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Vehicles transporting hazardous material (HAZMAT) pose a severe threat to highway safety, especially in road tunnels. Vehicle
reidentifcation is essential for identifying and warning abnormal states of HAZMAT vehicles in road tunnels. However, there is
still no public dataset for benchmarking this task. To this end, this work releases a real-world tunnel HAZMAT vehicle rei-
dentifcation dataset, VisInt-THV-ReID, including 10,048 images with 865 HAZMAT vehicles and their spatiotemporal in-
formation. A method based on multimodal information fusion is proposed to realize vehicle reidentifcation by fusing vehicle
appearance and spatiotemporal information. We design a spatiotemporal similarity determination method for vehicles based on
the spatiotemporal law of vehicles in tunnels. Compared with other reidentifcation methods based on multimodal information
fusion, i.e., PROVID, Visual + ST, and Siamese-CNN, experimental results show that our approach signifcantly improves the
vehicle reidentifcation recognition precision.

1. Introduction

Hazardous materials (HAZMAT) could endanger the health
and safety of people, environment, and property. With the
increasing demand of HAZMAT, trafc accidents occurred
frequently during HAZMAT transportation, and especially,
a risk increase is generally observed in the presence of
tunnels [1–3], which makes it of great importance to tighten
regulation for vehicles transporting HAZMAT in tunnels.

HAZMAT vehicle reidentifcation (ReID) methods face
the following challenges in tunnel scenes: (1) the strong
refection of the tank of a HAZMAT vehicle can cause large
diferences in its appearance under the uneven lighting
conditions of a tunnel; (2) it is difcult to distinguish the
HAZMAT vehicles with the same vehicle type efectively,
due to their close appearance. However, there still remains a
research gap both in HAZMAT vehicle data and in spe-
cialized algorithms. Tis motivates us to focus on the study
of HAZMAT vehicle reidentifcation in tunnels.

Vehicle ReID aims to determine whether a vehicle image
captured in nonoverlapping cameras belongs to the same
vehicle in trafc monitoring scenarios. Existing methods
mainly perform research on vehicle ReID based on the vehicle
appearance [4]. However, due to the special and complex
tunnel environment containing dim illumination and limited
viewing feld, it is more challenging for the tunnel vehicle ReID
problem than that in open road scenes [5, 6]. Tus, large
fuctuation can be seen by merely conducting tunnel vehicle
ReID based on the appearance information. As shown in
Figure 1, the red, green, and blue lines in each subfgure are
RGB channel color histograms for each image. Vehicles for the
second and third images may have similar appearance features,
whereas they are actually two diferent IDs. From such in-
stance, we can see that in real-world applications, it is extremely
sensitive to environmental changes to merely perform vehicle
ReID via appearance information.

To address the above problem, except for appearance in-
formation, the spatiotemporal information is further leveraged
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to improve vehicle ReID performance in recent works [7–9].
Tis is inspired by the fact that the vehicle movements follow
some implicit motion pattern according to the trafc rules.
However, due to the randomness of vehicle motion, it is
difcult to accurately model the spatiotemporal motion laws of
vehicles in the open road. But the trafc rules of vehicles in
tunnels are more distinct than in the open road, such as ve-
hicles are expected to move in one fxed direction within
limited speed, and no U-turns. It leads to the urgent need for a
special spatiotemporal model tailored to the tunnel scene.

Terefore, to realize HAZMAT vehicle ReID in tunnel
scenes, this work proposes a vehicle ReIDmethod based on the
fusion of vehicle appearance and tunnel spatiotemporal in-
formation. For vehicle appearance modeling, a deep residual
network (i.e., Resnet50 [10]) is chosen as a feature extractor to
model the complex appearance variation of tunnel vehicle.
Meanwhile, to capture the spatiotemporal cues between
cameras and vehicles, we develop a novel spatiotemporal
similarity metric to model the between-vehicle structure cor-
relation as well as the camera-vehicle topological relationship.

Furthermore, the extracted appearance representation and
the spatiotemporal model are combined to efciently encode
the appearance variation and movement pattern for the tunnel
vehicles. Moreover, to evaluate the HAZMAT vehicle ReID
problem in the tunnel scenes, we construct and release a real-
world HAZMAT Vehicle ReID dataset, named by VisInt-
THV-ReID, containing 10,048 images of 865 HAZMAT ve-
hicles collected from four high-resolution cameras. Tese
images were captured by 4 cameras in the tunnel. Each camera
monitors a space with a range of 150meters and takes around 3
pictures of vehicles with far, middle, and near distances, re-
spectively. Each vehicle is attached by the camera mileage and
the picture shooting time. According to the spatial coordinate
transformation method [11], we infer the spatial positions of
vehicles in tunnel from the perspective of camera monitoring
and obtain their temporal information by comparing time-
stamps of monitoring cameras. We use the vehicle ReID to
determine whether the HAZMAT vehicles are exiting the
tunnel within a normal time. If one vehicle passes the tunnel
more than once, we identify the HAZMAT vehicle with a

diferent vehicle ID for each time in the dataset. More attention
is paid to the driving condition of the HAZMAT vehicle each
time when it passes through the tunnel. Te proposed method
is evaluated to be efective through exhaustive experiments on
the VisInt-THV-ReID dataset.

Te main contributions of this work are summarized as
follows:

(i) We extend the scenarios of vehicle ReID task to the
challenging problem of HAZMAT vehicle ReID in
tunnel scenes and propose a method that fuses both
appearance modeling and spatiotemporal mining
for more precise vehicle ReID.

(ii) We design a spatiotemporal metric approach based
on the movement law of vehicles in road tunnels
which brings in the description of between-vehicle
structure correlation as well as the camera-vehicle
topological relationship.

(iii) We build a real-world tunnel HAZMAT vehicle
ReID dataset, named as VisInt-THV-ReID. As far as
we know, the released VisInt-THV-ReID is the frst
HAZMAT vehicle ReID dataset captured in the
tunnel scenes, which is crucial for the promotion of
automatic regulation of HAZMAT transportation.
Exhaustive experiments demonstrate that the pro-
posed method can generate a state-of-the-art
performance.

Te rest of this work is organized as follows: Te review
related works are presented in Section 2. Section 3 details the
proposed HAZMAT vehicle ReID method. In Section 4, we
execute experiments for the evaluation of the proposed
approach on VisInt-THV-ReID. Finally, we conclude this
work in Section 5.

2. Related Work

Vehicle ReID in trafc monitoring scenarios can be seen as a
part of multicamera tracking. Given an image of a vehicle in
a specifc area, the task is to fnd its image as captured under

Probe
Vehicle ID: 0543 Time: 15:14:20
Camera: 01# Distance: 155 m

Vehicle ID: 0543 Time: 15:14:45
Camera: 02# Distance: 608 m

Vehicle ID: 0685 Time: 15:16:42
Camera: 03# Distance: 1043 m

Candidate Candidate

Figure 1: Te HAZMAT vehicles are difcult to distinguish due to their close appearance. Te refection of the tank causes signifcant
diferences in its appearance under the variable lighting conditions in the tunnel.
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other cameras. Tis work studies vehicle ReID with spa-
tiotemporal information fusion in tunnel scenes. We in-
troduce related work from the aspects of vehicle ReID in
tunnel scenes and multimodal information fusion.

2.1.VehicleReIDMethods inTunnels. Vehicle ReID in tunnel
scenes is challenging due to low resolution, dim light, and
dramatic changes in vehicle appearance. A vehicle is de-
tected and tracked by each camera in road tunnels, and a
detected vehicle is matched with the previous camera.

Fŕıas-Velázquez et al. [6] proposed a probabilistic
framework based on a two-step strategy that reidentifes
vehicles in road tunnels. Tey built a Bayesian model that
fnds the optimal assignment between vehicles of connected
groups based on descriptors such as trace transform sig-
natures, lane changes, and motion discrepancies. Rios-
Cabrera et al. [12] presented an integrated solution to detect,
track, and identify vehicles in a tunnel surveillance appli-
cation, taking into account practical constraints, such as
real-time operation, imaging conditions, and decentralized
architecture. AdaBoost [13] cascade is used for vehicle de-
tection, and a comprehensive confdence score integrates the
information of all stages of the cascade. Jelača et al. [14]
proposed a real-time tracking method of multiple non-
overlapping cameras in a road tunnel monitoring scene,
using AdaBoost for vehicle detection. Te vehicle detector
and a Kalman flter of average optical fow are used for
tracking. Te ReID algorithm applies the projection feature
similarity of a radon transform between vehicle images.
Chen et al. [15] proposed a spatiotemporal successive dy-
namic programming algorithm to identify vehicles between
pairs of cameras. Tey extracted features based on Harris
corner detection and OpponentSIFT descriptors, consider-
ing color information [16]. Zhu et al. [5] proposed a syn-
ergistically cascaded forest model to gradually construct the
linking relationships between vehicle samples with in-
creasing alternative random forest and extremely random-
ized forest layers.

Te abovementioned methods generally focus on the
extraction of hand-designed features of vehicle images,
which can only show good performance in specifc scenes.
Tese manual features are susceptible to the interference of a
complex tunnel environment, and they are difcult to im-
prove the precision of ReID.

2.2. Methods Using Multimodal Information. As a vehicle is
far from cameras and the illumination is insufcient, the
image resolution is low. Due to their similarity, it is im-
practical to efectively identify HAZMAT vehicles without
special markings only by appearance. Recent work on ve-
hicle ReID has improved the model by combining multi-
dimensional information of vehicle attributes such as type,
color, time, and space information with appearance features.

To reidentify vehicles based on fusion diferent ap-
pearance information, Liu et al. [17] designed a network
using BOW-SIFT [18], BOW-CN [19], and GoogLeNet [20]
to extract texture, color, and semantic features, respectively.
Handmade features are fused with the vehicle type and color

features obtained through deep learning. Liu et al. [21]
proposed PROVID, which makes full use of appearance
features, license plates, camera locations, and semantic in-
formation to carry out a progressive search from coarse to
fne in the feature domain and from near to far in physical
space.

To reidentify vehicles based on spatiotemporal infor-
mation, Zhong et al. [7] proposed a vehicle pose guide model
using a spatiotemporal probability model based on the
Gaussian distribution to predict the spatiotemporal motion
of vehicles. A convolution neural network (CNN) was used
to predict the driving direction of a vehicle and the results of
visual appearance, and then, the driving direction and
spatiotemporal models were fused. Shen et al. [8] proposed a
two-stage framework incorporating complex spatiotemporal
information to efectively regularize ReID results. A can-
didate visual-spatiotemporal path was generated by a chain
Markov random feld model with a deeply learned potential
function. A Siamese-CNN+Path-LSTM model takes the
candidate path and pairwise queries to generate a similarity
score. Jiang et al. [9] proposed an approach with a multi-
branch architecture and a reranking strategy using the
spatiotemporal relationship among vehicles from multiple
cameras.

3. Method

3.1. Overview. Typically, a tunnel surveillance system con-
sists of a series of cameras C � C0, C1, C2, . . . , CM , with
nonoverlapping visual receptive felds. Ai

�→
denotes the 2048-

dimensional appearance feature vector obtained from the i

-th vehicle image through the image appearance feature
extraction network, and Si

→
denotes the spatiotemporal

feature vector of the i-th vehicle collected by the camera.Te
spatiotemporal features involved are velocity vi, timestamp ti

, and space position li of the tunnel.
We use Pa(i, j) to represent the similarity of the ap-

pearance feature vectors of vehicles i and j from upstream
and downstream cameras and Pst(i, j) to represent the
similarity of the spatiotemporal features of the vehicle
pairs. P(i, j) is the probability that vehicle pairs are
identical after fusing multimodal information. Te inputs
of the proposed model are vehicle image pairs (i, j) and
their spatiotemporal features (Si

→
, Sj

→
) involved velocity,

timestamp, and space position in the tunnel. Te output is
the probability P(i, j) of whether the pair of vehicle images
is the same vehicle.

Te framework of the proposed method has three parts,
as shown in Figure 2.

(1) Similarity calculation of vehicle appearance features.
Resnet50 [10] is used as the feature extractor to
obtain a 2048-dimensional appearance feature vector
of a vehicle.

(2) Based on the spatiotemporal movement law of
HAZMAT vehicles, we calculate the theoretical
distance and the actual distance of the vehicle pairs.
Te tunnel spatial discrepancy εij is used to evaluate
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the diversity between the theoretical distance and the
actual distance.

(3) Similarity calculation of multimodal information
fusion. Based on parts 1 and 2, the spatiotemporal
and appearance similarity of the input vehicle image
pairs are summed with a weight. We rerank the
vehicle similarity of fusion information.

3.2. Appearance Features of Vehicle ReID. Te vehicle ap-
pearance feature extraction network is shown in Figure 3.
We use Resnet50 as the feature extraction backbone network
and adjust each image to 256 × 128 pixels. Given an input
image xi with label yi, the predicted probability of xi being
recognized as class yi is encoded with a softmax function,
represented by p(yi | xi). ID prediction p(yi | xi) is used to
calculate ID loss [22]. Te model outputs ReID feature Ai

�→

which is used to calculate triplet loss [23]. Te output di-
mension of the full connection layer is changed to the
number of vehicle IDs in the training dataset.

Te ID loss treats the training process of vehicle ReID as
an image classifcation problem [24], i.e., each identity is a
distinct class. In the testing phase, the output of the pooling
layer or embedding layer is adopted as the feature extractor.
Te identity loss is then computed by the cross-entropy.

LID � −
1
N



N

i�1
log p yi xi

  , (1)

where N represents the number of training samples within
each batch.

Te triple loss for feature extraction can reduce the
intraclass distance of positive pairs and increase the inter-
class distance of negative pairs. Given a triplet (xa, xp, xn),
including an anchor image xa, a positive xp, and negative xn,
the triplet loss is formulated as follows:

LTri � 
N
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where α is a margin and usually set to 0.3. N is the number of
training samples within each batch. f(∙) stands for the
appearance feature extractor.

In this work, we use ID loss and triplet loss together for
optimizing the model. For image pairs in the embedding
space, ID loss mainly optimizes the cosine distances while
triplet loss focuses on the Euclidean distances. Te feature
vectors of the two losses are inconsistent in the embedding
space. To address this problem, the BNNeck [22] is applied
for more efective loss computation. BNNeck adds a batch
normalization (BN) layer before the classifer FC layers of
the model. Te feature before the BN layer is denoted as Ai

�→
.

We let Ai

�→
pass through the BN layer to acquire a normalized

feature ai
→. In the training stage, the feature Ai

�→
is used to

compute the triplet loss. Te feature ai
→ is used to compute

the ID loss. Finally, the triplet loss and ID loss are combined
to optimize the model. To train the ReIDmodel, we combine
ID loss and triple loss as follows:

L � LID + LTri. (3)

In the test stage, the appearance features ( Ai

�→
, Aj

�→
) for

input image pairs (i, j) are generated using the vehicle
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Loss
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Figure 2: Vehicle ReID pipeline based on the fusion of appearance and spatiotemporal information.
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appearance feature extraction network. We use the cosine
distance to measure the similarity between features and is
expressed as follows:

Pa(i, j) �
Ai

�→
· Aj

�→

Ai

�→�����

����� Aj

�→�����

�����

. (4)

3.3. Vehicle Spatiotemporal Features. Te motion of the
vehicle is limited by its speed and spatiotemporal motion.
Te time that the vehicle travels through a pair of cameras
should be within a reasonable range. In a highway tunnel
monitoring system, the driving speed of a vehicle is within
the range of 10–80 km/h. Te time interval of vehicle
movement is afected by the camera installation position and
the topological relationship of the tunnel and cameras. We
analyze the motion law of the vehicle time interval between
cameras in the VisInt-THV-ReID dataset. For each pair of
cameras, the vehicle space interval can be modeled as a
random variable that follows a certain distribution [6, 7].

In order to derive the spatiotemporal similarity proba-
bility distribution of the vehicle, we propose a feature called
spatial discrepancy. We introduce the spatial discrepancy by
considering Figure 4(a). Tis fgure shows the spatiotem-
poral graph that relates vehicle i observed in upstream
camera with another vehicle j observed in downstream
camera. Te motion variables involved are velocity vi of
vehicle i, timestamp ti, and space position li of the tunnel.
Te state vector Si

→
expresses the spatiotemporal state of

vehicle i.
To construct the spatiotemporal similarity relationship

between the vehicle pairs, we calculate the theoretical dis-
tance and the actual distance of the vehicle pairs and defne
the indicator εij to calculate the diversity of the distances.
According to the constant acceleration model, the theo-
retical distance of the vehicle is calculated as follows
according to the upstream and downstream cameras of the
tunnel:

sij �
vi + vj

2
· tj − ti . (5)

Te actual distance between the current position of the
vehicle collected by the upstream and downstream cameras
is expressed as follows:

lij � lj − li



. (6)

Te spatial discrepancy εij evaluates the ftness between
the displacement estimate sij and the actual distance lij as
stated in Figure 4(a). Te tunnel spatial discrepancy is
expressed as follows:

εij �
sij − lij 

sij



 + lij




∈ (−1, 1), (7)

which is used to evaluate the diversity between the theo-
retical distance and the actual distance. Te spatial dis-
crepancy εij is evaluated by the vehicle spatiotemporal
features involving velocity, timestamp, and space position.

To maintain the consistency of the data structure of the
multimodal data fusion, we maintain the consistency of the
spatiotemporal similarity discriminant method with the
appearance feature discriminant method and use the chord
function to represent the spatiotemporal similarity proba-
bility distribution of the vehicle. Te Pst(i, j) is defned as
follows:

Pst(i, j) � cos ε2ij ·
π
2

 . (8)

As shown in Figure 4(b), Pst(i, j) increases as εij tends to
0. Based on Pst(i, j), we can determine candidate matching
vehicles according to the spatiotemporal similarity in
tunnels.

3.4. Vehicle ReID by Fusing Image and Tunnel Spatiotemporal
Information. To make full use of the vehicle appearance and
spatiotemporal information, we establish a multimodal in-
formation strategy. Te vehicle ReID probability is defned
as follows:

P(i, j) � λPa(i, j) +(1 − λ)Pst(i, j), (9)

where the weight coefcient, λ ∈ (0, 1), is used to fuse the
spatiotemporal and appearance similarity.

Triplet loss

BN layers

FC layers

ID

ResNet50

256 × 128 images

(2048) (2048)

ID loss

p(yi|xi)

BNNeck

features Ai features ai

Figure 3: Te framework of vehicle appearance modeling.
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4. Experiments

4.1. VisInt-THV-ReIDDataset. We verifed the efectiveness
of the proposed method on the VisInt-THV-ReID (Te
dataset is open-sourced at the following website: https://
github.com/jialei-bjtu/VisInt-THV-ReID) dataset, which is
collected from four cameras deployed in Taijia Expressway
Linxian No. 3 tunnel in Shanxi province, China, providing
high-defnition video data of 6 million pixels and spaced at
300meters. We collected video data for 10 hours daily over
3 days, from November 26 to 28, 2020, from 10:00 to 20:00.
We annotated 10,048 pictures of 865 HAZMAT vehicles
with their spatial position, speed, and timestamp informa-
tion. To the best of our knowledge, this is the frst open-
source HAZMATvehicle ReID dataset.Te sample dataset is
shown in Figure 5.

To mark the spatiotemporal and speed information of a
vehicle, we must transform its spatial coordinates. Per-
spective transformation is used to transform the vehicle
driving area under the camera vision to a fxed-size rectangle
[11], as shown in Figure 6.

Te position (xi, yi) of a vehicle in the camera feld of
view in the tunnel is calculated as follows:

x
′
, y
′
,ω′  � x

o
, y

o
, 1  · T,

T �

a11 a12 a13

a21 a22 a23

a31 a32 a33
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

xi, yi  �
x
′

ω′
,
y
′

ω′
⎡⎣ ⎤⎦,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where xi is the lateral distance of the vehicle from the left
wall of the tunnel, yi is its longitudinal distance from the
current camera installation position, (xo, yo) is the lower
midpoint of the vehicle object detection box in the image,

and T is the transformation matrix defning the mapping
between the original region and the transformation region.
Using the image sequence taken by the surveillance camera,
the speed of vehicle i in the tunnel can be obtained as follows:

vi �

������

x
2
i + y

2
i



−

���������

x
2
i−1 + y

2
i−1



  · f, (11)

where f is the frame rate of the monitoring camera, the
spatial position vector li obtained by the camera at time ti is
(xi, yi), and the spatiotemporal vector of vehicle i is
Si

→
(vi, ti, li).
We trained and tested the model on the VisInt-THV-

ReID dataset, whose 10,048 images of 865 HAZMAT ve-
hicles were divided into training, query, and test sets at a 10 :
1 : 9 ratio. Te training set had 433 HAZMAT vehicles and
4980 images.Tere were 432 HAZMATvehicles in the query
and test sets, with 432 vehicle images in the query set and
4636 in the test set.

4.2. Experimental Settings. Te mAP [21] and cumulative
matching characteristic (CMC) curve [25] were used to
evaluate the performance of the proposed method on the
VisInt-THV-ReID dataset. Te average precision for a query
image is calculated as follows:

AP �


n
k�1P(k) · gt(k)

Ngt
, (12)

where n is the number of images in the test set, Ngt is the
number of ground truths, P(k) is the current precision result
of the k-th query image, and gt(k) is an indicator function.
When the matching result of the k-th query image is correct,
gt(k) � 1, and gt(k) � 0 when it is incorrect.

Te mAP is calculated as follows:

mAP �


Q
q�1AP(q)

Q
, (13)

where Q is the number of pictures in the query dataset. Te
CMC curve shows the probability that the correct matching
image of the vehicle appears in the candidate lists. Te CMC
of the k-th position is as follows:

(vj,tj,lj) 

(vi,ti,li) 

t
i

j' j

lij sij

l

(a)

1
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0

Pst (i,j)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

εij

(b)

Figure 4: (a) Motion states of vehicles i and j. (b) Spatiotemporal similarity distribution in tunnels.
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CMC(k) �


Q
q�1gt(q, k)

Q
, (14)

where gt(q, k) is an indicator function, which equals 1 when
the ground truth of the q query image appears before the k

position. We also used Rank-1, Rank-5, Rank-10, and Rank-
20 in the feld of ReID to evaluate the model.

4.3. Ablation Study. Table 1 compares the experimental
results of the multimodal fusion ReID method with those of
Visual and ST-COS, which are appearance-based and spa-
tiotemporal-based, respectively.

Te method of Visual achieved 89.7% mAP and 96.3%
Rank-1. Te method of ST-COS achieved 85.5% mAP and
71.3% Rank-1.Te fusionmethod Visual + ST-COS achieved
99.7% mAP and 99.8% Rank-1. Te mAP of the fusion
method increases by 142% and 10% compared to Visual and
ST-COS and the Rank-1 rises by 3.5% and 28.5%.

Te above results show that the multimodal information
fusion method is superior to the use of appearance or
spatiotemporal information alone and verify the efective-
ness of the proposed multimodal information fusion
method.

4.4. Comparison with Baselines. Table 2 shows the recog-
nition precision of three baseline methods, PROVID [21],
Visual + ST [7], and Siamese-CNN [8], comparing to that of
Visual + ST-COS on the VisInt-THV-ReID dataset.

4.4.1. Appearance Feature Extraction and STR Spatiotem-
poral Fusion (PROVID). Te method of PROVID extracts
the appearance features of HAZMAT vehicles by the
Resnet50 network and uses the STR method to measure the
spatiotemporal relationship [21]. Te STR is defned as
follows:

STR(i, j) �
Ti − Tj

Tmax
·
δ Ci, Cj 

Dmax
, (15)

where Ti and Tj are the timestamps for the vehicles i and j

captured by the cameras. Tmax is the maximum time interval
of vehicles passing through the tunnel. δ(Ci, Cj) is the actual
distance between the current position of the vehicles col-
lected by the upstream and downstream cameras, and Dmax
is the global maximum distance between any vehicles.We set
Dmax as the length of the tunnel.

4.4.2. Visual + ST. Te method of Visual + ST extracts the
appearance features of HAZMATvehicles with the Resnet50
network and uses a spatiotemporal model based on the
Gaussian distribution to predict the probability of vehicles
[7]. PstG(i, j) presents the similarity of the spatiotemporal
features of vehicle pairs, and it is defned as follows:

PstG(i, j) � e
− 10·ε2

ij 
, (16)

where εij is the tunnel spatial discrepancy as defned in
equation (7).

4.4.3. Siamese-CNN. Te method of Siamese-CNN uses a
Resnet50 network to extract the appearance features of
HAZMAT vehicles, and a multilayer perception network is
applied to obtain their spatial and temporal relationships [8].
Te spatiotemporal branch computes the spatiotemporal
compatibility. Given the timestamps (ti, tj) and the posi-
tions (li, lj) of vehilces, the input features of the branch are
calculated as their time diference ∆t(ti, tj) and spatial
diference ∆d(li, lj). Te scalar spatiotemporal compatibility
is obtained by feeding the concatenated features,
[∆t(ti, tj),∆d(li, lj)]T, into a multilayer perception with two
fully connected layers. Te outputs of the two branches are
concatenated and input into a 2 × 1 fully connected layer
with a sigmoid function to obtain the fnal compatibility

ID: 0175 Cam: 01
Time:2021/11/26 10:07:52
Coordinates: 9.25, 35.5
Velocity: 65.3 km/h

ID: 0184 Cam: 01
Time:2021/11/26 15:23:10
Coordinates: 9.34, 78.5
Velocity: 58.1 km/h

ID: 0452 Cam: 01
Time:2021/11/27 11:13:11
Coordinates: 8.22, 34.6
Velocity: 63.2 km/h

ID: 0175 Cam: 02
Time:2021/11/26 10:08:10
Coordinates: 8.75, 47.7
Velocity: 62.4 km/h

ID: 0184 Cam: 02
Time:2021/11/26 15:23:26
Coordinates: 9.1, 47.6
Velocity: 61.2 km/h

ID: 0452 Cam: 02
Time:2021/11/27 11:13:33
Coordinates: 9.25, 82.1
Velocity: 70.8 km/h

ID: 0175 Cam: 03
Time:2021/11/26 10:08:33
Coordinates: 8.78, 120.4
Velocity: 63.5 km/h

ID: 0184 Cam: 03
Time:2021/11/26 15:23:45
Coordinates: 8.65, 66.3
Velocity: 60.4 km/h

ID: 0452 Cam: 03
Time:2021/11/27 11:13:55
Coordinates: 9.28, 121.2
Velocity: 65.8 km/h

ID: 0175 Cam: 04
Time:2021/11/26 10:08:46
Coordinates: 8.85, 65.6
Velocity: 66.1 km/h

ID: 0184 Cam: 04
Time:2021/11/26 15:24:05
Coordinates: 8.92, 87.2
Velocity: 59.7 km/h

ID: 0452 Cam: 04
Time:2021/11/27 11:14:08
Coordinates: 8.87, 78.3
Velocity: 67.9 km/h

300 m

C

A

B

300 m 300 m

Figure 5: VisInt-THV-ReID dataset.
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between the two states. Siamese-CNN takes all visual, spatial,
and temporal information into consideration.

Te results show that the proposed method achieves the
best performance. It improves mAP and Rank-1 by 9.7% and

4.2%, respectively, compared with PROVID. Tis indicates
that the STR spatiotemporal measurement method is not
accurate enough to express the spatiotemporal information
of vehicles in road tunnels. Compared with Siamese-CNN,

Original region

Perspective
transformation

transformed region

Figure 6: Coordinate transformation of vehicle position in tunnel space based on surveillance video.

Table 1: Results of ablation experiment.

Methods mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%) Rank-20 (%)
Visual 89.7 96.3 99.5 99.5 99.8
ST-COS 85.5 71.3 85.9 98.8 100
Visual + ST-COS 99.7 99. 100 100 100
Te bold values in Table 1 are the best values from the same column of data.

Table 2: Results of comparative experiments.

Methods mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%) Rank-20 (%)
PROVID 90.0 95.6 99.5 99.8 99.8
Visual + ST 90.8 96.1 99.5 99.8 99.8
Siamese-CNN 82.2 96.8 98.4 99.1 99.3
Our method 99.7 99. 100 100 100
Te bold values in Table 2 are the best values from the same column of data.
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Figure 7: CMC curves on VisInt-THV-ReID dataset.
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the proposed method improves mAP and Rank-1 by 17.5%
and 3.0%. Since Siamese-CNN uses a multilayer perception
network to train the spatial and temporal information of
vehicles, the difculty of model training is decreased and the
precision is not ideal. Compared with Visual + ST, the
proposed method improves mAP and Rank-1 by 8.9% and
3.7%, respectively. Tis shows that the proposed cosine
spatiotemporal model can more accurately express the
spatiotemporal state of a tunnel compared with Gaussian
distribution. Te CMC curves of all methods are shown in
Figure 7.

4.5. Parameter Analysis. We experimented with the pa-
rameters of λ in the interval of 0.1–0.9. Te best fusion result
is achieved when λ equals 0.35.Te comparison results of the
parametric experiments are shown in Table 3. It can be
observed from the table that a larger λ would cause ap-
pearance features to dominate vehicle identifcation, while a
smaller λ causes spatiotemporal information to dominate.
Table 3 shows that λ can have an important efect on the
fusion results, and λ is relatively insensitive to the results in
the interval 0.3–0.7.

5. Conclusion and Future Work

In this study, we presented a vehicle ReID method based on
the fusion of vehicle appearance and tunnel spatiotemporal
information for the task of HAZMAT vehicle ReID in road
tunnels. Te proposed method was evaluated on the VisInt-
THV-ReID dataset. Tis study could play a role in pro-
moting HAZMAT vehicle monitoring and trafc safety
management in road tunnels.

Our future work has two aspects. Based on vehicle ReID
research, we will study multicamera vehicle tracking tech-
nology to collect vehicle trajectories. In addition, we will use
the time-to-collision (TTC) to indirectly evaluate safety and
study a tunnel accident risk prediction model based on the
trafc fow state.
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available in GitHub at https://github.com/jialei-bjtu/VisInt-
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