2
, (1)

f Mw,c  � min
Mw,c

xmax
 

α

, 1 . (2)

TeGloVe algorithm starts the learning process from the
randomly initialized vectors of desired dimensions for the
target and context words and gradually updates the initial
vectors using the stochastic gradient descent (SGD) algo-
rithm. Te primary goal of the GloVe algorithm is to
minimize the weighted least-square loss such that the word
co-occurrence probabilities can be accurately predicted by
the dot product of the target and context word vectors.
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3.2. Pointwise Mutual Information. Word and context as-
sociations are mostly represented as the co-occurrence of
word and context pair (w, c) from the corpus. However, a
mere co-occurrence count does not include any contextual
information; hence, it may not be the best measure of as-
sociation. Pointwise mutual information (PMI) is another
powerful measure of association that quantifes how many
times two events (words w and c) appear together compared
with what one might expect if they occurred independently,
as defned by equation (3) [51]. Alternatively, the PMI value
between the target word w and the context word c is the log
ratio of the joint probability words pair (w, c) and the
product of their marginal probabilities. It gives an estimate
of the strength of the association between the target and
context words. In the case, when w ∈ Vw and c ∈ Vc do not
co-occur within the fxed window l in the corpus, we
haven(w,c) � 0 which causes PMI(w, c) � log(0) � −∞.
Furthermore, negative PMI values tend to be unreliable
unless we have massive corpora. To circumvent these sit-
uations, another familiar measure called positive PMI
(PPMI) is used which maps negative PMI values to zero
using equation (4). It has been shown in [52] that PPMI is a
better metric than PMI to obtain the semantic similarity
between two words. Equation (4) selects the max of
PMI(w, c) and 0 to calculate the PPMI value, as it is
preferable to have word pairings with more evidence sup-
porting their similarity a higher score when measuring the
word similarity. However, PPMI matrices are highly sparse
and require extensive computational resources. One way is
to map such sparse matrices into low-dimensional dense
vectors for generalization and computational efciency by
employing matrix factorization techniques like SVD.

PMI(w, c) � log
P(w, c)

P(w) × P(c)
 

� log
n(w,c) ×|D|

nw × nc

 ,

(3)

PPMI(w, c) � max PMI(w, c), 0{ }. (4)

3.3. Singular Value Decomposition. Singular value decom-
position (SVD) is a dimensionality reduction technique that

factorizes a symmetric matrix Mm×n into three matrices U, Σ,
and V in such a manner that M � U∙Σ∙V, where U and V

represent the orthogonal matrices and Σ represents a diagonal
matrix of positive real values called singular values. It reduces
data dimensions by preserving the main relationship of in-
terest into a low-dimensional representative matrix. To
produce ddimensional dense vectors, we can decompose
matrix M into Um×d, Σd×d, and Vd×n corresponding to top d

singular values. In NLP applications, we can produce d-di-
mensional dense matrix W � U∙

��
Σ

√
which is an approximate

representative of high dimensional sparse matrix M [53].
Furthermore, in word and context situations, we can get the
target and context word representative matrices W � U∙

��
Σ

√

and C � VT∙
��
Σ

√
respectively, by decomposing M as stated in

[53]. Tese initial representative matrices (W and C) should
satisfy the criteria of minimizing the matrix decomposition
error.

4. Proposed Approach

Tis section presents a detailed description of the proposed
approach of learning augmented word representation from a
large corpus and a relational semantic repository and their
application for biomedical text classifcation. Figure 2
demonstrates the work-fow of the proposed approach,
which comprises methods to produce initial word repre-
sentation, augment and update the initial word vectors
through the relational semantics, and use learned word
representation for text classifcation. It depicts a document
crawler to crawl PubMed documents using a set of query
patterns. Te crawled documents constitute a corpus C,
which we use to evaluate the proposed approach. Te same
corpus is exploited to extract the relational semantic in-
formation as discussed in [10, 54] and utilized to construct a
relational semantic repository, Rl. Te corpus and the rela-
tional semantic repository are employed to generate the
initial word representation by applying SVD on their un-
derlying PPMI matrices.

A detailed description of various processes involved in
learning word representation is presented in the following
subsections.

4.1. Initial Vector Representation. Te frst step involved in
our proposed approach is to initialize vectors of desired

Table 1: Various notations and their descriptions.

Notations Descriptions
w, c A target word and a context word, respectively
C Corpus containing n documents d1, d2, . . ., dn

D Containing the target and context word pairs (w, c) extracted from C

Vw, Vc Te target and context words vocabularies of the collection D, respectively
n(w,c) (w, c) pairs count in D

nw, nc Counts of w and c, respectively, in D such that nw � c∈Vc
n

(w,c)
and nc � w∈Vw

n
(w,c)

M
Matrix representing association between every pair of target and context words, wherein rows denote target word vectors and

columns denote context word vectors
Mi,j Matrix entries representing the association between ith target word wi ∈ Vw and jth context word cj ∈ Vc

Rl Relational semantic repository extracted from the corpus C

V Vocabulary of Rl
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dimensions for each target and context words. We augment
and update these initial vectors using the relational semantic
repository and a weighted least-square loss minimization
function to obtain enriched embedding. Traditionally, dis-
tributed word representations relied on count-based vectors
such as tf-idf or SVD based vectors. However, neural net-
work-based word representations that considers the target
word and its context within a fxed window have proven to
be very efective in various NLP applications. Te word
representations learned using GloVe [4] and Word2Vec [3]
methods have shown their applicability in various NLP
applications. However, Levy et al. [53, 55] have shown that
neural network-based word representation is analogous in
performance to traditional word representation generated
by the decomposition of the PPMI matrix formed from the
co-occurrence matrix of a corpus. Hence, to include the
strength of traditional decomposition-based vectors, the
proposed word representation approach adopts the PPMI
approach to generate initial word representation by facto-
rizing PPMI matrix using SVD. Accordingly, we frst build a
co-occurrence M using the co-occurrence count of target
and context words pairs (w, c) from corpus D with w ∈ Vw

and c ∈ Vc. Te matrix M is then mapped to a PPMI matrix
Mp, which is further decomposed using SVD to produce U,
Σ and V. Consequently, we obtain initial word represen-
tations for the target and context words as matrix W and C

by considering W � U∙
��
Σ

√
and C � V∙

��
Σ

√
, respectively.

Likewise, we also obtain the initial word representations
from the relational semantic repository Rl and represent
them as W � U∙

��
Σ

√
and C � VT∙

��
Σ

√
, respectively, for the

target and context words. Furthermore, to have better word

representation, the resulting initial word representations
from the corpus needs to fulfll minimization of the error in
matrix decomposition. To minimize error and to incorpo-
rate relational semantic information from Rl, we augment
and update the initial word representation from the corpus
in such a manner that the weighted least-square loss is
minimum. Te augmentation and updating process of the
initial word representation is described in the following
subsection.

4.2. Objective Function Augmentation. In the proposed
approach, we adopt the GloVe approach for minimizing the
decomposition error to optimize the initial word repre-
sentation. GloVe learns a low-dimensional dense repre-
sentation of word vectors from a corpus without
incorporating any additional or external relational knowl-
edge. We have discussed its important limitation in Section
1. To address these limitations, we incorporated information
from a relational repository into the initial word repre-
sentation from the corpus by merging the initial word
representations from the relational semantic repository with
the initial word representations from the corpus. We per-
form this merging of vectors during the optimization pro-
cess to produce augmented and enhanced word
representation. To this end, we defne an objective function
Ja analogous to the GloVe objective function as shown in
equation (5), where f(pw,c) is a function to assign weight to
a co-occurrence pair (w, c) using equation (6), pw,c is the
PPMI value of the pair (w, c), and bw and bc are biases of
vectors w and c, respectively.Te vectors w and c are merged
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Figure 2: Proposed framework for augmented word representation learning and text classifcation.
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initial word and context vectors of C and Rl. Te merging
process of initial vectors is described in the following
paragraph.

Ja �
1
2


w∈Vw


c∈Vc

f pw,c  w′
T

· c′ + bw + bc − log pw,c  
2
, (5)

f pw,c  � min
pw,c

max∀w,c∈D pw,c 
⎛⎝ ⎞⎠

α

, 1
⎧⎨

⎩

⎫⎬

⎭. (6)

We consider three categories of words from the vo-
cabulary V of the (w, c) pair collection D based on their
presence or absence in the vocabulary, V, of Rl. Tese in-
clude D∧, D∼, and D⊕, which are described in the following
paragraphs.

(i) D∧ � (w, c) | w ∈ V, c ∈V and(w, c) ∈ D{ } it rep-
resents the category of (w, c) pairs in which both the
target and context words are the members of V.

(ii) D∼ � (w, c) | w ∉ V, c ∉V and(w, c) ∈ D{ } it rep-
resents the category of (w, c) pairs wherein neither
the target nor the context word is a member of V.

(iii) D⊕ � (w, c) | w ∈ V, c ∉V∨(w ∉V, c ∈ V and{

(w, c) ∈ D)} it represents the category of (w, c) pairs
in which either the target or the context word is a
member of V.

Each of the three categories of word pairs requires to be
handled accurately while merging the initial vectors of Rl

andC. Consider the frst caseD∧ wherein both the target and
context words are the member of V, we have initial vectors
from Rl as well as C for the target and context words w and c.
Tese initial vectors are merged in such a way that the
resultant vector corresponding to the target word w is w′ �
0.5∗ (w + w) and the resultant vector corresponding to the
context word c is c′ � 0.5∗ (c + c). It should be noted that w
and c are vectors from , while w and c are vectors from Rl.

Likewise, in the second case, D∼ � w, c{ wherein neither
the target word nor the context word is a member of V, we
have the initial vector representation of words w and c from
the corpus only. In this case, as w and c are not found in Rl,
no merging is needed. As a result, the resultant vector
corresponding to w and c are equal to w and c, respectively,
i.e., w′ � w and c′ � c. Similarly, for the third case D⊕
wherein either the target or the context word is contained in
V, we have any of the two word’s (target or context) initial
vector representation in both C and Rl. In this case, either we
use the target or the context word’s merged initial vector
representation depending upon which word belongs to both
the repository. If we have the target word in both the re-
pository, the resultant target word is w′ � 0.5∗ (w + w), and
if we have the context word from both the repository, then
the resultant context word is c′ � 0.5∗ (c + c).

4.3. Adaptive Updation of Parameters. Gradient descent
techniques are widely used optimization techniques for
parameter updation during the training of neural networks.
Just like the GloVe model, we use the Adagrad [56] gradient

descent technique to update parameters during the learning
process. Adagrad is an adaptive update algorithm, which
automatically adjusts the learning rate. Te gradient for the
target and context words and their corresponding biases are
calculated using the following equations:

δJ

δw′
� gt,w′

� 
c∈Vc

f pw,c  w′
T

· c′ + bw + bc − log pw,c  ∙c′,

δJ

δc′
� gt,c′

� 
w∈Vw

f pw,c  w′
T

· c′ + bw + bc − log pw,c  ∙w′,

δJ

δbw

� gt,bw

� 
c∈Vc

f pw,c  w′
T

· c′ + bw + bc − log pw,c  ,

δJ

δbc

� gt,bc

� 
w∈Vw

f pw,c  w′
T

· c′ + bw + bc − log pw,c  .

(7)

AdaGrad efciently handles the sparse data by per-
forming larger updates for rarely occurring words while
smaller updates for frequently occurring words. Equation (8)
is used for updating target word vectors,

w′
t+1

� w′
t

−
η

��������


t
τ�1g

2
τ,w′

 ∗ gt,w′ , (8)

where w′ represents a combined target word vector, gt,w

represents gradient at time t, and g2
τ,w denotes squared

gradient at time τ for w′. Likewise, equations (9)–(11) are
used for updating the merged context word vector and the
target and context word biases, respectively.

c′
t+1

� c′
t

−
η

�������


t
τ�1g

2
τ,c′

 ∗ gt,c′ , (9)

b
t+1
w � b

t
w −

η
��������


t
τ�1g

2
τ,bw

 ∗ gt,bw
 ,

(10)

b
t+1
c � b

t
c −

η
��������


t
τ�1g

2
τ,bc

 ∗ gt,bc
 .

(11)

4.4. Deep Learning Models. Tis section presents a detailed
description of deep learning models used for the text
classifcation.Te deep learning models, along with the word
embeddings as the input, are proving to be very efective for
text classifcation. Tese are essentially machine learning
models with better intelligence, efcient learning ability,
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high accuracy, and robust performance. Te most popular
basic deep learning models used for text classifcation are
CNN and LSTM networks and their variants such as BiLST
and CNN-LSTM. All these models take a sequence of input
vectors corresponding to the textual data and exploit these
vectors to capture important features helpful to map the text
into their respective labels. Te texts to be classifed are frst
preprocessed by tokenizing and removing symbols, punc-
tuation marks, numbers, and stopwords. Te pre-processed
text documents consisting of k tokens are then transformed
into a sequence of n-dimensional vectors, where vectors
correspond to learned word representations obtained either
by the proposed approach or other state-of-the-art-ap-
proaches like GloVe. All the deep learning models used for
the text classifcation task are given the input text document
as a sequence of n-dimensional k vectors forming a k × n

embeddingmatrix corresponding to k tokens. Given the pre-
processed text document T with k tokens and x1, x2, . . ., xk

vectors corresponding to k tokens, the embedding matrix
can be represented by (12), where ⊕ represents the con-
catenation operation over the vectors.

T � x1⊕x2⊕ . . .⊕xk. (12)

We consider k of fxed length (k � 25) to form the
embedding matrix. Te embedding matrices thus formed
constitute an embedding layer for each model, and these
embedding matrices are then fed into the diferent deep
learning models for learning high-level features to perform
efcient classifcation. Te deep learning models used in this
article for biomedical text classifcation are discussed in the
following sub-sections.

4.4.1. Convolutional Neural Network (CNN). A CNN model
comprises various layers for converting texts into embed-
ding matrix and learning high-level features bypassing the
embedding matrix through the convolution layer and the
intermediate outputs through the max-pooling layer and
fully connected dense layers to predict the class labels. Te
given text is preprocessed by tokenizing and removing
symbols, punctuation, number, and stopwords. Te pre-
processed tokens, say k tokens per text document, are then
mapped into an embedding matrix (a sequence of k vectors)
at the embedding layer using the learned word represen-
tation. Te embedding matrices formed from the input texts
are feed as input to the convolution layer, which employs
flters of diferent width by convolving them through the
embedding matrices to extract high-level features and ac-
cordingly creates feature maps. A flter, say, F ∈ Rm×n of
width m convolves through the embedding matrix T with
stride s to create the feature map ci determined by (13),
where ∗ is the convolution operation, Ti: i+m−1 represents
the vectors from wi to wi+m−1 of T convolved by flterF, bi is
the biased term, and f denotes an activation function. An
activation function rectifed linear unit(ReLU) is used to
introduce nonlinearity to the system that can be represented
by equation (14).

ci � f F∗Ti: i+m−1 + bi( , (13)

f(x) � max 0, x{ }. (14)

Te feature maps are further passed through a max-
pooling layer, which selects the max-value from the feature
maps corresponding to each flter F to form a max-pooled
feature vector. To control overftting problems, drop out is
used that drops some neurons while keeping the others with
some probability. Te last layer of the network is the fully
connected dense layer, which predicts the class probabilities
using the softmax activation function [57]. Te detailed
description of the basic CNN architecture applied in our
experiment can be found in [50]. Te categorical cross-
entropy loss function is used to calculate the loss while the
AdaDelta [58] algorithm is used to update and optimize the
parameters.

4.4.2. Long Short-Term Memory (LSTM). LSTM networks
are a slightly tweaked form of recurrent neural networks
(RNN) to make them suitable for text classifcation tasks.
LSTM networks contain “memory cells,” which are con-
trolled by input, output, and forget gates. Te gates control
the infow and outfow of information through the memory
cells. Te input gate adds new information to the cell and
uses an activation function to regulate the value to be added.
Similarly, the forget gate discards some information from
the current content of the memory cell, while the output gate
decides how much information should be forwarded to the
next hidden state. LSTM uses two-way storage of infor-
mation where short-term recent history is stored as acti-
vation of neurons while the long-term memory stores
weight, which gets modifed based on the backpropagation.
During forward pass, the input and output gates learn when
to allow the activation to get into the internal state and when
to pass it to the output state, respectively. When these entry
and exit points are closed, the activation is captured inside
the memory cell and hence does not expand, shrink, or afect
the output of any intermediate state across multiple time
steps. Similarly, during backpropagation, the gradients
neither vanish nor explode across time steps. Tis allows
LSTM to capture long-term dependency efectively in
comparison to simple RNN.

As stated above, the memory cells consist of input,
output, forget gates, and a candidate memory cell, and their
values are updated at a time-step t for the input vector wt

using the following equations:

it � σ Wi. ht−1; wt  + bi( ,

ft � σ Wf. ht−1; wt  + bf ,

ot � σ Wo. ht−1; wt  + bo( ,

gt � tanh Wr. ht−1; wt  + br( ,

ct � it ⊙gt + ft ⊙ ct−1,

ht � ot ⊙ tanh ct( ,

(15)
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where ⊙ represents elementwise multiplication, σ repre-
sents the sigmoid function, and Wi, bi, Wf, bf, Wo, and bo

represent input, forget, and output gates’ parameters. Te
fnal hidden vector obtained from the LSTM cell repre-
senting high-level features for the input texts is fed into a
dense layer with the softmax activation function, which
maps the output into the probabilities of classifying the texts
into their corresponding class labels. Softmax activation
function is frequently employed to solve multiclass classi-
fcation problems. It computes the relative probabilities of
high data points (vector obtained from the LSTM cell
representing high-level features), indicating that the data
points belong to a particular class. We have applied the
LSTM model for biomedical text classifcation tasks in the
experimental section.

4.4.3. Bidirectional Long Short-Term Memory (BiLSTM).
Bidirectional LSTM (BiLSTM) is an extension to the uni-
directional LSTM to incorporate both the historical and
future contexts by introducing another hidden layer.
BiLSTM captures the contextual information from both
ways, reading the inputs in both the forward (normal way)
and reverse directions, which is quite advantageous in text
classifcation tasks. If the hidden state for the forward se-
quence context is represented by h

→
and the backward se-

quence context is represented by h
⃖
, then the output of the ith

word is given by the following equation:

hi � [ h
→
⊕ h
⟵

], (16)

where ⊕ represents elementwise sum of vectors h
→

and h
⟵

.
Te softmax function is used to map the text into the
corresponding label.

4.4.4. CNN-LSTM. Te CNN-LSTM model consists of the
CNN layer to extract the local n-gram features from the
input data for the LSTM layer, which interprets the features
for sequence prediction across time steps. We can say that
the CNN-LSTMmodel comprises two submodels, CNN and
LSTM. For the text classifcation task, the CNN submodel
comprises a 1D convolutions layer followed by a 1D max-
pooling layer to capture and consolidate important high-
level features as vectors. Te max-pooled feature vectors are
then fed into the LSTM layer, which captures the long-
distance dependency features and gives the fnal text rep-
resentation. It is further passed through a dense layer with
the softmax activation function to map the text into cor-
responding class probabilities.

5. Experimental Setup and Results

We use a biomedical text corpus for learning word rep-
resentation and evaluate the learned word vectors over
multiple benchmark datasets for two evaluation tasks: word
similarity and concept categorization. We also present an
application of the learned word representation for the
biomedical text classifcation task. Te following subsec-
tions briefy describe the corpus and the relational semantic

repository used for experimentation, the experimental
setup, and the evaluation results over various benchmark
datasets.

5.1. Corpus and the Relational Semantic Repository. Te
proposed approach is evaluated over a biomedical text
corpus crawled from PubMed (https://www.ncbi.nlm.nih.
gov/pubmed/) database, which is an online repository of
thousands of abstracts and citations related to various
biomedical felds such as health, biomedicine, bioengi-
neering, and life and behavioural sciences. Tese biomedical
abstracts encapsulate many disease-related useful informa-
tion such as disease names, their associated symptoms,
vectors, pathogens, etiologies, transmitting agents, and
drug-related information. PubMed gives access to the ab-
stracts of biomedical literature through its NCBI Entrez
systems API (axis 2.1.6.2 (https://axis.apache.org/axis2/java/
core/)) by querying its server using desired keywords. We
retrieved 67516 abstracts, called corpus C, related to cholera,
dengue, diarrhoea, infuenza, leishmaniasis, malaria, and
meningitis diseases by querying the PubMed database. Te
document retrieval process is discussed in detail in [10, 54].
Moreover, we created the relational semantic repositoryRl

from the relation triples (< entityi, relation, entityj > )
extracted from the corpus. Rl consists of disease symptom
and their associations in the form of semantic triples, which
are extracted using typed dependencies generated by
Stanford parser (https://nlp.stanford.edu/software/lex-
parser.shtm) and fltered by employing MetaMap (https://
metamap.nlm.nih.gov/). Te process of extraction of rela-
tion triples is discussed in [10, 54].

5.2. Experimental Setup. Te documents from the corpus C

are tokenized and preprocessed by eliminating punctuation
marks, stopwords, and numbers. We frst generate a co-
occurrence matrix from the corpus using the co-occurrence
count of the target and context words within the fxed
context window. Te experimental evaluation is performed
on two diferent context window sizes l ∈ 5, 10{ } to consider
the neighboring context of a target word. For example, for
l � 5, the context words for a target word are 5 prior and 5
following words to the target within the document. Te co-
occurrence matrix thus formed is converted into the PPMI
matrix according to the method discussed in Section 4. Te
PPMI matrix is further factorized using SVD to obtain the
initial vector representation of corpus words. Te same
procedure is applied to obtain initial word representation
from Rl. We consider two diferent dimensions
d ∈ 100, 200{ } of the initial vectors to report the evaluation
results of the proposed approach. To optimize the initial
vectors by minimizing the least-square loss, we used the
objective function defned in equation (5). We used Ada-
Grad [56], which is an SGD-based adaptive update algo-
rithm for updating of parameters and optimizing the
vectors. Te initial learning rate, η, is adjusted to 0.05 for
updating parameters. Te algorithm of the proposed ap-
proach was executed for 50 iterations to converge it into an
optimal solution. Consequently, we received two sets of
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improved vectors, one for the target words called WE and
the other for the context words called CE. Furthermore, their
combined vectors, namelyMerged are considered by taking
the average of the corresponding target and context vectors
for a particular word from the vocabulary Vw. We con-
sidered Merged vectors because the authors in [4] reported
that the merged vectors perform better than either of the
word and context vectors. We have reported the evaluation
results of all the three forms (target word, context word, and
the merged form) of the vectors learned by the proposed
approach and the corresponding form of the vectors
(GloVe_W, GloVe_C, and GloVe_Merged) learned by
GloVe.

5.2.1. Parameters Setting for Biomedical Text Classifcation
Models. For the biomedical text classifcation task, we
employed four basic neural network-based models: CNN,
LSTM, BiLSTM, and CNN-LSTM, as discussed in Section 4
considering various parameter settings for the underlying
models. We executed each model for 100 epochs and report
the best results for each model in terms of training and
validation accuracy. For all the models, we used Ada de lta
optimizer [58], which dynamically adapts over time and
does not require hyperparameter tuning. Furthermore, we
used the categorical cross entropy loss function to estimate
the loss of a model for updating weights. For the CNN
model, the initial flter and softmax weights are sampled
from the interval [−0.1, 0.1]. We applied 100 flters of width
m � 3 and stride s � 1, max-pooling of size 2, a dropout of
0.5 prior to the dense layer, and l2 regularization of 0.03 at
the convolution layer. Similarly, for the LSTM model, we
used 256 hidden units of LSTM, and for the remaining two
models, the parameters settings remain the same.

We evaluate the quality of vectors learned through the
proposed approach in terms of two assessment tasks that
include word similarity and concept categorization. We also
provide an application of the learned word representation to
classify biomedical texts into diferent labels using four
neural network-based classifcation models.

5.2.2. Word Similarity. For word similarity evaluation, we
compare the cosine similarity of word pairs determined
using the learned word representation against the similarity
scores assigned by the human annotator to the corre-
sponding word pairs. Te evaluation is based on the prin-
ciple that the semantics of words are preserved by the trained
word representation if we have positive correlations between
the calculated similarity value and the human-rated simi-
larity value for the word pairs. In this regard, we use
Spearman’s rank correlation coefcient to fnd the corre-
lation between the calculated similarity value and the an-
notated similarity value for the word pairs of the benchmark
datasets. Te quality of word vectors learned using the
proposed approach is evaluated over ffteen benchmark
datasets: BioSimLex [59], BioSimVerb [59], MEN (https://
clic.cimec.unitn.it/elia.bruni/MEN.html),MTurk [60], RG65
[61], RW (https://www-nlp.stanford.edu/%20lmthang/
morphoNLM/) [62], SCWS [63], SimLex999 [64], TR9856

[65], UMNSRS-Rel [66], UMNSRS-Sim [66], VERB143 [67],
WS353 [68],WS353R [68], andWS353S [68]. BioSimLex and
BioSimVerb datasets cover the concept pairs in biomedicine
and comprise 988 noun pairs and 1000 verb pairs, respec-
tively [59]. MEN, MTurk, and RG65 datasets contain col-
lection of 3000, 771, and 66 English word pairs, respectively,
for evaluation of semantic similarity and relatedness. RW is a
rare word dataset containing 2034 low-frequency word pairs
to check the rare word representation [62], while SCWS
contains 2003 word pairs along with their contexts [63].
Similarly, SimLex999 contains diferent POS-category word
pairs together with the correctness level and association
strength [64]. Likewise, the UMNSRS-Sim and UMNSRS-Rel
datasets contain 566 and 587 pairs of medical terms, re-
spectively, for evaluation of semantic similarity and relat-
edness [66, 69]. Te VERB143 dataset contains 143
annotated verb pairs for similarity task. Similarly, WS353 is
the original data and its two subsets WS353S and WS353R,
containing 353, 203, and 252 word pairs, respectively, as-
sociated with semantic similarity and relatedness [68].

We compare the performance of word representations
learned using the proposed approach and the GloVe method
for the word similarity task. We have considered diferent
window sizes l ∈ 5, 10{ } and vector dimensions
d ∈ 100, 200{ } to assess the window size and dimension
efects on the learned vectors. Te word similarity evaluation
results on various combinations of vector dimension and
window size are presented in Tables 2–5. It can be observed
from these tables that the word vectors trained using the
proposed approach report the best results for all combi-
nations of the window size and vector dimension compared
to the GloVe-based vectors except for four instances over the
RW, VERB143, and WS353 datasets. Although in these four
instances (two in the case of RW and one each in the case of
VERB143 and WS353), GloVe-based vectors report better
results, and the diference in the performance between the
trained vectors using the proposed approach and GloVe is
not signifcant. Another interesting observation is that at l �

10, the word vectors using the proposed approach perform
better on all the datasets for both dimensions d � 100 and
200. It signifes that long-range dependencies are also vital.
Te best performance in the case of each dataset over dif-
ferent combinations of the window size and vector di-
mension is highlighted in bold typeface. Furthermore, we
can also observe from these tables that word vectors learned
using the proposed approach perform signifcantly better
over UMNSRS-Rel and UMNSRS-Sim datasets in compari-
son to the GloVe-based vectors.Te results from these tables
also show that CE and Merged vectors learned using the
proposed approach dominate over all other vectors. Simi-
larly, the other interesting insights may be inferred from
these tables.

5.2.3. Concept Categorization. It is another way of evalu-
ating the quality of word representations wherein the set of
concepts is grouped into distinct categories. It is based on the
clustering of vectors into distinct groups, and the perfor-
mance is measured by the number of concepts each cluster
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has from a given category. Here, the purity metric is used,
wherein 100% purity specifes that the given category is
completely reproduced and hence vectors are of highest
quality, whereas 0% purity specifes that the cluster quality is
worst. We used seven benchmark datasets: AP [70], BLESS
[71], Battig [72], ESSLI_1a (https://wordspace.collocations.
de/doku.php/data:esslli2008:concrete_nouns_
categorization), ESSLI_2b (https://wordspace.collocations.
de/doku.php/data:esslli2008:abstract_concrete_nouns_
discrimination), ESSLI_2c (https://wordspace.collocations.
de/doku.php/data:esslli2008:verb_categorization), and
Ohta-10-bio-words (https://github.com/spyysalo/wvlib/tree/
master/word-classes/Ohta-10-bio-words) for the evaluation
of learned word vectors using the concept categorization task.
Te AP dataset contains 402 words with 21 concept cate-
gories [70], BLESS contains 200 concepts with 17 semantics
classes [71], Battig contains 5231 words listed in 56 taxo-
nomic categories [72], ESSLI_1a contains 44 concrete nouns
belonging to 6 semantic categories, ESSLI_2b contains 40
nouns classifed into three classes, ESSLI_2c contains 45
verbs belonging to 9 semantic classes, and Ohta-10-bio-
words contains 12 word classes of the biomedical domain.

Te evaluation results corresponding to the concept
categorization task on various combinations of vector di-
mension and window size are presented in Tables 6–9. It can
be observed from these tables that the word vectors trained
using the proposed approach show the best performance for
all combinations of the window size and vector dimension
compared to the GloVe-based vectors except for the fve
instances over ESSLI_2a, ESSLI_2b, and ESSLI_2c datasets.
Among these fve instances, the GloVe-based vectors show
best performance in three cases over the ESSLI_2c dataset
and one case each over ESSLI_2a and ESSLI_2b datasets.Te
best performance in the case of each dataset in these tables is
highlighted in bold typeface. Furthermore, it can be ob-
served from these tables that for each of the four combi-
nations of the window size and vector dimension, the vectors
learned by both the approaches show the worst performance
over the Battig dataset, whereas the best performance
switches between ESSLI_2a and ESSLI_2b datasets. More-
over, the merged vectors using the proposed approach
dominate the performance and show the best results in most
of the cases.

6. Comparative Analysis and Evaluation for
Biomedical Text Classification Tasks

We investigate the performance of learned word embed-
dings on two diferent text classifcation tasks: one is binary
classifcation task over the BioText Berkeley dataset and the
other one is multiclass classifcation over the PubMed RCT
20K dataset. Te details of the datasets and text classifcation
performances are presented in the following subsections.

6.1. Comparative Analysis on the BioText Berkeley Dataset.
Te BioText Berkeley dataset (https://biotext.berkeley.edu/
dis_treat_data.html) is a benchmark dataset containing la-
beled sentences of 100 titles and 40 abstracts obtained from

MEDLINE 2001 and labeled based on the contents of in-
dividual sentences [73]. Te sentences are labeled based on
the roles and relationships of disease and treatment relations
considering eight diferent categories. During dataset pre-
processing, we discarded the two categories, namely, “vague”
and “to_see.” Tereafter, remaining categories are grouped
into two classes, wherein the frst class contains all the
disease- and treatment-related sentences while the
remaining sentences constitute the second class. Finally, the
curated dataset is considered as an evaluation dataset for the
binary text classifcation problem. Te fnal dataset contains
3415 labeled sentences.

Following the dataset curation process, the four neural
network-based classifcation models discussed in Section 5
are trained, and underlying results in terms of training and
validation accuracy are presented in Tables 10–13. Te best
results corresponding to the word vectors trained using both
the proposed approach and the GloVe method for every
combination of the window size and vector dimension are
shown in bold typeface. It can be observed from these tables
that, in most of the cases, classifcation accuracy using the
vectors trained by the proposed approach is signifcantly
better. An interesting observation from these tables is that
CE and WE vectors trained using the proposed approach
achieve best performances in most of the cases in terms of
training and validation accuracies for various combinations
of the window size and vector dimension. Terefore, it can
be inferred that averaging CE and WE does not show im-
pressive results in case of the text classifcation task com-
pared to concept categorization and word similarity tasks
where merged vectors have shown good results. Further-
more, among the four neural network-based classifcation
models, the CNN-LSTM model shows the best performance
followed by the CNNmodel. In contrast, the BiLSTMmodel
shows the worst performance.

6.2. Comparative Analysis on the PubMed RCT 20K Dataset.
Te efcacy of the trained word vectors using both the
approaches is evaluated over another benchmark dataset
PubMed RCT 20K [74], which is associated with the bio-
medical domain. Te PubMed RCT 20K dataset is extracted
and curated from PubMed for sequential sentence classif-
cation consisting 20000 abstracts of randomized-controlled
trials [74]. Each sentence of the dataset is labeled based on its
role in the abstract considering that the sentences can be
related to fve diferent categories: background, objective,
method, result, or conclusion [74]. Te original dataset was
preprocessed to flter the numbers, symbols, and stopwords.
As a result, the fnal dataset comprises 176560 training and
29667 validation sentences. Like the BioText Berkeley
dataset, we trained the same set of four neural network-
based classifcation models. Te underlying results in terms
of training and validation accuracies are presented in
Tables 14–17. It can be observed from these tables that there
is a slight increase in the training and validation accuracies
with the increase in the vector dimension and the context
window size. Furthermore, in contrast to the BioText Ber-
keley dataset, we can observe from these tables that the
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BiLSTM and LSTM models perform better than the CNN
and CNN-LSTM models. Tis may be because the dataset is
sequential and the sentences are sequentially associated with
each other.Te CNNmodel shows the worst performance in

comparison to the other models. In this dataset also, CE and
WE vectors show better performance in comparison to the
Merged vector. Similarly, the other interesting observations
can be inferred from these tables.

Table 6: Concept categorization performance with l � 5 and d � 100.

Word embeddings AP BLESS Battig ESSLI_1a ESSLI_2b ESSLI_2c Ohta-10-bio-words
GloVe_W 0.21642 0.215 0.10896 0.43182 0.5 0.37778 0.41379
GloVe_C 0.22139 0.215 0.11374 0.43182 0.55 0.35555 0.40517
GloVe_Merged 0.25373 0.255 0.12043 0.43181 0.5 0.37778 0.43965
WE 0.22637 0. 9 0.11891 0.47727 0.5 0.35556 0.38793
CE 0.23134 0.285 0.11795 0.45455 0.525 0.33333 0.41379
Merged 0. 6617 0.275 0.1 1 0 0.5 0.55 0.4 0.4  4 
Bold means the best performance in the case of each dataset.

Table 7: Concept categorization performance with l � 5 and d � 200.

Word embeddings AP BLESS Battig ESSLI_1a ESSLI_2b ESSLI_2c Ohta-10-bio-words
GloVe_W 0.22636 0.22 0.11393 0.43182 0.525 0.4 0.48275
GloVe_C 0.22388 0.23 0.11049 0.40909 0.5 0.35556 0.45689
GloVe_Merged 0.23880 0.25 0.11948 0.47727 0.525 0.4 0.44827
WE 0.26119 0.33 0.12388 0.65909 0.525 0.35556 0.49138
CE 0.25373 0.295 0.12235 0.56818 0.6 0.37778 0.48276
Merged 0. 6119 0.305 0.1 483 0.5 0.525 0.4 0.49138
Bold means the best performance in the case of each dataset.

Table 8: Concept categorization performance with l � 10 and d � 100.

Word embeddings AP BLESS Battig ESSLI_1a ESSLI_2b ESSLI_2c Ohta-10-bio-words
GloVe_W 0.23631 0.23 0.11489 0.43182 0.475 0.37778 0.41379
GloVe_C 0.23383 0.22 0.1158 0.43182 0.5 0.42222 0.41379
GloVe_Merged 0.25124 0.245 0.12426 0.54545 0.55 0.46667 0.45689
WE 0. 761 0.295 0.12177 0.47727 0.575 0.37778 0.44826
CE 0.22886 0.3 0.11872 0.47727 0.55 0.33333 0.43104
Merged 0.26119 0.28 0.1 73 0.5 0.575 0.4 0.48 76
Bold means the best performance in the case of each dataset.

Table 9: Concept categorization performance with l � 10 and d � 200.

Word embeddings AP BLESS Battig ESSLI_1a ESSLI_2b ESSLI_2c Ohta-10-bio-words
GloVe_W 0.22388 0.235 0.11871 0.43182 0.525 0.42222 0.5
GloVe_C 0.22139 0.235 0.11527 0.43182 0.525 0.37778 0.49137
GloVe_Merged 0.23383 0.275 0.12349 0.52272 0.55 0.44444 0.49137
WE 0.26368 0.285 0.12005 0.52273 0.525 0.37778 0.47414
CE 0. 6866 0.31 0.1 388 0.5 0.5 0.4 0.5
Merged 0.25871 0.315 0.12330 0.65909 0.525 0.37778 0.42241
Bold means the best performance in the case of each dataset.

Table 10: CNN classifcation performance using embeddings over the BioText Berkeley dataset.

Embeddings
Accuracy

l � 5, d � 100 l � 5, d � 200 l � 10, d � 100 l � 10, d � 200
Training Validation Training Validation Training Validation Training Validation

GloVe_C 0.8887 0.8592 0.9177 0.8211 0.8907 0.859 0.9073 0.8651
GloVe_W 0.8858 0.8563 0.9047 0.8123 0.8864 0.8334 0.9021 0.8270
GloVe_Merged 0.8487 0.8475 0.8584 0.8006 0.8493 0.8358 0.8643 0.8211
CE 0.8873 0.8646 0.9 55 0.8323 0.8788 0.8328 0.9191 0.8894
WE 0.8749 0.865 0.9201 0.84 3 0.8688 0.8428 0.9 85 0.8318
Merged 0.8507 0.8440 0.9155 0.8294 0.8516 0.8152 0.8862 0.8465
Bold means the best performance in the case of each dataset.
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Table 11: LSTM classifcation performance using embeddings over the BioText Berkeley dataset.

Embeddings
Accuracy

l � 5, d � 100 l � 5, d � 200 l � 10, d � 100 l � 10, d � 200
Training Validation Training Validation Training Validation Training Validation

GloVe_C 0.8518 0.8563 0.8474 0.8035 0.8698 0.88  0.8663 0.8410
GloVe_W 0.8581 0.8492 0.8396 0.7977 0.8682 0.8651 0.8582 0.8006
GloVe_Merged 0.8230 0.8246 0.8461 0.7801 0.8376 0.8182 0.8412 0.8208
CE 0.8880 0.86 8 0.8513 0.8 71 0.8737 0.8765 0.8787 0.8430
WE 0.8758 0.8552 0.8474 0.8183 0.8837 0.8306 0.8628 0.8377
Merged 0.8321 0.8283 0.8486 0.8039 0.8482 0.8294 0.8436 0.8259
Bold means the best performance in the case of each dataset.

Table 12: BiLSTM classifcation performance using embeddings over the BioText Berkeley dataset.

Embeddings
Accuracy

l � 5, d � 100 l � 5, d � 200 l � 10, d � 100 l � 10, d � 200
Training Validation Training Validation Training Validation Training Validation

GloVe_C 0.8463 0.839 0.8310 0.7859 0.8633 0.8551 0.8689 0.8568
GloVe_W 0.8313 0.8122 0.8441 0.7977 0.8653 0.8534 0.8729 0.8152
GloVe_Merged 0.8266 0.8187 0.8171 0.7859 0.8389 0.8240 0.8386 0.8205
CE 0.8438 0.8337 0.8576 0.8018 0.8753 0.8425 0.8766 0.8501
WE 0.8431 0.8335 0.8657 0.8089 0.8616 0.8606 0.8816 0.8459
Merged 0.8505 0.8240 0.8318 0.7969 0.8446 0.8394 0.8468 0.8313
Bold means the best performance in the case of each dataset.

Table 13: CNN-LSTM classifcation performance using embeddings over the BioText Berkeley dataset.

Embeddings
Accuracy

l � 5, d � 100 l � 5, d � 200 l � 10, d � 100 l � 10, d � 200
Training Validation Training Validation Training Validation Training Validation

GloVe_C 0.9177 0.8798 0.9099 0.8328 0.9134 0.8768 0.9167 0.8739
GloVe_W 0.9034 0.8856 0.8783 0.8123 0.9021 0.8768 0.9203 0.8358
GloVe_Merged 0.8897 0.8534 0.8620 0.8035 0.8676 0.8358 0.9014 0.8358
CE 0.9 0 0.8658 0.8997 0.8501 0.8866 0.8587 0.9192 0.8875
WE 0.9094 0.8218 0.9 40 0.8387 0.9173 0.8482 0.9 65 0.8718
Merged 0.8984 0.8599 0.8806 0.8603 0.8728 0.8223 0.9175 0.8418
Bold means the best performance in the case of each dataset.

Table 14: CNN classifcation performance using embeddings over the PubMed_20k_RCT dataset.

Embeddings
Accuracy

l � 5, d � 100 l � 5, d � 200 l � 10, d � 100 l � 10, d � 200
Training Validation Training Validation Training Validation Training Validation

GloVe_C 0.7084 0.6841 0.7381 0.73 0 0.7305 0.7093 0.7087 0.7197
GloVe_W 0.7110 0.6948 0.7146 0.7148 0.7137 0.7036 0.7147 0.7264
GloVe_Merged 0.6806 0.6737 0.6779 0.6497 0.6828 0.6796 0.6868 0.6844
CE 0.7107 0.6858 0.7451 0.7260 0.7166 0.7128 0.7538 0.7339
WE 0.7166 0.7064 0.7389 0.7263 0.7214 0.7180 0.7464 0.7327
Merged 0.6998 0.6764 0.7289 0.7118 0.6993 0.6888 0.7333 0.7086
Bold means the best performance in the case of each dataset.

Table 15: LSTM classifcation performance using embeddings over the PubMed_20k_RCT dataset.

Embeddings
Accuracy

l � 5, d � 100 l � 5, d � 200 l � 10, d � 100 l � 10, d � 200
Training Validation Training Validation Training Validation Training Validation

GloVe_C 0.7605 0.7589 0.78 6 0.7522 0.7601 0.7583 0.7724 0.7719
GloVe_W 0.7589 0.7566 0.7708 0.7680 0.7612 0.7559 0.7726 0.7540
GloVe_Merged 0.7309 0.7295 0.7407 0.7378 0.7324 0.7201 0.7433 0.7405
CE 0.7667 0.7606 0.7785 0.7554 0.7687 0.7596 0.7856 0.7754
WE 0.7571 0.7559 0.7819 0.7731 0.7707 0.7587 0.7849 0.7699
Merged 0.7386 0.7297 0.7771 0.7497 0.7431 0.7397 0.7592 0.7486
Bold means the best performance in the case of each dataset.
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 . Conclusion and Future Works

Biomedical text classifcation is becoming important to extract
valuable information from the proliferating biomedical re-
positories, and deep learning has encouraged researchers to
develop neural network-based classifcationmodels for efcient
text classifcations using low-dimensional dense vectors (aka
word embeddings). In this article, we presented a method of
incorporating relational semantic information of distant words
and the words having infrequent co-occurrence within the
corpus in the distributional representation of words through
the augmentation of vectors from a corpus of the relational
semantic repository to learn enriched word representation. Te
efectiveness of the proposed approach is evaluated by per-
forming word similarity and concept categorization tasks over
various benchmark datasets using the learned word vectors.
We have also applied the learned word vectors for classifying
biomedical texts and found that they perform signifcantly
better in comparison to the vectors learned by the widely used
GloVe model. Since relation mining is one of the well-studied
problems in the biomedical domain, we have considered the
biomedical domain as one of the potential application domains
for our proposed word representation method based on the
distributional and relational contexts. However, the proposed
approach is generic and can be applied to any domain having
the required relation triplets. Exploiting external knowledge
bases along with the distributional and relational contexts to
further improve the word representations is an interesting
direction of future research.
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