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With the development of artifcial intelligence (AI) in the feld of drug design and discovery, learning informative representations
of molecules is becoming crucial for those AI-driven tasks. In recent years, the graph neural networks (GNNs) have emerged as a
preferred choice of deep learning architecture and have been successfully applied to molecular representation learning (MRL).
Up-to-date MRL methods directly apply the message passing mechanism on the atom-level attributes (i.e., atoms and bonds) of
molecules. However, they neglect latent yet signifcant hyperstructured knowledge, such as the information of pharmacophore or
functional class. Hence, in this paper, we propose Hyper-Mol, a new MRL framework that applies GNNs to encode hypergraph
structures of molecules via fngerprint-based features. Hyper-Mol explores the hyperstructured knowledge and the latent re-
lationships of the fngerprint substructures from a hypergraph perspective. Te molecular hypergraph generation algorithm is
designed to depict the hyperstructured information with the physical and chemical characteristics of molecules. Tus, the
fngerprint-level message passing process can encode both the intra-structured and inter-structured information of fngerprint
substructures according to the molecular hypergraphs. We evaluate Hyper-Mol on molecular property prediction tasks, and the
experimental results on real-world benchmarks show that Hyper-Mol can learn comprehensive hyperstructured knowledge of
molecules and is superior to the state-of-the-art baselines.

1. Introduction

Machine learning has achieved great success in the feld of
artifcial intelligence (AI), which has been pervasively
adopted in many human-centered applications [1–5]. Fol-
lowing the machine learning rules, large amounts of research
efort have been dedicated to develop new paradigms for
drug design and discovery in recent years. How to learn
informative representations of molecules is critically im-
portant for AI-driven tasks [6–8]. For example, the well-
learned molecular representations can be benefcial for
molecular property prediction, which advances drug can-
didate selection for further validation and virtual screening
on large datasets.

Te chemical fngerprints [9] are widely used for rep-
resenting molecules, the algorithms of which normally
encode the physical or chemical characteristics of molecules
into bit vectors. Another pipeline of research [10–12] in-
troduces deep learning [13] to generate structure-aware or
context-aware neural fngerprints for molecules. Since
molecules can be naturally converted to graphs, where atoms
and bonds are represented as nodes and edges, respectively
[14], graph neural networks (GNNs) are commonly applied
for molecular representation learning (MRL). Most related
approaches [15–19] have dedicated tremendous efort on
modeling atom-level relationships. Some [6–8, 14, 20] utilize
the molecular geometry and structural information to de-
velop a self-supervised learning paradigm for pretraining the
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GNNmodels. Following the message passing rules of GNNs,
they carefully design the learning procedures to encode
structural information on atom and bond attributes. Despite
the promising results achieved by recent MRL methods in
many drug design and discovery tasks, we argue that the
following issues have not been solved.

(i) Te chemical fngerprints use bits to preserve the
existence of some physical or chemical character-
istics of molecules. However, the topological infor-
mation and the latent relationships among the
extracted fngerprint substructures cannot be lev-
eraged in such bit-style forms.

(ii) Although some structure-aware or context-aware
information about atom and bond interactions can
be encoded to generate molecular representations,
the hyperstructured knowledge, such as the infor-
mation of a pharmacophore or functional class, has
not been exploited.

Hence, to deal with the aforementioned problems, we in-
troduce the concept of hypergraph and propose a novel MRL
framework, dubbed Hyper-Mol, which encodes fngerprint-
based Hypergraph structures of Molecules via GNNs. Hyper-
Mol further exploits the information underneath the bit-style
molecular fngerprints, learning molecular representations by
exploring the hyperstructured knowledge and the latent rela-
tionships of the fngerprint substructures. Specifcally, inHyper-
Mol, we utilize molecular fngerprint algorithms to produce
topological fngerprints with physical and chemical character-
istics of molecules, in which the pharmacophore-aware or
functional class-aware components can be embedded in the
generated clusters (i.e., the substructures of fngerprints)
according to the algorithms. Te basic idea of molecular
hypergraph generation is that two objects are close to each other
if they are referenced by similar or shared objects [2, 21, 22].
Tus, the hypergraph of each molecule is then constructed
based on the topological relationships among the fngerprint
substructures. To be precise, any two fngerprint substructures of
a molecule that have overlapped subregions (i.e., shared atoms or
bonds) should be close to each other in the hypergraph, which
means that they will have a positive hyperlink in the hyper-
graph. Te intra-structured information in fngerprint sub-
graphs and the inter-structured information in fngerprint
hypergraphs are encoded via themessage passingmechanism to
learn comprehensive hypergraph representations for molecules.

Hence, we conclude our contributions as follows:

(1) We propose Hyper-Mol, which learns molecular
representations by utilizing molecular fngerprints
from a hypergraph perspective.

(2) Te algorithm of molecular hypergraph generation is
designed for preserving the hyperstructured infor-
mation with physical and chemical characteristics of
molecules.

(3) Te hyperstructured knowledge of molecular fn-
gerprints can be exploited by the fngerprint-level
message passing process from both intra-structured

and inter-structured information according to the
molecular hypergraphs.

(4) Te experimental results show that Hyper-Mol can
learn comprehensive molecular representations for
molecular property prediction tasks compared with
the state-of-the-art methods.

Te rest of the paper is organized as follows: In Section 2,
related work is briefy introduced. In Section 3, we present
Hyper-Mol. After that, the proposed method is evaluated
over several state-of-the-art baselines and the detailed ex-
periments are given in Section 4. Finally, we conclude our
work and point out the future work in Section 5.

2. Related Work

2.1. FingerprintGenerationonMolecules. Traditional ways of
representing molecules are the chemical fngerprints, such as
pharmacophore fngerprints [23, 24], functional-class fn-
gerprints, and extended-connectivity fngerprints [9]. Tese
algorithms mostly utilize bit vectors to represent the exis-
tence of pharmacophore, functional classes, or geometric
characteristics in molecules. Inspired by the success of deep
learning in computer vision and natural language pro-
cessing, some deep neural architectures are introduced to
generate low-dimensional vector representations for mole-
cules. For example, prior studies [10, 11] make use of the
convolutional neural networks [25] to learn molecular
neural fngerprints. Xu et al. [12] propose Seq2Seq fnger-
prints by exploiting the SMILES [26, 27] strings based on the
sequence-to-sequence neural framework [28, 29].

2.2. Molecular Representation Learning on Graphs. Due to
the fact that molecules can be easily converted to graph data,
graph neural networks (GNNs) have been widely adopted to
learn molecular representations in recent years. Some ap-
proaches [15–17] apply graph convolutional networks [30]
to encode atom relationships in molecules. To capture bond
features, [18, 19] further develop the message passing
process that also models bond interactions. MGCN [31] is
proposed to model the multilevel quantum interactions of
molecules from hierarchical perspectives (i.e., atom-wise,
pair-wise, triple-wise, and so on). With the development of
self-supervised learning, Hu et al. [20] propose pretraining
strategies to learn molecular representations with self-su-
pervised pretext tasks in atom level.Tey defne several types
of graph proximity as the self-supervised learning objectives,
which push GNNs to generate meaningful atom represen-
tations. Other up-to-date techniques [6–8, 14] follow the
same idea and develop more molecular information-related
pretext strategies. N-Gram [32] conducts node (atom)
representations by predicting the node (atom) attributes,
which utilizes SMILES strings.

Diferent from the previous work, our proposed Hyper-
Mol not only enhances the expressive power of chemical
fngerprints but also models the topological information and
the relationships of the fngerprint substructures (with
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physical and chemical characteristics) from a hypergraph
perspective.

3. Hyper-Mol

3.1. Preliminaries. Let G � (V, E) be a molecular graph,
where V denotes the atom set and E denotes the bond set of
the molecule. Suppose a molecule has n fngerprint sub-
structures and the structural set is S � S1, S2, . . . , Sn . Si �

(Vi, Ei), where 1≤ i≤ n and Vi ⊂ V, Ei ⊂ E.

3.1.1. Molecular Fingerprint. Molecular fngerprints are a
way of encoding the structure of a molecule [33]. Te most
common type of fngerprint is a series of binary digits (bits)
[34, 35] that represent the presence or absence of particular
substructures in the molecule. Terefore, the similarity
between two molecules can be calculated by comparing their
fngerprints.

3.1.2. Graph Neural Networks. Te architecture of graph
neural networks (GNNs) has recently been developed as one
of the crucial deep learning techniques.Te core idea behind
GNNs is message passing through network topology in
graphs. Node representations are updated by propagating
and aggregating structural information from the neigh-
borhood to the target node.

a
(k)
v � AGGREGATE h

(k− 1)
u : u ∈N(v)  ,

h
(k)
v � COMBINE h

(k− 1)
v , a

(k)
v ,

h
(k)
G � READOUT h

(k)
v : v ∈ V  ,

(1)

where the AGGREGATE function in the kth layer aggregates
neighborhood information of the target node v, and the
COMBINE function combines the information of the target
node v and its neighborhood N(v). Te READOUT func-
tion normally applies sum/mean/max pooling methods to
generate the graph representation hG.

3.2. Overall Framework. Hyper-Mol encodes graph struc-
tures of molecules via the fngerprint-based features. As
illustrated in Figure 1, the overall framework of Hyper-Mol
consists of three main components: fngerprint extraction,
hypergraph generation, and hypergraph feature encoding.

3.2.1. Fingerprint Extraction. Te extended-connectivity
fngerprints (ECFPs) are a class of topological fngerprints
for molecular characterization [9]. Physical and chemical
characteristics of molecules can be encoded by ECFPs. For
example, the functional-class fngerprints are a variant of the
ECFPs that describe substructures according to their roles in
pharmacophores. Tus, in Hyper-Mol, we employ the
ECFPs algorithm to extract molecular fngerprints (note that
any fngerprint extraction algorithms that satisfy the rules of
Hyper-Mol can be employed without restriction) due to its
interpretability and efectiveness in modeling [36].

3.2.2. Hypergraph Generation. Te hypergraph of each
molecule is then generated based on the topological rela-
tionships among the extracted fngerprint substructures and
the molecular graph, where nodes are the fngerprint sub-
structures and edges are the connections between sub-
structures in the molecular graph. To be precise, the intra-
structured information of a fngerprint substructure is
composed of atoms and bonds. Any two substructures that
have overlapped intra-structured regions (i.e., shared atom-
level structures) in the molecular graph will have a hyperlink
between each other.

3.2.3. Hypergraph Feature Encoding. In Hyper-Mol, the
Intra-Encoder encodes the intra-structured information
for each fngerprint substructure, the output of which is
used as the initial fngerprint substructure representa-
tions. Te Inter-Encoder takes in the hypergraphs and the
fngerprint substructure representations of molecules
afterwards, propagating and aggregating the inter-
structured information among fngerprint substructures
following the message passing mechanism of GNNs.
Based on equation (1), the hypergraph-level represen-
tations of molecules are obtained after training the neural
models.

3.3. Fingerprint-Based Hypergraph Generation. Te ex-
tended-connectivity fngerprints are circular topological
fngerprints that are designed for molecular characterization
and structure-activity modeling. In the hypergraph gener-
ation process, we frst apply the ECFPs algorithm [9] to
generate fngerprints and the substructures.

S1, . . . ,SM  � ECFP G1, . . . , GM ( . (2)

Suppose there are M fngerprints generated according
to M molecules. S � S1, S2, . . . , Sn  denotes the sub-
structure set of a fngerprint from molecular graph G

(without loss of generality, we omit the subscripts of S, G

for simplicity). Algorithm 1 illustrates the process that
generates the hypergraph of a molecule based on its fn-
gerprint substructures. We frst obtain all the relative
positions among the fngerprint substructures by the
Cartesian product (Line 2). And then, we set a positive
hyperlink between the two substructures if they share at
least one common subregion from G (Line 5 to 6). Oth-
erwise, a negative hyperlink will be set between the two
(Line 8).E collects all the hyperlinking information among
the fngerprint substructures (Line 10). Finally, a new
hypergraph of the molecule is generated.

3.4. Hypergraph Feature Encoding. Hyper-Mol encodes
hypergraph features by the two kinds of encoders: the Intra-
Encoder and the Inter-Encoder.

3.4.1. Intra-Encoder. According to the ECFPs algorithm, the
number of the generated fngerprint substructures is fxed.
Tus, the Intra-Encoder simply adopts the one-hot encoding to
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distinguish each fngerprint substructure in a “fngerprint
substructure vocabulary” from every other fngerprint sub-
structure in the “vocabulary.” Te output representations X of
fngerprint substructures are a N × N matrix, where N rep-
resents the number of fngerprint substructures and also the
fxed length of the one-hot vector. Each vector in the matrix
consists of 0 s in all cells with the exception of a single 1 in a cell
used uniquely to identify the fngerprint substructure.

3.4.2. Inter-Encoder. Te molecular hypergraphs and the
one-hot fngerprint substructure representations are fed to
the Inter-Encoder, in which we apply two widely-adopted
GNN backbones, i.e., the graph convolutional networks
(GCNs) and graph isomorphism networks (GINs), to

respectively encode the hyperstructured features for each
molecule.

Te layer-wise propagation rule of GCNs in the Inter-
Encoder is as follows:

H
(k+1)

� σ D
− (1/2) A D

− (1/2)
H

(k)
W

(k)
 ,

H
(0)

� X,

(3)

where A � A + In is the adjacency matrix of the undirected
hypergraph G with added self-loops. In is the identity
matrix. Dii � 

j

Aij. W(k) is the kth layer trainable weight
matrix and σ(·) is an activation function. H(k) represents the
hidden representations of the fngerprint substructures in
the kth layer.
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Te Inter-Encoder takes in the hypergraphs and the initial representations
to generate the inter-structured features.

Figure 1: An illustration of the Hyper-Mol framework.

Input: G � (V, E);S � S1, S2, . . . , Sn 

Output: G
(1) E � ∅
(2) for (Si, Sj) ∈ S × Sdo
(3) Si � (Vi, Ei)

(4) Sj � (Vj, Ej)

(5) if Vi ∩Vj ≠∅ orEi ∩Ej ≠∅ then
(6) e(Si ,Sj) � 1
(7) else
(8) e(Si ,Sj) � 0
(9) end
(10) E←E‖e(Si,Sj);/∗ Append a hyperlink between the i-th and j-th fngerprint substructures. ∗ /
(11) end
(12) G � (S,E)

(13) return G

ALGORITHM 1: Hypergraph generation algorithm based on fngerprint substructures.
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Diferent from GCN, GIN generalizes the Weisfei-
ler–Lehman test and achieves maximum discriminative
power among GNNs. Te multilayer perceptrons are
employed to update the representations of fngerprint
substructures in the GIN layer-wise propagation process.

3.4.3. Hypergraph Representation. To obtain the hypergraph
representation of G, we apply a sum-pooling layer after the
graph convolution layers of Inter-Encoder.

3.5. Time Complexity. Given a molecular graph G � (V, E)

and its generated hypergraph G � (S,E), the time com-
plexity of extracting fngerprint substructures is O(|V|2)

following the ECFPs algorithm that two iterations are
enough for fngerprints to be functional in similarity search
and clustering [9]. With the complexity of O(|S|), we can
obtain the nodes (i.e., the fngerprint substructures) of the
molecular hypergraph. After that, the edge (i.e., the hy-
perlink) generation in the hypergraph can be operated in
O((1/2)|S|2). Due to the GNN architecture, the time
complexity of graph convolution operation is O(|E|) per
neural layer.

4. Experiments

To evaluate the performance of Hyper-Mol, we compare it
with multiple state-of-the-art baseline methods on various
molecular property prediction tasks, such as bioactivity,
pharmacokinetics and toxicity. Te whole framework is
implemented based on PyTorch (https://pytorch.org/), DGL
(https://www.dgl.ai/), DGL-LifeSci (https://lifesci.dgl.ai/),
and RDKit (https://www.rdkit.org/).

4.1. Datasets. We conduct the experiments on the HIV,
BBBP, BACE, Tox21, SIDER, and ClinTox molecular
property prediction benchmark datasets (https://
moleculenet.org/datasets-1), all of which are from Mole-
culeNet [37]. Te prediction tasks can be formulated as a
set of binary and multilabel graph-level classifcation
problems. To be precise, the HIV, BBBP, and BACE
datasets are used for the binary classifcation tasks and the
Tox21, SIDER, and ClinTox datasets are for the multilabel
classifcation tasks. Te detailed descriptions of all datasets
are shown in Table 1.

4.2. Baselines. We thoroughly evaluate Hyper-Mol against
6 state-of-the-art approaches. Among them, graph con-
volutional networks (GCN) [30] and graph isomorphism
networks (GIN) [38] are the two popular GNN-based
frameworks that can learn the structural information of
network-based data in a supervised manner. N-Gram [32]
extracts the context of vertices and assembles the repre-
sentations in short walks directly through the molecule
graph. Hu et al. [20] design self-supervised strategies for

learning molecular representations. SchNet [16] is a
continuous-flter convolutional neural network for
modeling quantum interactions and MGCN [31] con-
siders modeling bond features in message passing
processes.

4.3. Experimental Settings. As suggested in the previous
work [20], we adopt the scafold split to create the train/
validation/test with the ratio of 8 :1 :1. Te scafold splitting
method splits molecules according to molecular substruc-
tures, which is more challenging yet realistic. Compared
with the random split, it can better evaluate the general-
ization ability of the models on out-of-distribution data
samples.

We apply the GCN and GIN architectures (i.e., the
AGGREGATE and COMBINE functions) in Hyper-Mol,
respectively. Te sum pooling is used as the READOUT
function to obtain the molecular graph representations. We
train the neural networks with 100 epochs and the batch size
is 32 in each epoch. ReLU [39] is adopted as the activation
function, and Adam [40] is employed for optimization. To ft
the supervised molecular property prediction tasks, we use
the sigmoid function and the binary cross entropy to
measure the loss between the target and the predicted
probabilities. Since the input vectors of the fngerprint
representations are generated by the ECFPs algorithm, we
set the two hyperparameters (i.e., the length and the radius)
of ECFPs with commonly-adopted default values 2048 and
2, respectively.

We use the ROC-AUC (area under the receiver oper-
ating characteristic curve) [41] as the evaluation metric for
both the binary and multilabel classifcation tasks. We ex-
ecute three independent runs and the mean and the standard
deviation of test ROC-AUC on each benchmark are
reported.

4.4. Results

4.4.1. Overall Performance. Tables 2 and 3 summarize the
overall performances of Hyper-Mol along with other
baseline methods, where the best results (i.e., higher is
better) are shown in bold. We have the following obser-
vations: (1) Hyper-Mol achieves the best average ROC-AUC
scores in both binary and multilabel tasks over the
experimented datasets. Besides, Hyper-Mol outperforms all
the state-of-the-art baselines on 4/6 datasets; (2) the GCN
backbone in the Hyper-Mol framework is more efective
than the GIN, which achieves an overall relative improve-
ment of 1% on the average ROC-AUC scores.

4.4.2. Contribution of Hyper-Mol in Binary Classifcation.
As present in Tables 2 and 4, Hyper-Mol surpasses all the
methods on the BBBP and BACE datasets, and also shows
rival performance compared with the best-performed
N-Gram on the HIV dataset. Moreover, both the GCN and
GIN backbones in Hyper-Mol with fngerprint-level
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message passing mechanism achieve 21.1% and 23.3% im-
provement, respectively, in comparison with those in the
atom level.

4.4.3. Contribution of Hyper-Mol in Multilabel Classifcation.
Tables 3 and 4 demonstrate that the multilabel classifcation
tasks are more challenging than the binary ones. Te models
proposed by Hu et al. and N-Gram perform competitive in
the multilabel classifcation tasks. Hyper-Mol still achieves
the highest results on the SIDER (with 27 tasks) and ClinTox
(with 2 tasks) datasets, respectively. As the similar phe-
nomenon observed in binary classifcation tasks, the fn-
gerprint-level message passing processes in Hyper-Mol

applying the GCN and GIN backbone neural architectures
also achieve 21.8% and 19.3% improvement, respectively,
compared with the atom-level message passing.

4.4.4. Impact of ECFPs Hyperparameters. Hyper-Mol ap-
plies the ECFPs algorithm to generate fngerprints for
molecules. To show the impact of the hyperparameters (i.e.,
the length and the radius) on Hyper-Mol, we conduct two
types of model sensitivity experiments: (1) we fx the radius
with 2, and vary the length in the set 1024, 2048, 4096{ }; (2)
we vary the radius from 2 to 4, with the length = 2048 fxed.
Figure 2 presents how the fngerprint length afects the
performance of Hyper-Mol on the SIDER (multilabel task)
and BACE (binary task) datasets, respectively, under the
circumstance that the radius is set to 2. We can observe that
with a larger fngerprint length, Hyper-Mol with both GCN
and GIN backbones achieves better performance on the
SIDER dataset. Te best ROC-AUC score achieved by
Hyper-Mol (GIN) with length = 4096 reaches to
0.664± 0.021. On the BACE dataset, there is also an im-
provement achieved by the larger length (2048 and 4096)
compared with the relative small length (1024). Figure 3

Table 1: Detailed descriptions of the experimented datasets.

Datasets # Molecules # Tasks Description
HIV 41127 1 For the prediction of the ability of the tested compounds to inhibit HIV replication
BBBP 2039 1 For the modeling and prediction of the barrier permeability
BACE 1513 1 For the prediction of binding results for a set of inhibitors of human beta-secretase 1
Tox21 7831 12 For measuring the toxicity of the tested compounds
SIDER 1427 27 For the prediction of grouped drug side-efects
ClinTox 1478 2 For the prediction of clinical trial toxicity (or absence of toxicity) and FDA approval status

Table 2: Te test ROC-AUC performance of diferent models in binary classifcation benchmarks.

Datasets HIV BBBP BACE Avg.
GCN 0.740± 0.030 0.718± 0.009 0.716± 0.020 0.725
GIN 0.753± 0.019 0.658± 0.045 0.701± 0.054 0.704
N-Gram 0. 30± 0.013 0.912± 0.030 0.876± 0.035 0.873
Hu et al. 0.802± 0.009 0.708± 0.015 0.859± 0.008 0.790
SchNet 0.702± 0.034 0.848± 0.022 0.766± 0.011 0.772
MGCN 0.738± 0.016 0.850± 0.064 0.734± 0.030 0.774
Hyper-Mol (GCN) 0.814± 0.011 0.922± 0.012 0. 9 ± 0.009 0. 7 
Hyper-Mol (GIN) 0.808± 0.016 0.910± 0.022 0.885± 0.024 0.868
Te numbers in bold represent the best performance.

Table 3: Te test ROC-AUC performance of diferent models in multilabel classifcation benchmarks.

Datasets Tox21 SIDER ClinTox Avg.
GCN 0.709± 0.026 0.536± 0.032 0.625± 0.028 0.623
GIN 0.740± 0.008 0.573± 0.016 0.580± 0.044 0.631
N-Gram 0.769± 0.027 0.632± 0.005 0.855± 0.037 0.752
Hu et al. 0.7 7± 0.004 0.652± 0.009 0.789± 0.024 0.743
SchNet 0.772± 0.023 0.539± 0.037 0.715± 0.037 0.675
MGCN 0.707± 0.016 0.552± 0.018 0.634± 0.042 0.631
Hyper-Mol (GCN) 0.742± 0.038 0.659± 0.021 0.875± 0.078 0.759
Hyper-Mol (GIN) 0.723± 0.042 0.657± 0.026 0. 79± 0.056 0.753
Te numbers in bold represent the best performance.

Table 4: Te test ROC-AUC performance of diferent GNN
backbones with atom-level and fngerprint-level structural
information.

Tasks Backbone Atom-level Fingerprint-level Gain (%)

Binary GCN 0.725 0.878 +21.1
GIN 0.704 0.868 +23.3

Multilabel GCN 0.623 0.759 +21.8
GIN 0.631 0.753 +19.3
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ofers the observation that with the fxed length = 2048 of
fngerprints, the larger radius (4) shows a negative efect on
the performance of Hyper-Mol compared with the relative
small radius (2 and 3) on both the SIDER and BACE
datasets.

4.5. Discussion. Overall, encoding fngerprint-based fea-
tures from a hypergraph perspective provides a powerful
solution for learning molecular graph representations.
Results on the experimented datasets show that the
proposed Hyper-Mol is superior to the state-of-the-art
baseline methods on the molecular property prediction
tasks. Te message passing processes in the baselines
aggregate and propagate structural information in the

atom level, which force their neural networks to learn
relatively “microscopic” graph-structured knowledge of
molecules, i.e., the relationships of atoms and bonds.
However, the more sophisticated information of mole-
cules, such as the pharmacophore-aware or functional
class-aware characteristics, is normally embedded in
some meaningful clusters of atoms and bonds, for ex-
ample, the components of molecular fngerprint sub-
structures. Diferent from the ways of atom-level message
passing that lack meaningful “interactions” between
clusters, Hyper-Mol perceives hyperstructured infor-
mation through the fngerprint-level message passing
mechanism. Instead of absorbing atom-attributed or
bond-attributed features only, Hyper-Mol utilizes fn-
gerprint-attributed features to depict informative context

0.50

0.55

0.60

0.65

0.70

0.75

0.80

RO
C-

AU
C 

Sc
or

es

40961024 2048
Fingerprint Length

0.637 0.648
0.659 0.657 0.658 0.664

Hyper-Mol (GCN)
Hyper-Mol (GIN)

(a)

40961024 2048
Fingerprint Length

0.70

0.75

0.80

0.85

0.90

0.95

1.00

RO
C-

AU
C 

Sc
or

es

Hyper-Mol (GCN)
Hyper-Mol (GIN)

0.889 0.875 0.898 0.885 0.894 0.879

(b)
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relationships of the molecular fngerprint substructures.
Physical and chemical characteristics of fngerprint-
specifc knowledge can be encoded into the fnal mo-
lecular graph representation from a hypergraph per-
spective. Terefore, the overall performance of Hyper-
Mol is superior to the baselines.

5. Conclusions and Future Work

In order to learn molecular representations with more so-
phisticated knowledge of physical and chemical characteris-
tics, we propose Hyper-Mol, a novel MRL framework, which
encodes Hypergraph structures of Molecules via fngerprint-
level message passing mechanism. Hyper-Mol constructs
hypergraphs of molecules by utilizing both intra-structured
and inter-structured topological information of chemical
fngerprint substructures, and applies GNNs to learn
meaningful molecular representations based on the extracted
hyperstructured features. Experimental results present that
Hyper-Mol can depict informative context relationships of
the fngerprint substructures and is superior to the state-of-
the-art approaches on various molecular property prediction
tasks, such as bioactivity, pharmacokinetics and toxicity.

Future work would focus on exploring self-supervised or
unsupervised learning framework for encoding hypergraph
knowledge of molecules. Meanwhile, we also consider to in-
corporate both atom-level and fngerprint-level information to
learn more comprehensive representations for molecules.
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