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With the development of robot technology, inspection robots have been applied to the defect detection of large tanks. However,
the existing path planning algorithm of the tank bottom detection robot is easy to fall into the local minimum, and the path is not
smooth. Besides, the positioning of the tank bottom detection robot is not accurate. Tis article proposes a path planning and
location algorithm for the large tank bottom detection robot. Specifcally, we design a preset spiral path according to the shape of
the tank bottom, and a rotating potential feld (RPF) near the obstacle is added to avoid the problem of path planning falling into
a local minimum. We obtained accurate and smooth planning results. Compared with the state-of-the-art, the RPF method
reduced the average RMSE by 9.49%. In addition, by measuring the acoustic emission distance, the three-point positioning
algorithm can be used to achieve the calculation of the robot position detection in the proposed method, and the average
positioning error on the spiral path is only 0.0748± 0.0032.

1. Introduction

Oil storage tank is an essential and important infrastructure
in the petroleum, chemical, and other industries [1]. And the
tank may be deformed or leaked under the action of various
gas-liquid corrosion and stress changes [2]. If there are
potential safety hazards in the oil storage tank, it may cause
huge losses [3]. In the recent years, China oriental chemical
plant “6.27,” Huangdao oil depot “8.12,” Dalian Petro-
chemical Company “8.29,” Shandong Shida Technology
Company “7.16,” and other accidents indicate that China’s
oil storage tank accidents are still in a state of multiple
occurrences [4]. Terefore, the detection and data collection
of oil storage tank is a challenging task.

Te metal oil tank is a vessel welded with a steel plate.
High strength low alloy steel is used for large volume oil
tanks with a capacity of more than 10,000m3 [5]. Te
common shapes of metal oil tanks are vertical cylindrical,
horizontal cylindrical, and spherical. For the most common
vertical cylindrical oil tank, the tank bottom is horizontal
and round, and a small part of the area is covered with

obstacles such as pipes, valves, and oil sludge. Traditional
tank bottom detection methods required professionals to
carry special equipment into the tank body [6]. Tis de-
tection method has large potential safety hazards and many
processes. To mitigate the risk and simplify the process,
Leon-Rodriguez described the design of an umbilical-free
mobile nondestructive testing (NDT) climbing robot, and
the robot was made transitions between the surfaces [7].
Zhang proposed a new climbing robot with a simplifed
motion mode and a strong load capacity [8]. Te designed
robot has high mobility and can successfully realize the
climbing movement, but it cannot meet the demand of
omnidirectional movement. After that, Li developed a novel
Mecanum omnidirectional climbing robot for tanks in-
spection [9]. Nevertheless, the application of climbing robot
is limited by the poor adsorption capacity. Zhang in-
vestigated an innovative wall-climbing robot system based
onmagnetic circuit optimization [10]. But manual assistance
is required during detection. Subsequently, Feng explored
a wall-climbing robot with the fusion welding forming
model based on BP neural network for automatic welding of
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the island spherical tank [11]. However, the motion of the
robot at the tank bottom has not been considered. To solve
this problem, Chrysalidis introduced and analyzed various
robot systems for cleaning residual oil at the tank bottom
[12]. But these residual oil cleaning robot systems still need
manual assistance. Terefore, Chang established a wheeled
robot with a magnetic fux leakage testing device [13]. And
yet, the circular motion suitable for the tank bottom shape is
not considered. Tus, Mondal proposed an adjustable cir-
cular shape robot [14]. Te rotational module is designed to
allow the wheels to rotate and be able to go in a circular
motion. Nevertheless, obstacle avoidance is not considered
in this literature. In summary, how to realize automatic
obstacle avoidance and dynamic path planning still needs
further improvement.

With the development of intelligent automobile and
robot, path planning has attracted more and more attention.
Traditional path planning algorithms include A-Star,
Dijkstra, D-Star Lite, RRT, neural network, intelligence
algorithm, and artifcial potential feld method. A-Star is an
efective direct search algorithm and is broadly applied.With
the increase of nodes, the efciency decreases signifcantly
[15, 16]. Dijkstra solved the shortest path problem through
constructing a directed graph and the optimal solution was
obtained [17, 18]. However, the space occupied by Dijkstra is
large. D-star Lite searches path nodes by maintaining one
priority queue and has dynamic planning capability [19, 20].
Te disadvantage is low efciency when the state space is
large. In RRT, random spanning trees and searching paths
were generated. Although the algorithm principle is simple,
the planned path cannot be guaranteed to be the optimal
path [21, 22]. Te solution was optimized in neural network
through designing multiple neurons with nonlinear map-
ping capability and connecting them with weight co-
efcients. Here, nonlinear mapping and parallel processing
were realized but the training time is too long [23, 24]. And
path planning based on the intelligence algorithmmay avoid
the problem of local minimum and they are computationally
expensive and difcult to solve the problem of high di-
mension [25]. In comparison, the artifcial potential feld
method is a commonmethod with high efciency and a wide
application range for robot path planning [26]. Te path
planned by the potential feld method is generally smooth
and safe, but this method has local minimum problem. To
solve the problem of falling into the minimum, many
scholars have done research. Sun presented a dynamic
window approach and defned a danger index in the speed
feld for moving object avoidance. But the problem of in-
accessibility of the target is not considered [27]. On this
basis, Liu improved a potential feld path planning method
based on the genetic algorithm, where the genetic algorithm
was used to optimize the combined potential feld function
of gravity and repulsion and found the lowest point of
potential energy directly so as to determine the step size and
moving direction of the robot [28]. However, the security of
path planning results is still insufcient. Orozco-Rosas
proposed a membrane evolutionary artifcial potential
fled (memEAPF) approach with combined membrane
computing with a genetic algorithm and improve the

security of planned paths [29]. Nevertheless, the oscillation
between obstacles and concave obstacle problems is still not
considered. Aiming at these problems, Lin constructed an
artifcial potential feld path planning model based on de-
cision tree through utilizing the advantages of decision tree
in rule expression and extraction, in which this algorithm
realized the real-time and accurate identifcation of current
behavior and fast decision-making of next time behavior in
path planning [30]. With the complexity of the improved
methods, the computational complexity is further increased.
Tus, Tian proposed a method to construct a guided po-
tential feld in the virtual guiding pipeline. Te algorithm
complexity is reduced and the ability to avoid local minima
is improved [31]. However, the path planning results are not
smooth. Orozco-Rosas proposed a QAPF learning algorithm
combining Q-Learning and the artifcial potential feld to
obtain smooth results [32]. In addition, the virtual target
(VT) method is also proposed to make the path smoother
[33]. Virtual targets are designed according to nearest ob-
stacle and generate additional gravity in the VT method.
Although the VT method efectively smooths the paths,
many virtual targets need to be designed for spiral path
planning, which afects the efciency of path planning.Tus,
Zhao proposed an improved artifcial potential feld (IAPF)
method (state-of-the-art) with designed additional gravity
according to the direction of the local minimum point [34].
Although the IAPF method can efectively jump out of the
local minimum point, the cost is that there are redundant
path points on some paths, which reduces the smoothness of
the planning results and increases unnecessary movement.
Terefore, on the basis of avoiding local minimum points,
how to consider smoothness and efciency of the path
planning algorithm needs to be further studied.

Besides, the accuracy and efectiveness of the positioning
algorithm are crucial to move the robot accurately according
to the path planning results. Until now, the existing indoor
location methods have limited positioning accuracy and
diferent costs when applied in oil tanks, such as themethods
based on Wi-Fi, WLAN, ZigBee, Bluetooth, and ultra-
wideband (UWB). Te wireless signal in Wi-Fi is vulnera-
ble to interference and refection, resulting in limited po-
sitioning accuracy [35]. Shadow and multipath efect exists
in WLAN [36]. ZigBee is easy to cause multipath efect and
abnormal signal attenuation due to the infuence of the
nearby environment [37]. Bluetooth has a small coverage
and its accuracy is afected by beacon density [38]. UWB can
ensure the positioning accuracy but the equipment cost is
high [39]. As a result, a high-precision and cost-acceptable
positioning method needs to be considered.

At present, the storage tank in China has been operating
for a long time. Tank maintenance and health status
monitoring is an urgent task. Due to the lack of the auto-
matic detection equipment, the detection of tank bottom
plate is labor-intensive. And the detection efciency is very
low. Furthermore, working for a long time in the sealed
space of the storage tank is harmful to the health of the staf.

To raise the inspection efciency of the large storage tank
bottom, this article intends to propose the path planning and
positioning algorithm of the large-scale tank bottom

2 Computational Intelligence and Neuroscience



detection robot. Te main contributions of this article are as
follows:

(i) Te local minimum and the lack of smooth plan-
ning results are two main problems in the tradi-
tional artifcial potential feld method.Te proposed
rotating potential feld (RPF) method can efectively
avoid the local minimum trap and obtain smooth
planning results while avoiding obstacles. Com-
bined with the preset spiral path, it can be used for
automatic path planning of the tank bottom
detection robot.

(ii) Te three-point positioning algorithm based on
acoustic emission sensors can realize the real-time
and accurate positioning of the tank bottom de-
tection robot, which overcomes the problem that
the traditional positioning methods are limited in
the confned space.

(iii) Te experiment shows that the average RMSE of
RPF is 9.49% lower than that of IAPF (state-of-the-
art). Te visualization results show that RPF ef-
fectively reduces redundant path points compared
with IAPF.

Te rest of this article is structured as follows: Section 2
describes the proposed method. Te experiment results and
discussions are presented in Section 3. Finally, Section 4 is
the conclusion.

2. Proposed Method

To achieve efective path planning and accurate positioning
of the detection robot, frst, the spiral preset path is designed
according to the shape of the tank bottom. Ten, the fow
and parameter setting of the rotating potential feld method
are introduced. Finally, the principle of the positioning
algorithm is described.

2.1. Rotating Potential Field Method Based on the Spiral Path.
Tis work designs a spiral path for detecting the bottom of
vertical cylindrical oil storage tanks in order to add the
detecting area. Inspired by the motion mode of celestial
bodies, we improve the traditional artifcial potential feld
method through adding a rotation potential feld (RPF) near
the obstacles. Te proposed method increases the ability of
the artifcial potential feld method to jump out of local
extreme points.

First, the robot motion path is set to the spiral equation
to make the detection path cover the bottom of the circular
oil tank as much as possible. Te spiral path is shown in
Figure 1, and points on the path are expressed by pi(xi, yi).
Points in the spiral path are by

P � pi􏼈 􏼉, i � 1, 2, 3, . . . , nmax, (1)

where nmaxis the number of iterations required when the
distance between the current position of the robot and the
center of the circle is less than the threshold d0 or the preset
maximum number of iterations is reached. Te spiral path
equation is written by

xt � R −
d · t

2π
􏼠 􏼡cos (nt),

yt � R −
d · t

2π
􏼠 􏼡sin (nt),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where R is the radius of oil tank bottom, d is the spiral coil
pitch, t is the angular velocity, n is the number of iterations,
and n ∈ [0, 2πR/d]. When detecting at the bottom, a point p0
on the tank wall is a starting point and the end point is pnmax

.
On the spiral path, the traditional artifcial potential feld

method is shown in Figure 2Qi is considered as current
location, and pi+1 is the target point. Point qi is within the
infuence range of obstacles, that is to say, the distance
between the point qi and the obstacle is less than ρ0, where
ρ0 is the infuence radius of obstacles.Te robot is afected by
the gravitational Fatt and repulsive Frep at the same time,
which makes the robot move along the direction of resultant
force F and reach the point qi+1. When the resultant force is
approach to zero, the path planning method based on the
artifcial potential feld method is easy to fall into local
extreme points. Figure 3 shows an example of the case of
falling into a local extreme point.

When it falls into the local extreme point on the spiral
path, the potential feld method is changing with the number
of iterations. And the next target point is changed to
a critical position. Although the path planning can jump out
of the local extreme point, the robot still deviates from the
spiral preset path, resulting in the failure of path planning.

Figure 4 is a simulation experiment of the failure of path
planning. If the radius of the circular bottom of the oil tank is
10, the starting point of the path planning is (10, 0) and the
ending point is (0, 0). Te robot moves counterclockwise
according to the spiral path. Te green points in the Figure 4
are the historical trajectory of the robot and the red points

R
dd

Figure 1: Schematic diagram of the robot spiral path.

obstacle

Frep qi

qi+1

pi+1

FattF

ρ0

Figure 2: Force diagram of robot in the potential feld.
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are obstacles. When the robot moves to the area marked by
the purple box, it falls into local extreme points. Next, the
results of multiple iterations are almost unchanged. After the
next path point changes to a critical position, the robot
jumps out of the local extreme point due to large gravity. But
the path planning is a failure because the next path point
deviates from the original preset route.

To solve this problem, the traditional artifcial potential
feld method is improved in this article. Inspired by the
motion mode of celestial bodies, we propose a rotating
potential feld method based on the spiral path through
adding a rotating potential feld near the obstacles.

Te artifcial potential feld method is easy to fall into
local extreme points because the resultant force is 0, which
causes the robot to stop moving. Te robot moves from the
tank wall to the center of the circular tank bottom according
to the spiral path. Similar to the movement of celestial
bodies, the center of the circle is regarded as the central star,
and the robot is taken as the planet moving around the
central star. All obstacles are treated as stars; then, the whole
system is a multistar system. If the robot moves along the
spiral path, it can be regarded as the existence of orbit at-
tenuation in the planetary orbit. Unlike the multistar system
in astronomy, the stars in this system always remain sta-
tionary, and the two do not rotate around each other. Te

infuence range of the obstacle is regarded as the gravita-
tional range of the star, and the gravitational force is not
considered outside the infuence range.

Under this assumption, when the planet enters the
gravitational range of another starH around the central star,
the planet rotates around H. Te gravity generated by the
central star is greater. After turning to a certain degree, the
planet leaves the gravitational range of H and re-enter the
orbit around the central star, that is, the robot may bypass
the obstacles.

In order to simulate this motion around the star, a ro-
tating potential feld is added around the obstacle and it is
illustrated in Figure 5. When the current position point qi is
in the rotation potential feld formed by the obstacle Oj, the
tangent direction of the circle with Oj as the center and
passing through the qi point at qi is the gravitational di-
rection. Since the rotation direction in the rotation potential
feld is counterclockwise, the tangent direction is also
consistent with the rotation direction. Considering that the
smaller the distance between qi and Oj, the robot may avoid
the obstacle Oj as soon as possible and the greater the ro-
tation potential feld force. Tat is to say, the force of the
rotating potential feld should be inversely proportional to
ρ(qi, Oj). Te gravitational force in the rotating potential
feld can be defned as

Frot �
Krotρ0

ρ qi, Oj􏼐 􏼑
, (3)

where Krot represents the gain coefcient of gravity in
a rotating potential feld and setKrot �Katt in the experiment.
Te fowchart of the rotating potential feld method based on
the spiral path is shown in Figure 6.

2.2. Acoustic Emission Localization Algorithm. Te tank
bottom detection robot can sense the environment and its
own state through sensors and further realize the target
oriented autonomous movement in the environment with
obstacles. In this work, we select acoustic emission sensors as
the excitation source. Tree base stations with known po-
sitions are set. Te distances between the current position of
inspection robot and the three base stations are measured
through acoustic emission sensors. And then the three-point
positioning algorithm is applied to realize the real-time
calculation of the robot position.

obstacleFrep

qi pi+1

Fatt

ρ0

(a)

obstacle 1

obstacle 2

Frep1

Frep2

Fatt

qi pi+1

ρ0

ρ0

(b)

Figure 3: Examples of local extreme points in the potential feld method (a) obstacle on the motion, (b) obstacles on both sides of the path.
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Figure 4: Schematic diagram of route planning failure caused by
the artifcial potential feld method falling into local extreme points.
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Te three-point positioning algorithm [40] may adopt the
position coordinate information of three known points to
calculate the current position information. Here, the three
points are not collinear. Figure 7(a) represents the three-point
positioning in an ideal situation. O is the current position of
the acoustic emission sensor, and A, B, and C are three base
stations. When the acoustic emission sensor is no error, the
three circles with the radius ofOA,OB, andOC have a unique
intersectionO.When the acoustic emission sensor exists error
in the actual system, there are two cases, as shown in
Figures 7(b) and 7(c). Tat is to say, the three circles may
intersect in one area or the three circles may be separated.

For a group of base station locations L� {(x1, y1), (x2, y2),
(x3, y3)} and the corresponding distances measured by
acoustic emission sensorD� {d1, d2, d3}, the current position
of the robot is (x, y). We can obtain the equation

x1 − x( 􏼁
2

+ y1 − y( 􏼁
2

� d
2
1,

x2 − x( 􏼁
2

+ y2 − y( 􏼁
2

� d
2
2,

x3 − x( 􏼁
2

+ y3 − y( 􏼁
2

� d
2
3.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

Equation (4) is simplifed as follows:

x
2

+ y
2

− 2x1x − 2y1y � d
2
1 − x

2
1 − y

2
1,

x
2

+ y
2

− 2x2x − 2y2y � d
2
2 − x

2
2 − y

2
2,

x
2

+ y
2

− 2x3x − 2y3y � d
2
3 − x

2
3 − y

2
3.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

Subtract the third equation from the frst two equations
in equation (5) and it is written by

x3 − x1( 􏼁x + y3 − y1( 􏼁y �
d
2
1 − d

2
3 + x

2
3 + y

2
3 − x

2
1 − y

2
1􏼐 􏼑

2
,

x3 − x2( 􏼁x + y3 − y2( 􏼁y �
d
2
2 − d

2
3 + x

2
3 + y

2
3 − x

2
2 − y

2
2􏼐 􏼑

2
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

Let

X �

x3 − x1 y3 − y1

x3 − x2 y3 − y2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

β �
x

y

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

Y �

d
2
1 − d

2
3 + x

2
3 + y

2
3 − x

2
1 − y

2
1􏼐 􏼑

2

d
2
2 − d

2
3 + x

2
3 + y

2
3 − x

2
2 − y

2
2􏼐 􏼑

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)

Ten, we can obtain the equation

Xβ � Y. (8)

Frot

qi

Oj

(a) (b)

Figure 5: Schematic diagram of the rotating potential feld (a) rotating potential feld force. (b) Schematic diagram of force applied to the
robot when the rotating potential feld is increased.

Initialization

calculate the next preset position

calculate the gravitation force Fatt and
the repulsive force Frep

whether the robot is in
the rotating potential field

Yes

Yes

No

Nocalculate the
rotation force Frot

Frot = 0

calculate the resultant force
F = Fatt + Frep +Frot 

update position by F direction and step s

whether the termination
conditions are met

Finish

Figure 6: Te fowchart of the rotating potential feld method
based on the spiral path.
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So far, we may easily solve equation (8) by the least
square method.

β′ � X
T
X􏼐 􏼑

− 1
X

T
Y, (9)

where β′ is the approximate value of β.

3. Experimental Test Results and Discussion

Tis section includes three parts. First, the proposed RPF
method is compared quantitatively and qualitatively with the
existing methods under diferent obstacle distributions.
Next, the impact of diferent parameters in the RPF on the
planning results is discussed and analyzed. Finally, the ef-
fectiveness of the three-point positioning algorithm is ver-
ifed by the positioning experiment.

3.1. Path Planning Simulation Experiments. To verify the
efectiveness of the path planning algorithm proposed in
this article, the robot path planning simulation experi-
ment is carried out. Te CPU model used in the experi-
ment is Intel (R) core (TM) i7-9750h CPU @ 2.60 GHz,
and the simulation software platform version is
MATLAB 2016.

In the experiment, we model the tank bottom as a cir-
cular surface with a radius of 10. Te center of the circle is
the origin of the coordinate axis. Green points are used to
represent the robot’s motion path. Te motion start point is
(10, 0) and the end point is (0, 0). Te robot moves
counterclockwise. Te termination condition is that the
number of iterations is reached or the distance from the end
point is less than the threshold d0.

We randomly generate m obstacles to verify the path
planning ability of the algorithm under diferent obstacle
distributions. Tem obstacles are shown as Oj(xj, yj), j� 1, 2,
3, . . .,m, where xj ∈ (−10, 10), yj ∈ (−10, 10), and x2

j + y2
j > d2

0.
Te common parameter settings of diferent algorithms

are the same, where Katt � 200, Krep � 200, the step size of
each iteration move s is set as 0.2, the pitch of spiral path
d � 0.4π, angular velocity t� 0.02, and the distance in ter-
mination condition d0 is 0.2.

In order to quantitatively compare the efectiveness of
path planning of diferent algorithms, we defne three
quantitative evaluation indexes, namely, precision (P), recall
(R), and root mean square error (RMSE). Among them, P
and R indexes are originated to machine learning indicators.
For the path planning point qi and its corresponding preset
path point pi, it is regarded as the correct point at
ρ(qi, pi)≤T0; otherwise, it is the wrong point. Te three
indicators are designed as follows:

Precision (P) [41] is estimated by

P �
TP

TP + NP
, (10)

where TP indicates the total number of correct points in path
planning, NP is the total number of error points, and P is the
proportion of correct points in all path points in the path
planning.

Recall (R) [41] is estimated by

R �
TP

TP + FN
, (11)

where FN is the total number of planned errors on the preset
path, and R is the proportion of correct points in all the
preset path points in the path planning.

RMSE [42] is computed by

RMSE �

���������������

1
nmax

􏽘

nmax

i�1
ρ qi, pi( 􏼁

2

􏽶
􏽴

. (12)

Multiple groups of obstacles are randomly generated
within the given range. Te existing methods and the
proposed method are compared on three groups of ob-
stacles with diferent distribution. Te quantitative analysis
is listed in Table 1. Both P and R indicators are counted at
T0 = 0.2.Te optimal indicators of each group are written in
bold in Table 1. We can see that VT, IAPF (state-of-the-art),
and RPF are successful in path planning under the infu-
ence of three groups of the obstacles with diferent dis-
tribution. Compared with the other two methods, RPF

A B

C

O

(a)

A

V

B

C

OAB

U

(b)

A

B

C

(c)

Figure 7: Schematic diagram of the three-point positioning algorithm (a) three-point positioning under ideal conditions; (b) three-point
positioning where three circles all intersect; (c) three-point positioning where three circles do not coincide.
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achieves better performance. Under the obstacle distri-
bution 1, the RMSE index of RPF is reduced by 23.43%
(from 34.79 to 26.64) compared with that of VT. Mean-
while, the precision of RPF is 6.46% (from 71.07 to 77.53)
higher than that of VT. Under the obstacle distribution 2,
the RMSE index of RPF is reduced by 3.46% (from 16.19 to
15.63) compared with that of IAPF. Under the obstacle
distribution 3, the RMSE index of RPF is reduced (from
14.17 to 13.08) compared with that of IAPF. Te average
RMSE of RPF is 9.49% (from 20.20 to 18.45) lower than that
of IAPF. In addition, combined with the improved re-
pulsion (IR) function, VT, IAPF, and RPF have increased in
all three indicators. Compared with IAPF + IR, RPF + IR
achieves 6.41% (from 12.17 to 11.39) improvement in terms
of RMSE under the obstacle distribution 3. Furthermore,
the average RMSE of RPF + IR is 3.51% (from 18.54 to
17.89) lower than that of IAPF + IR. Tese comparisons
verify the efective of RPF. Moreover, the precision of
RPF + IR is 8.51% (from 77.53 to 86.04) higher than that of
RPF under the obstacle distribution 1. Terefore, com-
bining with the IR function can further improve the per-
formance of RPF. We also compared the path planning
time of diferent methods. Te average planning time of
RPF + IR is 0.40 s, which is very close to the average
planning time of IAPF + IR of 0.38 s.

A statistical analysis of P and R under diferent T0s is
illustrated in Figure 8 in order to further compare the
consistency between the path planning of diferent algo-
rithms and the preset path. Among the three methods
without the improved repulsion function, the rotating po-
tential feld method is better than the virtual target method.
Combined with the IR function, when T0 � 0, the P and R
indexes of all methods are improved. For example, under the
distribution of obstacle 1, VT+ IR improves the precision of
19.34% and the recall of 16.47%. Tis is because the IR
function adds some gravitation, which makes the robot
moving closer to the preset path. From the P and R curves,
RPF+ IR has better performance under diferent T0 under
the three obstacle distributions.

Te spiral path planning results illustrated represent
intuitively the obstacle avoidance efect of diferent algo-
rithms under three obstacle distributions.

Figure 9 shows the results of diferent algorithms under
obstacle distribution 1. In the blue rectangular box, it can be
seen that APF failed to consider the local extreme points.While
the path planning has been successfully realized in the VT,
IAPF, and RPF. In the purple rectangular box, only APF+ IR
cannot successfully plan the path, but other methods combined
with the improved repulsion may successfully plan the path.

From the yellow rectangular box, we can see that the
overall planning of VT+ IR is successful. But it falls into
a local minimum point at trying to pass through the middle
of two obstacles for many times before avoiding obstacles.
Te robot was not separated from the local extreme point
until the gravity of a distant point on the preset path is large
enough and a deviation between the obstacle avoidance path
and the preset path is large enough. However, IAPF+ IR and
RPF + IR have efectively avoided the local minimum point.
In addition, the planning results of IAPF + IR have re-
dundant path points on both sides of the preset spiral path.
And RPF+ IR in our work does not have this problem.

Figure 10 presents the results of path planning in ob-
stacle distribution 2. By observing the gray rectangular box,
we can see that the planning result of the VTis diferent from
that of other methods. Tis is caused by the design of virtual
points. Under the infuence of the counterclockwise rotating
potential feld, RPF maintains an upward detour path.
Combined with the IR function, diferent algorithms per-
form similarly in this local region.

In the purple rectangular region, both APF and APF+ IR
fail to plan and the other algorithms are successful. VT and
VT+ IR avoid two obstacles by detour, while IAPF,
IAPF + IR, and RPF do not fall into the local minimum point
under the action of the rotating potential feld. Tey also
cross successfully between the two obstacles, and these
methods have better performance in quantitative analysis.

Figure 11 displays the path planning results of obstacle
distribution 3. In the gray rectangular box, both APF and
APF+ IR fall into the local minimum point, resulting in the
failure of path planning. Other methods may avoid obstacles
successfully and complete the path planning. Moreover, the
planning results of IAPF + IR have redundant path points on
both sides of the preset spiral path. And RPF + IR does not
have this problem.

Table 1: Comparison of path planning results of diferent algorithms under diferent obstacle distributions.

Methods
Obstacles 1 (m� 39, ρ0 �1.5) Obstacles 2 (m� 36, ρ0 �1.0) Obstacles 3 (m� 20, ρ0 � 0.8)
P↑
(%)

R↑
(%)

RMSE
(×102)

P↑
(%)

R↑
(%)

RMSE
(×102)

P↑
(%)

R↑
(%)

RMSE
(×102)

APF [24] — — — — — — — — —
VT [33] 71.07 66.94 34.79 84.07 80.30 26.38 91.68 88.09 14.23
IAPF [34] 77.28 72.79 30.23 86.02 81.51 16.19 92.78 89.79 14.17
RPF (Our) 77.53 72.99 26.6 86.55 82.12 15.63 92.55 90.27 13.08
APF+ IR
[24] — — — — — — — — —

VT+ IR [33] 83.33 75.66 33.53 90.25 85.91 22.21 94.08 91.16 13.70
IAPF+ IR
[34] 85.78 77.96 29.48 91.94 87.08 13.97 94.54 91.64 12.17

RPF+ IR
(Our) 86.0 78.16 28.63 92.11 87.20 13.65 95.06 91.76 11.39

Bold indicates the best indicator.
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Figure 8: P and R curves of diferent algorithms at T0 � 0, 0.2, 0.4, 0.6, 0.8, and 1.0 under three obstacle distributions. (a) P curve of diferent
algorithms under obstacle distribution 1, (b) R curve of diferent algorithms under obstacle distribution 1, (c) P curve of diferent algorithms
under obstacle distribution 2, (d) R curve of diferent algorithms under obstacle distribution 2, (e) P curve of diferent algorithms under
obstacle distribution 3, and (f) R curve of diferent algorithms under obstacle distribution 3.
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We also analyzed the poor results of RPF in path
planning. When the robot’s current obstacle avoidance
action has not ended and meets other obstacles, the obstacle
avoidance path will deviate from the preset spiral path, as
shown in Figure 12. When this situation occurs continu-
ously, it will lead to more detection blind areas when the
tank bottom detection robot performs the detection task as
shown in the yellow rectangle in Figure 12. Obstacle
avoidance is equivalent to increasing the distance from the
current position to the target position, but the step length of
the algorithm is fxed, and so more movements are required
and the position of the target point is constantly updated.
Terefore, when the obstacle avoidance action occurs re-
peatedly, the distance between the robot’s current position
and the target point is large, and the gravitation of the target
point to the current position is strong. Tis makes the robot
move rapidly towards the target point and cannot maintain
the preset spiral path.

3.2. Infuence of the Parameter Settings Experiment. In the
proposed RPF method, its performance is afected by the
setting parameters. We implement the path planning ex-
periment under obstacle distribution 1 for diferent Katt,
Krep, Krot, and ρ0. Te 4 diferent ρ0s and 7 diferent ratios of
Katt and Krep are set in this experiment. Te quantitative
comparison results of diferent ρ0 are listed in Table 2. Te
diference between the best index and the worst index of P is
2.11% (from 88.07% to 85.96%). Te diference between the
best index and the worst index of R is 1.53% (from 79.85% to
78.32%).Te diference between the best index and the worst
index of RMSE is 0.0377 (from 0.2551 to 0.2928). Tese
diferences prove that diferent parameters have little in-
fuence on the success of RPF path planning.

3.3. Acoustic Emission Positioning Simulation Experiment.
To verify the efectiveness of the three-point positioning
algorithm, the simulation experiment of robot positioning is
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Figure 9: Path planning results of diferent algorithms under obstacle distribution 1. (a) APF, (b) APF + IR, (c) VT, (d) VT + IR, (e) IAPF,
(f ) IAPF + IR, (g) RPF, and (h) RPF + IR.
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Figure 11: Path planning results of diferent algorithms under obstacle distribution 3. (a) APF, (b) APF + IR, (c) VT, (d) VT+ IR, (e) IAPF,
(f ) IAPF + IR, (g) RPF, and (h) RPF+ IR.
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Table 2: Comparison of RPF with diferent ρ0s and diferent ratios of Katt and Krep under obstacle distribution 1 (bold indicates the best
indicator and italics indicates the worst indicator).

ρ0 Katt, Krot Krep P (%) R (%) RMSE
1.5 100 100 — — —
1.5 150 100 — — —
1.5 200 100 86.91 78.81 0.2858
1.5 225 100 86.39 78.44 0.2845
1.5 250 100 85.96 78.36 0.2881
1.5 275 100 86.22 78.32 0.2818
1.5 300 100 86.26 78.32 0.2739
2.0 100 100 — — —
2.0 150 100 — — —
2.0 200 100 86.97 79.25 0.2816
2.0 225 100 87.18 79.05 0.2638
2.0 250 100 87.19 79.17 0.2627
2.0 275 100 87.40 79.25 0.2588
2.0 300 100 87.12 79.17 0.2628
2.5 100 100 — — —
2.5 150 100 86.60 78.52 0.2878
2.5 200 100 88.07 79.85 0.2650
2.5 225 100 87.38 79.41 0.2626
2.5 250 100 87.24 79.49 0.2651
2.5 275 100 87.46 79.41 0.2551
2.5 300 100 87.35 79.45 0.2611
3.0 100 100 — — —
3.0 150 100 87.45 79.33 0.2928
3.0 200 100 87.78 79.77 0.2598
3.0 225 100 87.35 79.45 0.2605
3.0 250 100 87.25 79.57 0.2678
3.0 275 100 87.56 79.57 0.2562
3.0 300 100 87.31 79.41 0.2561

Table 3: Comparison of diferent v in 12 environments with 50 random points.

Environment Statistics |v|≤ 0.01 |v|≤ 0.02 |v|≤ 0.03 |v|≤ 0.04 |v|≤ 0.05

P01

Best 0.0160 0.0319 0.0479 0.0650 0.0828
Mean 0.0192 0.0388 0.0579 0.0734 0.0998
Worst 0.0234 0.0465 0.0663 0.0831 0.1202
Std. dev. 0.0019 0.0038 0.0051 0.0046 0.0100
t-test 5.0225e− 31 4.9163e− 31 1.6554e− 32 8.4695e− 37 7.4859e− 31

P02

Best 0.0186 0.0329 0.0504 0.0754 0.0920
Mean 0.0225 0.0432 0.0673 0.0900 0.1078
Worst 0.0273 0.0580 0.0773 0.1062 0.1400
Std. dev. 0.0021 0.0051 0.0068 0.0081 0.0099
t-test 8.5476e− 32 7.9451e− 29 1.0632e− 30 4.0024e− 32 6.2938e− 32

P03

Best 0.0194 0.0342 0.0557 0.0737 0.0945
Mean 0.0223 0.0440 0.0679 0.0898 0.1133
Worst 0.0269 0.0505 0.0858 0.1068 0.1400
Std. dev. 0.0018 0.0038 0.0070 0.0080 0.0125
t-test 3.1414e− 33 9.5255e− 33 1.7882e− 30 2.6345e− 32 1.1984e− 29

P04

Best 0.0182 0.0354 0.0529 0.0646 0.0873
Mean 0.0214 0.0433 0.0640 0.0864 0.1075
Worst 0.0256 0.0492 0.0778 0.1026 0.1266
Std. dev. 0.0017 0.0040 0.0059 0.0081 0.0106
t-test 2.0551e− 31 1.0196e− 31 7.2237e− 32 1.0836e− 31 4.7596e− 31

P05

Best 0.0155 0.0351 0.0526 0.0756 0.0944
Mean 0.0226 0.0432 0.0673 0.0885 0.1099
Worst 0.0276 0.0492 0.0783 0.1021 0.1299
Std. dev. 0.0026 0.0034 0.0068 0.0073 0.0084
t-test 3.5962e− 29 1.0590e− 33 1.0840e− 30 2.9482e− 33 3.4386e− 34
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Table 3: Continued.

Environment Statistics |v|≤ 0.01 |v|≤ 0.02 |v|≤ 0.03 |v|≤ 0.04 |v|≤ 0.05

P06

Best 0.0156 0.0307 0.0496 0.0590 0.0694
Mean 0.0188 0.0386 0.0569 0.0740 0.0936
Worst 0.0218 0.0479 0.0678 0.0905 0.1135
Std. dev. 0.0016 0.0041 0.0051 0.0075 0.0105
t-test 1.6495e− 32 5.2952e− 30 4.1761e− 32 1.0137e− 30 1.9780e− 29

P07

Best 0.0179 0.0323 0.0545 0.0709 0.0826
Mean 0.0211 0.0421 0.0621 0.0842 0.1043
Worst 0.0249 0.0524 0.0723 0.0962 0.1249
Std. dev. 0.0019 0.0047 0.0046 0.0070 0.0088
t-test 2.1113e− 32 2.1941e− 29 1.6340e− 34 4.1413e− 33 6.9580e− 33

P08

Best 0.0169 0.0339 0.0497 0.0644 0.0817
Mean 0.0204 0.0397 0.0602 0.0790 0.0985
Worst 0.0253 0.0498 0.0724 0.1019 0.1183
Std. dev. 0.0021 0.0041 0.0060 0.0076 0.0079
t-test 3.3745e− 30 1.4478e− 30 7.4149e− 31 2.2090e− 31 1.6295e− 33

P09

Best 0.0182 0.0345 0.0474 0.0727 0.0815
Mean 0.0221 0.0430 0.0634 0.0848 0.1051
Worst 0.0261 0.0475 0.0724 0.1114 0.1284
Std. dev. 0.0018 0.0033 0.0059 0.0091 0.0113
t-test 1.5502e− 33 2.6732e− 34 8.1635e− 32 5.5838e− 30 6.6782e− 30

P10

Best 0.0183 0.0363 0.0530 0.0714 0.0831
Mean 0.0227 0.0454 0.0696 0.0907 0.1118
Worst 0.0280 0.0537 0.0865 0.1057 0.1440
Std. dev. 0.0022 0.0044 0.0081 0.0090 0.0133
t-test 5.0725e− 31 3.0192e− 31 6.9498e− 29 6.3595e− 31 1.1045e− 28

P11

Best 0.0155 0.0328 0.0489 0.0587 0.0799
Mean 0.0183 0.0379 0.0568 0.0737 0.0951
Worst 0.0234 0.0456 0.0666 0.0912 0.1170
Std. dev. 0.0018 0.0026 0.0053 0.0074 0.0091
t-test 2.4976e− 31 1.2408e− 35 1.1776e− 31 9.2664e− 31 1.9567e− 31

P12

Best 0.0142 0.0298 0.0479 0.0677 0.0778
Mean 0.0191 0.0394 0.0592 0.0784 0.0971
Worst 0.0240 0.0439 0.0806 0.0989 0.1102
Std. dev. 0.0024 0.0038 0.0073 0.0069 0.0079
t-test 3.8579e− 28 2.4850e− 31 3.6348e− 28 1.9055e− 32 1.9444e− 33
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Figure 13: Continued.
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carried out in this section. In the experiment, three basis
points are set up with the coordinates A (7.5, 0), B (−7.5, 0),
and C (0, 7.5). A random point is given as the truth point
(xgt, ygt), and the distance from the point to the three basis
points is calculated. We add random disturbances to the
three distance values to simulate the error in the actual
system. If the distance from the truth point to the base
station is l, the distance le after adding random disturbance is

le � (1 + v) · l, (13)

where v ∈ [−0.05, 0.05] stands for the random disturbance.
Since the acoustic emission sensor ranging results at the

same location are diferent each time in the actual system,
this experiment adds diferent random disturbances to the
distance between the same truth point and the basis point
many times. Te average of the multiple positioning results
determined the fnal position (xloc, yloc). In the experiment,

the repetition times are set to 20 times. Te Euclidean
distance between the positioning result and the truth point is
computed as the error E of the positioning algorithm.

E �

����������������������

xloc − xgt􏼐 􏼑
2

+ yloc − ygt􏼐 􏼑
2

􏽲

. (14)

In this experiment, several truth points are randomly
generated to verify the efectiveness of the algorithm. 12 test
environments (P01 to P12) are constructed for the posi-
tioning accuracy test. Each environment contains 50 ran-
dom points. We implemented the proposed algorithm
30 times for each test with diferent v. Best, mean, worst,
standard deviation, and t-test represent the solution over
independent 30 runs under each environment, respectively.
Te results are displayed in Table 3. Te level 0.05 of sig-
nifcance is considered for the t-test. Te results indicate that
the three-point positioning algorithm has good accuracy.
When |v|≤ 0.05, the average error in all environments is only
0.0839. At the same time, the p-values are far smaller than
the level 0.05 of signifcance. In addition, we also tested the
calculation time of the algorithm. Each positioning takes
only 6∼10ms, which meets the needs of the actual project. In
order to display intuitively the positioning efect, the po-
sitioning visualization results are illustrated in Figure 13. It
can be seen that the positioning results of the algorithm are
very close to the true value point.

In this article, the positioning simulation is also carried
out according to the spiral path in the path planning. Te
starting point is still (10, 0), the spiral pitch d � 0.4π and
angular velocity t� 0.1, and a total of 500 points are gen-
erated. Te three-point positioning algorithm is operated
after adding random disturbance. Te results are displayed
in Figure 14. Te trend of the algorithm results (blue points)
is consistent with that of the preset spiral path (red curve).
Under this kind of random disturbance, the average error of
all point positioning results is only 0.0744.Te 30 times with
diferent random disturbance are run, and the average error
is only 0.0748± 0.0032.
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Figure 13: Tree-point positioning algorithm visualization results in diferent environments with |v|≤ 0.05 (a) results in the environment
P03, (b) results in the environment P06, (c) results in the environment P09, and (d) results in the environment P12.
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Figure 14: Schematic diagram of simulation results of the posi-
tioning algorithm on the spiral path.
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4. Conclusion

Tis work has investigated a rotating potential feld method
based on the spiral path for detecting the bottom of the
tank. First, the preset spiral path was designed according to
the shape of the tank bottom, and the rotating potential feld
was added on the basis of the artifcial potential feld
method to achieve efective planning and obstacle avoid-
ance. Te average RMSE of RPF is 9.49% lower than that of
IAPF (state-of-the-art), and the algorithm running time is
not signifcantly reduced. After that, the three-point po-
sitioning algorithm was utilized to realize the calculation of
the inspection robot position through measuring the
acoustic emission range. Te positioning error on the spiral
path is only 0.0748± 0.0032.

Te parameters in this article, such as Katt, Krot, and Krep,
are selected based on experience, but diferent parameters do
have certain impacts on the planning results, as discussed in
Section 3.2.Terefore, better parameter selection can further
improve the performance of RPF, and intelligent algorithms
such as the genetic algorithm and the particle swarm op-
timization can be considered for parameter selection. In
addition, we found in the simulation experiment that when
the robot’s current obstacle avoidance action has not ended
and meets other obstacles, the obstacle avoidance path will
deviate from the preset spiral path. When this situation
occurs continuously, it will lead to more detection blind
areas when the tank bottom detection robot performs the
detection task. Terefore, how to solve the path deviation
caused by the continuous obstacle avoidance action is an
important issue to improve the algorithm’s scene adapt-
ability. Flexible step size design and direction constraints
may solve this problem.
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