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To improve the algorithmic dimension, critical thinking, and problem-solving ability of computational thinking (CT) in students’
programming courses, frst, a programming teaching model is constructed based on the scratch modular programming course.
Secondly, the design process of the teaching model and the problem-solving model of visual programming are studied. Finally, a
deep learning (DL) evaluation model is constructed, and the efectiveness of the designed teaching model is analyzed and
evaluated. Te T-test result of paired samples of CT is t� − 2.08, P< 0.05. Tere are signifcant diferences in the results of the two
tests, and the designed teaching model can cause changes in students’ CT abilities. Te results reveal that the efectiveness of the
teaching model based on scratch modular programming has been verifed on the basis of experiments. Te post-test values of the
dimensions of algorithmic thinking, critical thinking, collaborative thinking, and problem-solving thinking are all higher than the
pretest values, and there are individual diferences. Te P values are all less than 0.05, which testifes that the CT training of the
designed teaching model has the algorithm dimension, critical thinking, collaborative thinking, and problem-solving ability of
students’ CT. Te post-test values of cognitive load are all lower than the pretest values, indicating that the model has a certain
positive efect on reducing cognitive load, and there is a signifcant diference between the pretest and post-test. In the dimension
of creative thinking, the P value is 0.218, and there is no obvious diference in the dimensions of creativity and self-efcacy. It can
be found from the DL evaluation that the average value of the DL knowledge and skills dimensions is greater than 3.5, and college
students can reach a certain standard level in terms of knowledge and skills.Temean value of the process andmethod dimensions
is about 3.1, and themean value of the emotional attitudes and values is 2.77.Te process andmethod, as well as emotional attitude
and values, need to be strengthened. Te DL level of college students is relatively low, and it is necessary to improve their DL level
from the perspective of knowledge and skills, processes and methods, emotional attitudes and values. Tis research makes up for
the shortcomings of traditional programming and design software to a certain extent. It has a certain reference value for re-
searchers and teachers to carry out programming teaching practice.

1. Introduction

Since the rise of artifcial intelligence (AI) as a national
development strategy, AI education, programming educa-
tion, and robot education have been highly valued in society,
schools, and family education. Cultivating students’ training
thinking is an important aspect that needs attention in the
programming course. Especially with the advent of the era of

education informatization 2.0, all citizens are required to pay
attention to the cultivation of computational thinking (CT)
ability [1]. Te proposition of CT conforms to the trend of
the information age and provides new experiences and
methods for future curriculum construction and reform. CT,
Empirical Tinking, and Logical Tinking are considered to
be the three major thinking models in the scientifc thinking
spectrum [2].
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In actual programming teaching, teachers often focus on
the results of problem-solving and ignore the changes in the
entire thinking process of learners in solving and analyzing
problems. Te works or assignments created by learners
become the only yardstick for judging their CT level. Tis
kind of training model cannot improve the thinking ability
of students in a real sense [3]. Scratch programming can
efectively improve students’ CT ability. It can be used in
many aspects of teaching, such as designing animations,
designing games, and solving math problems [4]. Exploring
the classroom teaching implementation strategy based on
scratch graphical programming in line with the current
curriculum has become the top priority of information
technology teaching [5]. Jiang and Li (2021) designed a
scratch course aimed at improving the CT of middle school
students in the teaching practice research. Te result of the
analysis indicated that scratch teaching improves the CT of
middle school students to a certain extent [6]. Chung and
Shamir (2020) studied the scratch graphical programming
tool combined with theMachine Learning for Kids project to
form an AI algorithm. It was applied to youth AI education
for efect verifcation [7]. Riera et al. (2019) used the
hardware logic of the perception based on the scratch
teaching platform and control module as a supplement to
the scratch language software logic. Tey also built an in-
telligent hardware learning system that integrates percep-
tion, processing, control, and virtual scenes [8].Te research
literature suggests that CT training is mainly focused on
primary and secondary schools and high schools, and there
are relatively few studies in higher education. Most of the
students in college have not been exposed to programming
before, so the research on the cultivation of CT in college
students is particularly important [9]. How to efectively
cultivate CT and innovate the teaching model of CT is an
important issue for college educators. Te deep learning
(DL) model advocates for learners to actively transfer their
knowledge and apply it to solve complex problems in reality,
which helps to improve learners’ own critical thinking and
the construction of new knowledge [10]. Te learning
methods are diverse, focusing on the transfer and applica-
tion of knowledge, and the DL evaluation model satisfes the
active and comprehensive development of learners at var-
ious aspects and levels. It transforms the actual ability of
programming into the training of programming thinking,
starting from scientifc literacy and comprehensively
inspecting students’ knowledge and learning ability [11].

On account of the existing theoretical achievements, a
teaching model of CT training for programming courses on
the idea of scratch modular programming is proposed,
which permeates the idea of modular programming in the
whole process of learning. And it guides students to de-
compose complex problems into subproblems, realize the
advantages of modular decomposition tasks, and compare
CT results before and after. Moreover, the DL evaluation
model is constructed to verify whether this model can ef-
fectively cultivate and train students’ comprehensive ana-
lytical thinking abilities in programming teaching courses
from diverse dimensions.Tis research has a certain positive
infuence on improving the algorithmic dimension, critical

thinking, and problem-solving ability of students’ CT and
reducing cognitive load. Te innovation of design lies in the
combination of the scratch programming tool and CT
training, and the use of the DL model for comprehensive
evaluation of teaching design. Scratch programming tools
can help students establish and train programming ideas, lay
the foundation for learning a professional programming
language, improve the transfer of students’ information
technology (IT) capabilities, and further make up for the
defciencies of traditional programming and design soft-
ware. It has vital guiding signifcance for teachers and re-
searchers to perform programming teaching practice.

2. Theoretical Basis and Method Research

2.1. Te Training Elements of CT in Programming Courses

2.1.1. Te Concept of CT in Programming Courses. Te
concept of CT was frst introduced in 1980 by Seymour
Papert in his book, where he considered CT as a way to
demonstrate the relationship between programming and
thinking skills. CT can be summarized into fve elements
including algorithmic thinking, decomposition, abstraction,
generalization, and evaluation [12]. CT applies the con-
ceptual principles of computer science to problem-solving,
models the relevant aspects of the problem, and applies the
most efective methods to solve the problem.Te CTprocess
includes features such as problem structuring, data analysis,
model building, algorithm design, solution implementation,
and application migration [13, 14].

2.1.2. Te Training Elements of CT in Programming Courses.
TeCTtrainingmodel belongs to the subordinate concept of
training mode. Figure 1 displays the specifc training
elements.

Te elements in Figure 1 include training objectives,
content, implementation process, and evaluation. Te
training goal includes two aspects. One is the general goal
orientation of the country, society, or school for the culti-
vation of students’ CT, which is a macro-level goal re-
quirement; the other is the curriculum goal of the CT
training courses ofered. Te training content is mainly
refected in the CT syllabus, teaching content, teaching
principles, teaching management methods, etc. Evaluation is
the fnal form of testing a practical achievement.

2.2. Construction of a Teaching Model Based on Scratch
Modular Programming

2.2.1. Scratch-Based Modular Programming. Scratch is a
graphical programming tool developed by the MIT Media
Lab in 2007 for beginners to learn to program [15]. Scratch
courses have gradually become school-based courses in
some schools. Compared with other IT content, scratch
teaching can stimulate students’ curiosity, activate their
thirst for knowledge, and help students transfer their IT
capabilities. Whether it is animation or game development,
it needs to abstract specifc problems and stack them with

2 Computational Intelligence and Neuroscience



instructions [16, 17]. Te important performance of CT is
refected in the instruction such as selection, loop, and
condition in Scratch teaching from diferent perspectives
[18].

Modular programming is a program design that divides
a large program into several small program modules
according to functions. Each small program module com-
pletes a certain function, and each module cooperates with
each other to complete the program design of the entire
function [19, 20]. Te steps of modular programming are
demonstrated in Figure 2.

As shown in Figure 2, the frst step is to analyze the
problem and clarify the tasks to be solved.Te teacher guides
the students to decompose and refne the task step by step
and divides it into several subtasks. Each subtask only
completes part of the complete function and can be
implemented by functions. Next, it is necessary to determine
the calling relationship between various modules, guide
students to continuously debug, and optimize the calling
relationship between modules. Finally, call and parallel
processing are implemented in the main program.

Modular thinking training allows students to decompose
complex problems into many small problems that are easy to
solve. Tis type of thinking training can improve students’
higher-order thinking abilities. Tis model is applied to the
scratch classroom for teaching practice [21]. Te teaching
process mainly includes fve basic links: creating a situation,
refning knowledge, assigning tasks, practical operation, and
summarizing and refecting [22]. Te structure of the
designed teaching model based on the Scratch modular
program is illustrated in Figure 3.

Figure 3 signifes that in the teaching activities, it mainly
includes designing the situation and guiding the theme, case
demonstration and knowledge explanation, assigning tasks
and guiding thinking, support and inspection and super-
vision, and summary and evaluation. Student activities
mainly involve process design and software editing, problem
decomposition, schema construction, motivation and re-
fection, and feedback and improvement. In terms of CT
goals, they mainly cover creativity, algorithmic thinking,
collaboration, critical thinking, and problem-solving. In the
process of teaching practice, in the frst step, the teacher uses
the grouping function to divide the students into two groups
according to the programming level. In the second step, the

teacher guides the students to analyze the problem and uses the
Scratch modular idea to demonstrate the operation to the
students. In this process, students closely link old and new
knowledge and reconstruct new cognition. In the third step,
teachers ask challenging questions and students answer them. In
the fourth step, teachers conduct inspections and supervision,
answer questions, and students visualize the plan. Finally, under
the guidance of teachers, studentsmake summaries and conduct
experimental refections and iterative improvements at this
stage.

2.2.2. Visual Programming Problem-Solving Model.
Visual programming tools lead learners to contact the code
language in theway ofmodule splicing, which canmake learners
accept learning programming psychologically. Its main teaching
function is to weaken the writing of programming code, em-
phasize the application of CT knowledge and methods, and
enhance the learner’s motivation [23]. Visual programming
tools can describe and execute problems in real situations in a
modular programming language according to the problem-
solving plan [24]. Figure 4 reveals the visual programming
problem-solving model.

As shown in Figure 4, a plan is formed through CT and
methods, and a visual programming platform program is built
according to the plan. After the platform is debugged, the so-
lution to the problem is obtained and mapped to the real sit-
uation. Trough the real situation, questions can be raised and
fed back to theCTmethods.Te real situation can further extract
the elements in the real situation, such as people, things, things
and rules. Finally, the problem is solved.

Analyze problems and clarify
tasks

Abstract generalization and task
decomposition

Designing algorithms, creating
functions

Optimize relationships and
implement calls

Figure 2: Modular programming steps.

Training objectives

Training elements 
of computational 

thinking

Training 
implementation

Content of courses

Cultivation evaluation

Figure 1: Training elements of CT.

Computational Intelligence and Neuroscience 3



2.3. Construction of DL Evaluation Model for CT Training

2.3.1. DL ConceptTeory. DL, also known as Deep Structure
Learning, is the inherent law of learning sample data to
automatically learn data features and complete tasks such as
classifcation and regression. It has the ability to analyze,
learn independently, and recognize data, such as text and
images. Figure 5 presents the DL neural network model.
From bottom to top are the input layer, hidden layer, and
output layer. Features are extracted layer by layer according
to the feature distribution of the underlying data [25, 26].

Te DL neural network model in Figure 5 uses unsu-
pervised learning from the input layer to the output layer. In
other words, the training starts from the input layer and goes

up layer by layer. Te parameters of each layer are trained
layer by layer without calibration data. Tis training can be
regarded as an unsupervised training process.

Assuming that x1 and x2 represent the sample features.
Te input layer receives the sample data features and then
outputs the evaluation result. Te input x can be expressed
as the following equation:

x � x1, x2, · · · xi( 􏼁
T
. (1)

Te following equation indicates the preactivation
output z

[l]
i .

z
[l]
i � w

[l]T

i + b
[l]
i . (2)

Te activation output of the hidden layer a
[l]
i can be

written as follows:
a

[l]
i � g

[l]
z

[l]
i􏼐 􏼑. (3)

Here the superscript [l] represents the number of layers
in the neural network, and the subscript stands for the
number of neuron nodes. By training on large-scale data,
representative feature information is obtained, thereby
achieving the purpose of classifying and predicting sample
data [27].

2.3.2. Model Evaluation Calculation Based on DL. Te DL
model is used to evaluate the teaching model based on
Scratch modular programming, and analyze the

Teaching model based on Scratch modular 
programming

Process design 
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thinking
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Figure 3: Teaching model based on the Scratch modular program.
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Figure 4: Visual programming problem-solving model.
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characteristics of thinking training. In the DL network
model, the feature sample data X trained by CT, and the
parameters w[1], b[1] are input to the frst hidden layer, and
z[1] is calculated, as indicated in the following equation:

z
[1]

� w
[1]T

X + b
[1]

. (4)

When fnding out a[l], the parameters w[2], b[2], and a[l]

are input into the second hidden layer together to solve z[2]

for the subsequent calculation of a[2]. Propagation continues
according to such rules, and the whole process is called
forward propagation [28]. Te calculation process is pre-
sented as the following equations:

a
[l]

� g z
[l]

􏼐 􏼑,

z
[2]

� w
[2]T

a
[l]

+ b
[2]

,

a
[2]

� g z
[2]

􏼐 􏼑.

(5)

By analogy, z[l], a[l], and 􏽢y can be expressed as the
following equations:

z
[l]

� w
[l]T

a
[l− l]

+ b
[l]

,

a
[l]

� g z
[l]

􏼐 􏼑,

􏽢y � a
[l]

.

(6)

An error loss function is defned as the measurement
standard to make the output feature training value 􏽢y

gradually approach the real value y. Te error loss function
is defned as follows:

L(􏽢y, y) �
1
2
(􏽢y − y)

2
. (7)

Te neural network model is hoped to meet the prob-
ability under certain conditions, as shown in the following
equation:

p(y ∣ x) �
􏽢y, (y � 1),

1 − 􏽢y, (y � 0).
􏼨 (8)

(8) can be rewritten as (9).

p(y ∣ x) � 􏽢y
y
(1 − 􏽢y)

1− y
. (9)

Taking the logarithm of both sides of the above results,
the simplifed result is shown in the following equation:

Blog p(y ∣ x) � ylog 􏽢y +(1 − y)log (1 − 􏽢y). (10)

Te larger the value of p(y ∣ x), the smaller the loss. Te
cross-entropy function is expressed as follows:

L(􏽢y, y) � − [ylog􏽢y +(1 − y)log (1 − 􏽢y)]. (11)

2.3.3. DL Features. According to the DL model and related
teaching research, the basic characteristics of DL are sum-
marized. DL is specifcally summarized into six basic fea-
tures [29], as expressed in Figure 6.

First, DL emphasizes a high degree of engagement in
learning. Students with strong learning motivation can
actively discover the meaning of knowledge, communicate
and cooperate with teachers and classmates, and strive to
build a knowledge system to cultivate the ability to solve
practical problems. Second, DL focuses on critical under-
standing. Students should pay attention to understanding
learning and promote DL to occur. Tird, it emphasizes the
integration and construction of knowledge to form a new
knowledge structure. Fourth, DL attaches importance to
knowledge transfer application and problem-solving. Fifth,
DL pays attention to the overall development of the mind,

Output layer Z 

Intput layer X

...

Hidden layers 

Figure 5: DL neural network model.

Deep learning features

High engagement in 
learning

Knowledge integration 
construction

Self orientation and 
lifelongCritical thinking

Migration and problem 
solving Mental development

Figure 6: DL features.
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including comprehensive practical ability, operational
ability, problem-solving ability, and innovative application
ability. Sixth, DL emphasizes self-direction and lifelong
characteristics [30].

2.3.4. DL Route. A DL route is proposed based on DL
theory, which is divided into 8 stages. First, the learning
objectives and learning content are designed. Second, the
learner’s learning level is preassessed. Tird, a positive
learning atmosphere is created to stimulate previous
learning. Fourth, students acquire new knowledge. Fifth,
they perform feature extraction on the acquired knowledge.
Sixth, they carry out in-depth processing of knowledge.
Ten, learners form new knowledge-cognition pairs. Finally,
the learning efect is evaluated [31, 32]. Figure 7 provides the
specifc route.

2.4. Experimental Design Scheme

2.4.1. Source of Experimental Data. A quasiexperiment was
carried out in the scratch course of a university in Zhejiang
Province to evaluate the efectiveness of the teaching model
based on the idea of modular programming. Te experimental
subjects are 60 freshmen, all from the two classes of the 2021
educational technologymajor who took the Introduction to Fun
Makers. Te duration of the experiment was from September
2021 to December 2021, for a total of 14 teaching weeks. In this
study, the test results of 10 students were randomly selected for
display and comparison due to the huge data sample size, and
the student numberswere defned as 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.

2.4.2. Experimental Steps. Tis work carried out a learning
activity experiment based on the teaching model of Scratch
modular programming. Figure 8 shows the specifc steps.

First, the same teacher guided the basic knowledge of
Scratch programming for a week. After learning, the stu-
dents were asked to complete the after-class practice task “let
the kitten move”. In weeks 2 and 3, students completed the
Scratch pretest questions and pretest questionnaires. Te
pretest questionnaire included assessments of learners’ CT
skills, self-efcacy, and cognitive load. In the following nine
weeks, teachers taught modular programming. In the last
two weeks, post-test questionnaires and post-test questions
were measured and data collected. Post-test questionnaires
included the ComputationalTinking Scale, the Self-Efcacy
Scale, and the Cognitive Load Scale. Te DL model was used
to evaluate the learning results.

Learning goal design

Service characteristics

Pre assessment of learners

Create a positive learning atmosphere

Stimulate prior knowledge

Receive new knowledge

Knowledge feature extraction

Deep processing knowledge

Learning evaluation

Learning content design

Figure 7: DL route.

Teaching implementation

Analyze problems and clarify tasks

Learning the basics of scratch

Pretest questionnaire

Pre test of computational thinking test

Designing algorithms, creating functions

Week 13

Abstract generalization and task 
decomposition

Optimize relationships and implement calls

Post test questionnaire

Post test of computational thinking test

Modular 
programming 

teaching

Week 1

Week 2

Week 3

Week 4-12

Week 14

Figure 8: Experimental design of learning activities.

Table 1: Parameter settings and operating environment.

Project Setting and model
Operating system Ubuntu 18.04
Model of CPU Ge force GTX 1080Ti × 2
Memory 64GB
DL network acceleration library cuDNN7.6.0
Programming language Python
Network framework PyTorch
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2.4.3. Measurement Tasks. Te pretest and post-test questions
were adapted from the Computational Tinking test (CTt),
which is a tool that can assess learners’ CTdevelopment level and
was developed by Spanish scholar Romaán-Gonzaález. Te
Computational Tinking Scales (CTS) were adapted from the
Likert scale, which was designed and developed by the Turkish
scholar Korkmaz and others. Te measurement tasks included
pretest and post-test scores of CTt, pretest and post-test ques-
tionnaires of CTS, Group Self-Efcacy Scale, and Cognitive
Load.

Te pretest contains 10 multiple-choice questions (100%);
the post-test includes 10 multiple-choice questions, each with 3
points (60%) and 10 judgment questions, each with 2 points
(40%). Finally, they are converted to the percent system. Te
pretest and post-test questions were adapted from CTt. CTS is a
fve-point Likert scale consisting of 29 items.Te assessment tool
mainly measures the level of learners’ CT ability from fve di-
mensions: creativity, algorithmic thinking, collaboration, critical
thinking, and problem-solving.Te validity and reliability of the
scale were studied through exploratory factor analysis, confr-
matory factor analysis, item variance analysis, internal consis-
tency coefcient, and constancy analysis. Te analysis results
show that the scale is an efective and reliable measurement tool
for measuring students’ CT ability. Tere are eight items in the
Group Self-efcacy Questionnaire, which test individual judg-
ments of group competence and assessments of group com-
petence on upcoming tasks. Each item was scored on a fve-
point Likert scale, with 5 representing strongly agree and 1
representing strongly disagree.

Cognitive load measures include two dimensions:
mental load and mental efort. Te Cronbach alpha values
for the two dimensions are 0.92 and 0.84, respectively. In this
study, the description of the scale was adjusted to a language
suitable for students’ understanding according to the
teacher’s specifc class content, and a pre- and post-test
survey was conducted.

Te software uses SPSS25 version and Excel to imple-
ment the data analysis.

2.4.4. Test Environment for DL Evaluation. Te parameter
settings and operating environment of the DL evaluation
model are exhibited in Table 1.

3. Results and Discussion

3.1.Paired-SampleT-Test forStudentCT. SPSS25 was used to
analyze the overall changes of students’ CT before and after
the test. Te paired sample T test was used. Table 2 lists the
results.

In Table 2, the mean of the pretest was 97.45, and the
mean of the post-test was 99.28, showing a rise.Te standard
deviation of the pretest was 13.38, and the standard devi-
ation of the post-test was 12.42, t� -2.08, and
p� 0.022< 0.05.Te results of the two tests were signifcantly
diferent, indicating that the teaching model based on
modular programming can cause changes in students’ CT
ability.

Table 2: Paired sample test result.

Test Average value Number of cases Standard deviation T Degrees of freedom Sig (two-tailed)
Pre-CTt 97.45 60 13.38

− 2.08 59 0.022Post-CTt 99.28 60 12.42
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Figure 9: Comparison of creative thinking and algorithmic thinking in the pretest and post-test (a) comparison of creative thinking; (b)
comparison of algorithmic thinking.
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3.2. Multidimensional Analysis of CT Tests

3.2.1. Comparison of Dimensional Tests of Creativity and
Algorithmic Tinking. Te CT test was conducted on 10
students from the perspective of creative thinking and al-
gorithmic thinking. Te results of the pretest and post-test
were compared, as shown in Figure 9.

Figure 9 denotes that the post-test scores of the 10
students’ creative thinking are higher than the pretest.
Student No. 3 has the highest score. Te pretest value is 4.3

the post-test score is 4.9. Student No. 2 has the lowest
score, with a pretest value of 2.6 and a post-test value of
3.1. But overall, creative thinking is a growing trend. As
displayed in Figure 9(b), the post-test values for the
dimension of algorithmic thinking are all higher than the
pretest values. Student No. 5 has the lowest score, with a
pretest value of 3.7 and a post-test value of 4.1, and the
overall trend is upward. Te post-test values are higher
than the pretest values, and creativity and algorithmic
thinking abilities are improved.
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Figure 10: Collaborative thinking and critical thinking before and after test comparison. (a) Comparison of collaborative thinking; (b)
comparison of critical thinking.
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Figure 11: Comparison of the problem-solving ability and self-efcacy (a) comparison of problem-solving ability; (b) comparison of self-
efcacy.
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3.2.2. Comparison of Collaborative Tinking and Critical
Tinking Tests. TeCTwas analyzed from the dimensions of
Collaborative Tinking and Critical Tinking. Figure 10
compares the results of the pretest and post-test.

In Figure 10(a), there are individual diferences in the
thinking of 10 students. Te pretest value of student No.
2 is 2.3, and the post-test value has increased to 2.8,
which is the lowest value; student No. 6 has the highest
value. Te post-test values of collaborative thinking in all
samples are higher than in the pre-test. In the test of
critical thinking in Figure 10(b), the pretest value of
student No. 1 is 2.7, and the post-test value is increased to
3.2, which is the lowest value; student No. 6 is the highest.

Te post-test values of the critical thinking dimension are
higher than the pretest values, and the overall trend also
shows an upward trend.

3.2.3. Comparison of Problem-Solving Ability and Self-
Efcacy. Te CT test was performed in terms of problem-
solving ability and self-efcacy. Figure 11 presents the results
of the pretest and post-test.

Figure 11(a) illustrates that the post-test value of 10
students’ problem-solving ability is greater than the
pretest value. Student No. 1 has the lowest value; the
pretest value is 3, and the post-test value is 3.4. Te overall
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Figure 12: Comparison of cognitive load.
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Figure 13: Comparison of t value and P value of each dimension of the pretest and post-test (a) Comparison of averages of each dimension
of the pretest and post-test; (b).
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improvement is about 0.4. Te increase in the proportion
is not very obvious, but to a certain extent, it can still
improve the students’ problem-solving ability. Figure 11(b)
refers that the post-test value of most of the students’ self-ef-
fcacy is higher than the pretest, and the improvement of No. 5
student is not much, and the increase is 0.1. On the whole,
students’ self-efcacy has a certain improvement compared with
the pretest.

3.2.4. Analysis of Cognitive Load. Te CT test was analyzed
from the perspective of cognitive load. Figure 12 compares
the results of the pre-test and post-test.

In Figure 12, the post-test values of the cognitive load of the
10 students are all lower than the pretest values, with the most
obvious reductions for students No. 4 and No. 5, and the test
values decreased by 0.5.Overall, the teachingmodel based on the
idea of scratch modular programming can reduce the cognitive
load of each learner to varying degrees.

3.3. Comparative Analysis of the AverageData of Students’ CT
on the Pretest and Post-test. A paired sample t-test was
performed on the self-efcacy and cognitive load of CT, and
the results are shown in Figure 13.

In Figure 13, A stands for creative thinking, B for algo-
rithmic thinking, C for collaborative thinking, D for critical
thinking, E for problem-solving ability, F for self-efcacy, and G
for cognitive load. Te post-test average of each dimension is
basically higher than the pretest average of each dimension, and
the post-test average of cognitive load is smaller than the pretest.
Te teaching model of modular programming idea has an
impact on the learning efect of learners. Te P values of al-
gorithmic thinking, collaborative thinking, critical thinking,
problem-solving ability, and cognitive load are all less than 0.05,
and there are signifcant diferences between the post-test and
the pretest results. In the dimension of creative thinking, the P
value is 0.218, and in the dimension of self-efcacy, the P value is
0.034. Tere is no obvious diference between the dimension of
the two.
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Figure 14: Descriptive statistics of various dimensions of DL (a) knowledge and skills dimension; (b) process and method dimension; and
(c) emotional attitude and values.
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3.4. Analysis of the DL Evaluation Model. Te DL efect of
college students were analyzed from three dimensions:
knowledge and skills, process and methods, and emotional
attitudes and values. SPSS25 was used to conduct overall
descriptive statistics. Te results are shown in Figure 14.

In Figure 14(a), A1 indicates that only knowledge points
have beenmastered; A2 indicates that the learned knowledge
can be expressed correctly; A3 indicates that the chart and
data can be explained; and A4 indicates that the learned
knowledge is applied to new situations. In Figure 14(b), B1
means it is fun to learn new knowledge; B2 means that all
opinions must be supported by evidence; B3 means to
analyze the key points of the problem before solving the
problem; and B4 means to be good at systematically plan-
ning to solve complex problems. In Figure 14(c), C1 means
passing the exam with as little work as possible; C2 means
that the course is uninteresting and less study time; C3
means selective learning according to necessity; and C4
means that the study irrelevant to the test is meaningless.Te
average value of college students’ DL knowledge and skills
dimensions is greater than 3.5, approaching 5, indicating
that college students can reach a certain standard level in
terms of knowledge and skills. Te average value of the
process and method dimension is about 3.1> 3, the mini-
mum value is 2.96, and the maximum value is 3.36, indi-
cating that the overall level of the tested students in terms of
process and method is slightly low and needs to be further
improved. Finally, in terms of emotional attitudes and
values, the average value is 2.77< 3, the maximum value is
3.22, the minimum value is 2.01, the results are not satis-
fying. Te mean values of the three dimensions are relatively
concentrated, and most of them are between “disagree” and
“general,” which belong to the description of uncertainty. It
can be concluded that the level of DL of college students is
relatively low. It is necessary to improve students’ DL level
from the perspective of knowledge and skills, process,
method, emotion, attitude, and values.

4. Conclusion

To improve the CT ability of students in programming
courses, a teaching model based on Scratch modular pro-
gramming is implemented, and the steps of the modular
programming-based teaching model and the visual pro-
gramming problem-solving model are explored. To evaluate
the efectiveness of the teaching model based on the idea of
modular programming, a quasiexperimental method is used
to conduct CT, CTS, pretest, and post-test questionnaires of
the group self-efcacy scale and cognitive load. Furthermore,
DL evaluation analysis is carried out on the learning results.
Te following conclusions are drawn.Te efectiveness of the
teaching model based on scratch modular programming has
been verifed on the basis of experiments. Te T-test is
performed on the paired samples of students’ CT, t� -2.08,
P� 0.02. Tere are obvious diferences in the results of
pretest and post-test, illustrating that the teaching model
based on modular programming can cause changes in
students’ CT ability. Te post-test values of the dimensions
of algorithmic thinking, critical thinking, collaborative

thinking, and problem-solving thinking are all higher than
the pretest values, and there are individual diferences in
each sample. Te P values are all less than 0.05, and the post-
test values of cognitive load are all lower than the pretest
values. It means that the CTtraining of the designed teaching
model has a certain positive efect on the algorithm di-
mension, critical thinking, collaborative thinking, and
problem-solving ability of students’ CT and reduces cog-
nitive load. However, there is no obvious diference in the
dimensions of creativity and self-efcacy. On the basis of the
DL evaluation, it can be found that college students can
reach a certain standard level in terms of knowledge and
skills. Te process and methods, as well as emotional atti-
tudes and values, need to be strengthened. Tis study also
has certain limitations. Like most educational research ex-
periments, the sample size of this experiment is not very
large. Tere are still some limitations in the collection of
learner data, and more methods and tools to efectively
collect learner thinking data need to be explored. Moreover,
individual diferences among learners may have some in-
fuence on the experimental results. Due to the diferences in
individual thinking among learners, it is difcult to com-
prehensively consider and carry out fully targeted training in
Scratch courses. Te applicability of the teaching model
needs to be further expanded. In the follow-up, there will be
targeted training strategies and methods, and diferent levels
of practical research will be carried out to improve the
universality and efectiveness of the model many times.
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